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Abstract

Background: Changes in land use and land cover (LULC) as well as climate are likely to affect the geographic
distribution of malaria vectors and parasites in the coming decades. At present, malaria transmission is
concentrated mainly in the Amazon basin where extensive agriculture, mining, and logging activities have resulted
in changes to local and regional hydrology, massive loss of forest cover, and increased contact between malaria
vectors and hosts.

Methods: Employing presence-only records, bioclimatic, topographic, hydrologic, LULC and human population
data, we modeled the distribution of malaria and two of its dominant vectors, Anopheles darlingi, and Anopheles
nuneztovari s.l. in northern South America using the species distribution modeling platform Maxent.

Results: Results from our land change modeling indicate that about 70,000 km2 of forest land would be lost by
2050 and 78,000 km2 by 2070 compared to 2010. The Maxent model predicted zones of relatively high habitat
suitability for malaria and the vectors mainly within the Amazon and along coastlines. While areas with malaria are
expected to decrease in line with current downward trends, both vectors are predicted to experience range
expansions in the future. Elevation, annual precipitation and temperature were influential in all models both
current and future. Human population mostly affected An. darlingi distribution while LULC changes influenced An.
nuneztovari s.l. distribution.

Conclusion: As the region tackles the challenge of malaria elimination, investigations such as this could be useful
for planning and management purposes and aid in predicting and addressing potential impediments to
elimination.
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Background
As more countries in Latin America experience economic
growth brought about by increased external trade and nat-
ural resource exploitation [1], the continuous demand for
land to accommodate growing infrastructural develop-
ment, agricultural and livestock production and frontier
settlements, especially in the Amazon, is leading to rapid
deforestation [2, 3]. Additional factors such as accelerated
rate of internal migrations, expected global climate
changes and population expansion [4] may influence the
transmission of malaria and other vector-borne diseases
[3, 5]. However, the direction of this influence is uncertain;
vulnerability to malaria may increase if deforestation con-
tinues unabated, or the region could reach a tipping point
and experience a major climate shift that may not favor
vectors. This could occur as feedbacks between land cover
and climate change in the Amazon may lead to rapid (dec-
adal scale) changes within the climate of the Amazon
basin itself. For example, recent studies point to the in-
creasing effects of drought in the Amazon on species di-
versity, biomass, and fires, which appear to be linked to
deforestation over the past 30 years [6].
Malaria has persistently plagued Latin America [7],

and while there has been marked progress in malaria
control in the past decade [8], environmental and popu-
lation changes potentially threaten these gains by creat-
ing conducive habitats [9, 10] and increased availability
of blood meals [4] for malaria vectors. Moreover, future
temperature changes and ecosystem alterations from local
land use patterns may impact malaria transmission by ac-
celerating life cycles of parasites and mosquitoes [11, 12].
At present, our knowledge of both malaria and vector dis-
tribution in the region is incomplete [7] although there
have been a number of efforts to model the distributions
[13–22]. Filling this knowledge gap would help to mitigate
potential obstacles to malaria elimination by lending new
insights into how vectors and the disease are likely to shift
given a business-as-usual scenario.
Malaria risk and the distribution of dominant vectors

in Latin America are heterogeneous. Approximately 120
million people in Latin America are at risk of malaria
transmission, with an estimated 25 million of them at high
risk [8]. Three-quarters of infections are caused by Plas-
modium vivax (Grassi and Feletti 1890), while P. falcip-
arum (Welch 1897) is responsible for the remaining 25 %
[8, 23]. The burden of malaria in the region is however
borne by countries in the Amazon rainforest in northern
South America (NSA) where 90 % of cases are reported
[24]. Transmission occurs through infected bites from
Anopheles darlingi (Root 1926) and An. nuneztovari s.l.
(Gabaldon 1940), two of the dominant vectors in this re-
gion [13]. Anopheles darlingi is one of the most efficient
and anthropophilic malaria vectors [14], and has been im-
plicated as the primary vector for P. falciparum and P.

vivax in the endemic areas of the region [15, 25]. Anoph-
eles nuneztovari s.l. is a species complex in South America
comprising of at least two species: An. nuneztovari A
(from Suriname and Brazil), and An. nuneztovari B/C
(from Colombia and Venezuela) [26, 27]. Anopheles
nuneztovari B/C is considered a dominant vector because
it bites late into the evening and throughout the night
[26], whereas the status of An. nuneztovari A as a vector
in the Brazilian Amazon is still unresolved [28]. Evidence
suggests that both An. darlingi and An. nuneztovari s.l.
are found in altered environments [29–32] and An. dar-
lingi prefers locations close to human settlements in fron-
tier agricultural areas in parts of the Amazon [5]. Based
on these characteristics and expected bioclimatic changes,
an understanding of the distribution of malaria and its
vectors, both now and in the future, is needed to aid our
preparedness for effective operational malaria control.
A number of attempts have been made to map malaria

and vector distribution in the Americas. Gething et al.
generated global maps of P. falciparum [16] and P. vivax
[17] endemicity in 2010 using georeferenced parasite
rates and incidence data, climatic variables (temperature
and aridity) and human population data. Their results
showed all nine countries in NSA as having stable or un-
stable malaria risk [16, 17] and though the Americas
accounted for 22 % of global land area at risk, they esti-
mated that the region has 6 % of the global at-risk popu-
lation for P. vivax infection [17].
Previous efforts to map mosquito distributions in the

Americas have involved multiple genera [18], or species
[13–15, 19, 20] or have been based on single species [22]
and at different geographic scales, ranging from continen-
tal or sub-continental [13, 14, 18, 22] to national [19, 21].
Foley and colleagues [18] used geo-located museum speci-
men records to model mosquito species richness and en-
demicity in the Neotropics. By employing climatic and
LULC information, Sinka et al. [13] mapped the distribu-
tions of dominant Anopheles in the region whereas an
eco-regional approach for the Neotropics was used by
Rubio-Palis and Zimmerman [20]. Fuller et al. [22] mod-
eled the distribution of An. albimanus (Wiedemann 1820)
in the Mesoamerican and Caribbean basin based on cli-
matic and topographic data. While some previous at-
tempts have been criticized as lacking a sufficient number
of occurrence records and simplicity of techniques used
[13], more recent attempts have employed techniques
modeling the realized niche or habitat suitability of spe-
cies. Such studies have generally limited their evaluations of
mosquito distribution to bioclimatic, topographic variables
[13, 22], and LULC [13]. Moreover, with the exception of
Fuller et al. [22], who modeled future distribution of An.
albimanus by 2080, most studies that have focused on Neo-
tropical vectors have limited their investigations to current
distribution patterns. However, the increasing availability of
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downscaled climate projections from General Circulation
Models (GCMs) creates new opportunities to drive model-
ing techniques that can project future distributions as a
function of climate as well as land cover.
Numerous approaches to model species distribution

are available, including the presence-only maximum en-
tropy method implemented through the modeling plat-
form, Maxent [33, 34]. Although originally designed to
model species habitat suitability, the maximum entropy
approach to probabilistic modeling has applications well
beyond species niche modeling. For example, some stud-
ies have used Maxent to project disease distributions
such as dengue [35] and Chagas disease [36]. Thus,
using models of this type, one may be able to visualize
the current distribution of malaria and where it is likely
to persist in the future or shift, and prioritize such areas
for current eliminations efforts. In addition, by overlay-
ing current and future distributions, one can visualize
where malaria may be continuously problematic through
time as a function of climate and land cover change. In
this study we model the distribution of malaria, An. dar-
lingi, and An. nuneztovari s.l. in NSA using bioclimatic,
topographic, hydrologic, as well as LULC and population
data using Maxent. The aims are to: (i) show the current
spatial distribution and examine how the above factors
may influence species habitat suitability in NSA and (ii)
investigate the potential influence of changes in climate,
LULC and population on future species range.

Methods
Our study area comprises parts of Bolivia, Brazil, Colombia,
Ecuador, French Guiana, Guyana, Peru, Suriname and
Venezuela (Fig. 1), and includes all parts of the Amazon
rainforest. This area has the combination of socio-
environmental and climatic conditions that favor the prolif-
eration of vectors species and malaria.

Vectors and disease occurrence data
We obtained georeferenced point collection data with
records of locations where both larvae and adult An.
darlingi and An. nuneztovari s.l. were sampled (Fig. 1)
through VectorMap [37] and the Global Biodiversity In-
formation Facility [38]. These records were collected by
different investigators between 1980 and 2007 and made
available through an online spatial database, the Mosqui-
toMap [39]. We checked the downloaded data points,
excluding those with high estimated spatial uncertainty
and multiple entries. Additional sample locations of both
species were gathered through field studies conducted in
Colombia [40].
Anopheles darlingi is present in a wide range in our study

area: from the Amazonian south of Venezuela [41, 42], the
sparsely populated interiors of Guyana, Suriname and
French Guiana [41], to Brazil [15], Amazonian plains of

Ecuador [14] and parts of Colombia [43]. It is a lowland,
riverine, forest dwelling species whose larvae are often
found in lagoons, lakes, slow flowing streams, rivers with
shaded clear water, often associated with aquatic macro-
phytes (AMs) along the shallow margins of water bodies
[13, 29, 30, 44]. Larval samples from uncharacteristic loca-
tions such as slightly brackish water [29], turbid, polluted
water [31], abandoned gold mine dugouts [32] or areas
with limited forest cover [5] have also been reported, indi-
cating the influence of environmental changes on its
spread. The species is mostly exophilic [25, 32] but exhibits
both endophagic [41] and exophagic biting behaviors [45].
Anopheles nuneztovari s.l. is found extensively in our

study area [46], serving as a primary vector in western
Venezuela and north-western Colombia [46], and a
probable vector in Suriname [44]. Its larvae are found in
both sunlit and shaded habitats in temporary or perman-
ent waterbodies which may contain fresh, clear, still or
flowing water with AMs [29, 43]. Samples have also been
collected in disturbed habitats such as brick pits and tur-
bid water bodies [29, 31] where this species is readily
able to colonize and dominate in disturbed environ-
ments [47]. Anopheles nuneztovari s.l. is both anthropo-
philic and zoophilic, rests outdoors [48], and is both
exophagic [25, 43, 47–49] and endophilic [48].
Malaria in our study area, caused by both P. vivax and

P. falciparum, is mostly found in Brazil, Colombia, and
Venezuela, where 72 % of cases in 2013 occurred [8].
The Brazilian Amazon is the core area where the most
malaria infections occur in the region [50]. We therefore
obtained malaria incidence data comprising of both
parasite species (~75 % of all infections are caused by P.
vivax) for Amazonas state in Brazil through SIVEP-
Malaria (http://200.214.130.44/sivep_malaria/), the na-
tional official malaria database. The incidence data origi-
nated from passive case detection of patients who
reported symptoms consistent with malaria and were
cases confirmed using thick-blood smears as is currently
the standard procedure in clinics in Brazil. However, we
were unable to account for the treatment seeking rates
in the area as a review of literature suggests that these
are not well established for the Amazon as a whole.
These incidence data were originally aggregated by

municipality and then converted to point data using a
point-in-polygon analysis in ArcGIS® [51] before being
used in the disease distribution modeling (Fig. 1). A
population weighting was applied to determine the loca-
tion of each point representing a municipality, to ensure
that the distribution of points were influenced by popu-
lation clusters rather than being randomly situated in
the center of the polygon. Bearing in mind that malaria
is usually a rural disease, away from the most densely
populated areas, the weighting was carried out such that
the points were situated in the least densely populated
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areas. This was achieved by first creating a fuzzy layer
from the population density raster on the premise that
populations between 2 and 150 per square kilometer are
sufficient for malaria transmission. This fuzzy layer was
then converted to points and a spatial join between the
points and the municipality polygons was subsequently
implemented. The location of the mean center of points
was weighted by low population and interpolated from
the surrounding points within each municipality. Such
weighting was particularly necessary to mitigate limita-
tions of the data. For instance, the aggregation of cases
by municipality gave no indication about the exact loca-
tion of transmission or clustering of cases; however, by

locating the points based on population density, a point
distribution was achieved.

Environmental variables
We employed 23 environmental variables as possible ex-
planatory factors in our distribution models. Nineteen
bioclimatic variables representing various measures of
temperature and precipitation were obtained from
WorldClim [52]. This is a set of interpolated global cli-
mate surfaces at ~1 km spatial resolution [53]. The
layers representing current conditions (1950–2000) and
future projections for 2050 and 2070 were collated. The
future climate projection layers were chosen from two

Fig. 1 An. darlingi, An. nuneztovari s.l. and malaria sample locations. Malaria cases by municipality in Amazonas state of Brazil were converted to
population-weighted points representing each municipality
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models from the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report of 2014 [54] - the
National Aeronautics and Space Agency (NASA) Goddard
Institute for Space Studies (GISS-E2-R) models, and the
Hadley Center (HadGEM2-AO) models. The models were
chosen because their representation of future predictions
of precipitation and temperature in the study area were
varied, potentially leading to a range of prediction scenar-
ios. The NASA model generally predicted warmer tem-
peratures compared to the Hadley model in the study
area by 2050 and 2070. For precipitation, the Hadley
model predicted much drier conditions around the
Andes for both periods compared to the NASA models
(see Additional file 1), and wetter conditions in parts of
the Amazon, and the Atlantic coasts from southern
Venezuela to southern Brazil. The NASA model on the
other hand predicted higher precipitation in many
patches in the Amazon. The climate surfaces were gen-
erated under four different greenhouse gas concentra-
tion trajectories called representative concentration
pathways (RCP). For our analyses, we utilized the most
conservative climate projections under the first, RCP
2.6, which assumes a peak in global annual greenhouse
gas emissions between 2010–2020, after which emis-
sions are expected to decline [55]. The scenario depicts
mean global temperature increase of 1 °C (range from
0.4 to 1.6) by mid-21st century (i.e., 2046–2065) [56].
To account for the altitudinal gradients in the area,

which is an important consideration for mosquito and
malaria dispersal, we obtained data on elevation from
the Shuttle Radar Topographic Mission (SRTM) [57].
An additional factor, the topographic wetness index
(TWI) was derived from this topographic information
as a measure of soil moisture content especially in low
elevation areas [58], providing an indication of potential
vector breeding sites. These two layers were gridded to
1 km resolution to retain environmental heterogeneity
and ensure data compatibility with other variables. The
availability and distribution of human hosts as potential
sources of blood meals for vectors was represented
using population density layer for 2010 provided by the
LandScan product [59]. Since environmental changes,
whether natural or human-induced, play an important
role in vector and malaria distribution [60], we included
changing land use land cover (LULC) patterns in our
analysis. The LULC data was derived from Moderate
Resolution Imaging Spectrometer (MODIS) imagery for
2001 and 2010 [61], containing 17 LULC classes gener-
ated using the International Geosphere-Biosphere
Programme (IGBP) classification scheme. The IGBP
classes were aggregated into two land cover classes for
our land cover projection modeling: forest (containing
all forest classes) and non-forested (containing all other
classes excluding water bodies).

Predicting LULC and population changes
To adequately predict distributions of the vectors and
malaria for 2050 and 2070, future LULC scenarios as
well as population changes in our study area for the
requisite periods were projected in Idrisi Selva [62]. The
land change modeler (LCM) was used to estimate LULC
changes. LCM is an application designed to model land
conversion by using historical changes from land cover
maps to project future land use change scenarios [63].
The process began with the introduction of land cover
maps of the two time periods, 2001 and 2010 to assess
changes between them. By incorporating change drivers
related to forest access such as distance from roads,
water bodies [64], past deforestation [61], and elevation
[57], land use transition potentials were produced. Prob-
ability of change (transition probabilities) between both
time periods was quantified using the Markov transition
matrix [65]. We assumed the transition probabilities re-
main unchanged over time, and used these to project fu-
ture LULC scenarios for 2050 and 2070. LULC change
was estimated using the Area module in Idrisi and each
land cover map for 2010, 2050 and 2070 entered as a
categorical variable in Maxent for the species distribu-
tion modeling for the respective time periods.
Population changes for 2050 and 2070 were predicted by

applying an exponential population function (Equation 1)
to the base population year, 2010. Using an average annual
growth rate of 1.1 % across the region [66], the projected
population for the two time periods was estimated by the
formula:

P ¼ P0 : ert ð1Þ

Where P = Estimated population, P0 = Initial popula-
tion, r = rate of natural increase, and t = number of years
between P and P0.

Modeling species and malaria distributions using
maximum entropy
Maxent is a machine-learning method that estimates the
distribution of a target by finding the distribution with
the largest spread [67]. Maxent predicts species habitat
suitability by incorporating its documented occurrence
points with relevant environmental predictors in a de-
fined geographic space [68, 69], subject to the constraint
that the expected value of each predictor under this esti-
mated distribution matches its empirical average [70].
The output is the relative habitat suitability calculated
by converting the exponential values of the raw esti-
mates of suitability to logistic values [70].
All cleaned presence data for An. darlingi (n = 271),

An. nuneztovari s.l. (n = 175) and Malaria (n = 62) (Fig. 1)
were used in the distribution models. Twenty-five per-
cent of each of the datasets were randomly selected to
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independently assess the accuracy of each model while
the rest were used for model training. The collection
data used were suited for our analyses at ~1 km reso-
lution because the distance between the data points were
relatively greater than 1 km. The resolution was selected
to be consistent with the highest resolution available for
the environmental layers as has been used by other stud-
ies e.g., Drake and Beier, 2014 [71].
Due to a lack of absence data, a set of pseudo-absence

(background) points were created for each species as
Maxent determines habitat suitability by relating the
values of predictors at presence points with those of ran-
domly generated pseudo-absence points within the same
area [72, 73]. Knowing that the number of pseudo-
absences affects the models [13], we created multiple
background points in ratios 1:1, 2:1, 5:1, and 10:1 to
presence points for the vectors and evaluated the model
results both visually (mapped distribution) and statisti-
cally (how well the area under the curve (AUC) im-
proved). Based on the evaluation, the optimal ratio of
background to presence points was 1:1 for the vectors
while the default 10, 000 background points in Maxent
was optimal for malaria. To account for the inherent
sampling bias in the presence data [69], bias files encom-
passing the area of study were created for each species
to ensure that both the occurrence and pseudo-absence
points had the same geographical bias [74]. We tested
for multi-collinearity among pairs of predictors and ex-
cluded one predictor in each pair that showed high cor-
relation (Table 1) in the vector models. However all 23

predictors were used in the malaria model as AUC value
improved when this was done.
Modeling was carried out by identifying the current

niche suitability drivers from the current models and
based on the assumption that all factors remained con-
stant except a changing landscape, we applied these to the
future scenarios. We used auto features for model gener-
ation, an option which allowed the set of features used to
be determined by the number of presence points, using
general empirically-derived rules. All modeling was per-
formed using the subsample replicated run in Maxent v
3.3.3 k, the most current version of the software [75].

Assessing model performance
Various measures of model performance were used in our
accuracy assessment. The model’s ability to discriminate
between species presence and absence sites was measured
using AUC [76]. Generally, models with AUC ≤ 0.5 are
deemed to behave no better than random, while an AUC
of 1 indicates a perfect fit between observed and predicted
surfaces [77]. In practice, models with AUC above 0.75
are considered useful and results applicable [70]. Further
assessment of model performance requires setting a
threshold at which species habitat suitability can be con-
verted to binary predictions of species presence or absence
[78, 79]. While many threshold approaches are available,
we chose the sensitivity-specificity equality approach that
has been identified as one of the best performing thresh-
olds [78]. The equal sensitivity- specificity threshold
(ETSS) maximizes the absolute value of the difference

Table 1 MaxEnt models validation parameters evaluated using test points

Species Time/Model Parameters in model Training AUC Test AUC Mean {sd}b ETSS Omission rate TSS

Malaria Current 23 0.93 0.9 0.53 {0.23} 0.271 0.25* 0.57

2050 (Hadley) 0.49 {0.16}

2050 (NASA) 0.46 {0.18}

2070 (Hadley) 0.46 {0.17}

2070 (NASA) 0.45 {0.19}

An. darlingia Current 13 0.77 0.75 0.51 {0.12} 0.463 0.34* 0.58

2050 (Hadley) 0.51 {0.14}

2050 (NASA) 0.50 {0.13}

2070 (Hadley) 0.51 {0.13}

2070 (NASA) 0.51 {0.13}

An. nuneztovari s.l.a Current 0.8 0.79 0.53 {0.14} 0.492 0.3* 0.68

2050 (Hadley) 0.53 {0.12}

2050 (NASA) 0.55 {0.10}

2070 (Hadley) 0.54 {0.11}

2070 (NASA) 0.53 {0.13}

*Significant at p < 0.001
aExcluded parameters with high correlation to avoid over-fitting
bEstimated using 12, 65 and 44 test and background points each for Malaria, An. darlingi and An. nuneztovari respectively
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between sensitivity and specificity [78, 80]. A good model
is expected to accurately predict a high proportion of test
sites by having a low omission rate or high sensitivity [81].
However, because it possible for a model to have high sen-
sitivity (low omission rate) just by predicting species pres-
ence in large parts of the area of interest, we evaluated the
statistical significance of the omission rate obtained using
the exact one-tailed binomial test (because of the small
size of the test data) [82, 83]. The acceptability of the
omission rate is determined by comparing the observed
rate to theoretical expectations [84]. For instance, ideally
in a model where the threshold is the 10th percentile pres-
ence, approximately 10% omission is theoretically ex-
pected. Omission rates higher than this value therefore
indicate overfitting [84]. In our study, we used the ETSS
as our threshold, therefore omission rates less than the
ETSS value for each model are acceptable. Finally, because
the AUC has been criticized as assessing the degree to
which predictors can restrict species range rather than
model performance [83, 85], we employed the true skill
statistic (TSS) as a further test of model performance. The
true skill statistic is the mean of net prediction success
rate for presence and absence [83, 86]. Although TSS takes
into account omission and commission errors, it avoids
reliance on prevalence or size of validation set, and is thus
a good measure of predictive accuracy of presence-only
models [85]. TSS values also range from 0 to 1, with
values >0.6 considered good, >0.7 very good [87].

Limitations
Although modeling P. falciparum and P. vivax distribu-
tions separately may have been more informative, with
the possibility of directing interventions specific to each
parasite species [88], our data access was limited to
pooled malaria data in which the infections were not
distinctly identified. However, of the two parasites, mod-
eling P. vivax distribution may have been more arduous
given its latent hypnozoite stage [88], which may be dif-
ficult to account for in our models, especially for the fu-
ture scenarios. We also assumed a constant rate of
deforestation in our LULC model and that deforestation
and climate change are independent, which may be unreal-
istic given the number of studies that have linked deforest-
ation with global and regional climate change [89, 90].
Finally, we had no information on detection probability,
i.e., the probability of a species being detected given that it
occupies a location (occurrence probability) and that sam-
pling was conducted in that location [91]. This probability
often varies with the same covariates that determine occur-
rence probability [92], and when not separated from occur-
rence probability, may under- or over-estimate model
results [92]. Thus, we ask readers to exercise caution in
interpreting model results.

Results
LULC changes
The LCM outputs for LULC changes in 2050 and 2070
are presented in Additional file 2. The maps indicate
that at current rates of deforestation, large parts of the
Amazon forest, particularly in the interior and the South
would be lost by the mid-century, assuming a business-
as-usual scenario in which deforestation progresses at
approximately the same rate as over the past decade. Most
of the loss is expected along transportation routes (roads
and rivers) as the interior opens up to urbanization and in-
frastructural developments. Forest loss would also increase
in the South, particularly in Beni and Santa Cruz (Bolivia),
Mato Grosso, Rondônia, Pará, Maranhão and Tocantins
(in Brazil, particularly due to soy plantations), along the
coasts of Guyana, French Guiana and Suriname. Non-
forest areas, such as the savanna between Roraima (Brazil)
and Bolivar (Venezuela) are also expected to expand by
2050 and 2070. While our results are similar to those pre-
viously published [93], we advise caution in the interpret-
ation as the change pattern in the interior closely follows
the drivers of LULC change we employed. Altogether, our
forecast indicates an estimated 780,000 km2 of forests
would be lost area by 2070 (Table 2), a development that
may have an impact on vector and malaria distribution in
the region.

Habitat suitability modeled using current conditions
Predictive maps of habitat suitability using current condi-
tions are presented in Fig. 2. For malaria, areas of relatively
high habitat suitability (high = 0.5–0.75; very high 0.75–1)
are predicted within the interior of the Amazon in Brazil,
along the coasts of the Guianas, along the Pacific coast of
Colombia and in western Venezuela, covering a total land
area of about 672,000 km2. Zones of moderate habitat suit-
ability (0.25–0.5) are predicted in the Amazonian regions
of Peru, Bolivia and Colombia while the rest of the study
area, including the Andes and the Brazilian highlands have
low habitat suitability (<0.25). Elevation was the biggest
contributor to the model (45.6 %), followed by precipita-
tion of the driest quarter (16.3 %), mean temperature of
the coldest month (12.9 %) and precipitation of the driest
month (9 %). Population (0.1 %) and LULC (0.2 %) did not
contribute to the model (Additional file 3 for response
curves and jackknife of variable importance). The model
had excellent discriminatory power as indicated by the test

Table 2 Summary statistics of projected changes in LULC

Year Category (Km2) Period Change
(Km2)Forested Deforested

2010 6432680 5903650 2010–2050 −699475

2050 5733205 6603125 2010–2070 −777265

2070 5655415 6680915 2050–2070 −77790
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AUC (0.90) (Table 1). The mean values of the test points
and ETSS were relatively moderate, as was the omission
rate showing that a reasonable proportion of the test sites
were correctly predicted. The reported TSS value of 0.57
also showed a fair indication of the model performance.
Model results for An. nuneztovari s.l. show areas of

relatively high habitat suitability along the coast of
Ecuador, the Pacific coast and the Llanos of Colombia,
western Venezuela, the coasts in the Guiana Shield, and
the states of Pará, Mato Grosso and Amazonas in Brazil,
occupying about 460, 000 km2 of land area. Relatively
moderate to low (<0.5) suitability are shown in other
parts of Colombia, Peru, Bolivia, Venezuela and the rest
of Brazil. As expected, the presence of this vector is not
predicted in the Andes where high altitudes prevail. Ele-
vation was the most important predictor for this species
(33.4 %), followed closely by temperature seasonality
(30 %) and annual precipitation (13.9 %). Population
(8.7 %) and LULC (4.4 %) also contributed marginally to

the model (Response curves in Additional file 4). The
surface depicting An. nuneztovari s.l. habitat suitability
(Fig. 2) clearly distinguished between presence and ab-
sence sites (AUC = 0.79), had a good TSS value (0.68)
and a moderate omission rate (0.30) (Table 1).
Relatively high suitability were reported for An. dar-

lingi in areas such as the interior of Ecuador, the Pacific
and Caribbean coasts of Colombia, the Llanos, western
and coastal Venezuela, the coasts of the Guianas, the
Amazonian states in Brazil and Loreto in Peru, an area
of approximately 920,000 km2. Moderate suitability was
predicted in the other parts of the study area except the
Andean mountains, the Brazilian Highlands and a few
patches within the Amazon where probabilities are low.
Elevation alone accounted for 53.3 % of the model while
annual precipitation (18.4 %) and population (11 %) were
the next biggest contributors. Precipitation seasonality
(7.9 %) was a marginal contributor whereas LULC did
not influence the model (Additional file 5). This suggests

Fig. 2 Habitat suitability for Malaria (top left), An. nuneztovari s.l. (top right), and An. darlingi (bottom panel) modeled using current bioclimatic
conditions, population, LULC, elevation and TWI
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a limitation of the Maxent model rather than lack of in-
fluence from land cover and land use, as Fuller et al.
[65] found that Maxent sometimes produced unrealistic
results when categorical land cover maps were used as
covariates. This model had fair discriminatory power
(AUC = 0.75), a fair TSS value (0.58) and moderate omis-
sion rate.

Habitat suitability modeled using predicted future
conditions
Malaria
Figure 3 reveals the projected distributions for malaria
in the years 2050 and 2070 using the NASA and Hadley
center climate models. As shown, the foci of malaria are
expected to remain in the interior of the Amazon, along
the coasts in the Guiana Shield, in northern Colombia and
along the southern border of Colombia and Venezuela.
Moderate habitat suitability (0.25–0.5) was predicted
mostly around North-western Brazil, eastern Peru and
South-western Colombia in the NASA model while the

Hadley model prediction included more regions in the
Amazon and Bolivia. However, total land area of suitability
is expected to decrease compared with current distribu-
tions, except with the 2050 Hadley model. By 2050, the
NASA model predicts a 28 % reduction in suitable area
whereas a 3 % increase is estimated from the Hadley cen-
ter model.
By 2070 however, the area is expected to have de-

creased by 6 and 17 % according to the Hadley and
NASA models, respectively, compared with the current
distribution. The NASA model is less conservative, pre-
dicting lesser areas of malaria presence by 2050 and
2070, but bigger changes. When the gains and losses in
each habitat suitability category were analyzed for the fu-
ture predictions (see Additional file 6), only areas of low
suitability reduced in area (~129,000 km2) between 2050
and 2070 whereas the other categories gained in the NASA
model. With the Hadley model, areas of low and very high
suitability increased in area (~33,000 km2 and 27,000 km2

respectively) while medium and high suitability had losses.

Fig. 3 Habitat suitability for malaria modeled using future climate, population and LULC: NASA 2050 (top left), 2070 (bottom left) and Hadley
2050 (top right), 2070 (bottom right)
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The full cross-tabulation of current and future distribu-
tions of malaria is presented in (Additional file 7). Maxent
predicted a range contraction within the Amazon, in the
coast of Guyana, Antioquia and Choco in Colombia, and
around the northern border between Colombia and
Venezuela. Range expansion was predicted around the
border of Brazil, Colombia and Peru and in south-east
Colombia.

Anopheles nuneztovari s.l.
Areas of relatively high habitat suitability for An. nunez-
tovari s.l. are predicted along rivers in the Amazon, the
coasts in the eastern part of the study area, and in
patches in Venezuela and Colombia from both models
for 2050 (Fig. 4). Most of the Amazon, eastern Brazil
and middle belt of Colombia and Venezuela have mod-
erate probabilities of vector presence. Both the Hadley
and NASA models forecast a 5 and 20 % increase in
range respectively by 2050. It is noteworthy that though
the species was mostly absent around the Andes with

current conditions, its presence in this area is predicted
by 2050. The range is expected to increase by 14 % in
2070 according to the Hadley model whereas a 10 % in-
crease is projected by NASA model. During this period,
the Llanos, southern Colombia, eastern Peru, Pacific and
Caribbean coasts of Colombia and large parts of the
Amazon have medium predicted probabilities as esti-
mated by the Hadley model whereas most of the Llanos
are excluded in the NASA model.
As with the malaria model, only areas of low suitability

in the NASA model decreased in size (~232,100 km2)
when gains and losses were analyzed between the 2050
and 2070 models. On the other hand, moderate and high
suitability areas gained, while low and very high suitabil-
ity areas lost in the Hadley model for the same period
(Additional file 6). An. nuneztovari s.l. range is shown to
expand in the Amazon interior possibly along transpor-
tation routes, and along the coast in the Guianas accord-
ing to NASA model (see Additional file 8). A similar
pattern is observed along the coast in the Hadley model

Fig. 4 Habitat suitability for An. nuneztovari s.l. modeled using future climate, population and LULC: NASA 2050 (top left), 2070 (bottom left) and
Hadley 2050 (top right), 2070 (bottom right)
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with additional areas in parts of Brazil and at the border
of Venezuela and Colombia. Range contraction is mostly
expected around Pará in Brazil, along the Pacific coast of
Ecuador and Colombia, and in northern Colombia by
both periods.

Anopheles darlingi
Most parts of the study area are expected to remain favor-
able to An. darlingi presence by 2050 and 2070 according
to model predictions (Fig. 5). Areas of relatively high suit-
ability are mostly found along the coasts in Ecuador,
Colombia, the Guianas and Brazil. Other patches are in
the Amazonian regions of Colombia, Peru and Brazil
whereas moderate suitability was estimated mainly in the
Amazon, Venezuela and the Guianas. While the Hadley
model predicts a slight reduction in land area by 2050 and
2070, the NASA model estimates no decline in range by
2050 but a 3 % increase by 2070.
Again, areas of moderate, high and very high suitability

gained in area between 2050 and 2070 in the NASA model

whereas only low suitability areas (~107,000 km2) gained in
the Hadley model for same period (see Additional file 6).
Range contraction is predicted for An. darlingi in patches
around Rondônia, the Amazon states in Brazil, Colombia
and Peru, and Apure and Bolivar in Venezuela (Additional
file 9). Expansion is expected in a few areas around Bolivia,
Brazil, Colombia and the Guianas.

Discussion
Our study is unique in that it investigates the influence
of climate, LULC and population changes on potential dis-
tributions of the malaria parasites, An. darlingi, and An.
nuneztovari s.l. in NSA. We applied the presence-only
Maxent model to project the current and future spatial
distribution of malaria parasites and mosquito vector spe-
cies, highlighting the potential environmental drivers of
changes in their ranges. The relatively moderate-to-high
AUC values for An. darlingi, malaria and An. nuneztovari
s.l. respectively not only reveal the model’s ability to dis-
tinguish presence and absence sites [76], but also the

Fig. 5 Habitat suitability for An. darlingi modeled using future climate, population and LULC: NASA 2050 (top left), 2070 (bottom left) and Hadley
2050 (top right), 2070 (bottom right)
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higher chance of occurrence points being given relatively
higher probabilities of presence compared to pseudo-
absence points [73]. The TSS values reported also indicate
that our models were fairly accurate in predicting the
presence and absence of the species by keeping false posi-
tives and negatives to a minimum [83]. When the ability
of the models to predict test sites was evaluated, they were
relatively sensitive with significantly moderate omission
rates, indicating that many of the test points fall into areas
predicted present by the models [81, 82], even as the mean
probabilities of the test points were moderate as well.
The maps produced based on current conditions for

both vectors and malaria parasites to a large extent agree
with other studies. Our modeled potential distribution of
An. darlingi and An. nuneztovari s.l. are consistent with
previously published work by Sinka et al. [13], except for
areas of slight divergence around the Brazilian Highlands,
and parts of the Andes and the Pacific coast in Ecuador
and Colombia for An. darlingi and An. nuneztovari s.l.
The malaria map differs from earlier published extent of
endemicity by Gething et al. [16, 17] mostly because our
occurrence points are from one state within the Amazon
and combine both parasites. However, the model accur-
ately predicts core areas of high malaria incidence within
the sub-region where control efforts should be focused.
Moreover, current malaria interventions such as vector
control were not considered in the model development.
Thus, taking into account the possibility of anophelism
without malaria (i.e., the occurrence of Anopheles vectors
in an area/region without malaria [94, 95] as was discov-
ered in Europe for the species complex, An. maculipennis
[96] and may be the case with An. nuneztovari species
complex in the Brazilian Amazon [28]), it is highly plaus-
ible that the actual extent of malaria is limited to areas of
known incidence in the region, rather than where vectors
may be found. Moreover, a map depicting probability of
vector presence does not necessarily imply risk of the par-
asites it transmits [95].
When projected on future climatic and human-induced

changes, model simulations generally showed a decrease
in malaria extent by 2050 and 2070. The areas of range
contraction for malaria (in Brazil, Guyana and Colombia)
in particular bolster optimism as these are currently the
localities with some of the highest malaria incidence in the
region [12, 97, 98]. These results are especially informative
when considering the renewed drive towards malaria elim-
ination in the region [99]. Although the area extent for the
vectors are projected to increase, the decrease in malaria
extent despite this implies that the interplay of climatic,
population and local land use patterns can naturally force
a decline in malaria incidence [71]. For example, develop-
ment may lead to lower malaria as more infrastructure
and better living conditions become available, while cli-
mate change and deforestation produce range expansion

of vectors. The spatial extent of malaria may decrease even
further as principles of integrated vector management
(IVM) become more entrenched in vector control pro-
grams [100], surveillance and monitoring are sustained,
more efficient and effective drugs and vector control mea-
sures become available, and malaria treatment become
more accessible [7]. Elimination in this region by 2050 may
be feasible as strategies outlined by Feacham [101], such as
development of new drugs, vaccines, and insecticides and
strengthening national and regional collaborations are
executed. Unsurprisingly, measures of precipitation and
temperature as well as elevation were the highest predictors
of malaria in the region as found in several previous studies
[102–104]. The impacts are especially important as other
studies have shown that climate change leads to warmer
and drier conditions, which may aid mosquito and parasite
development, and thus potentially increase malaria risk,
even in highland areas [9].
Future projections reveal a modest increase for An.

darlingi and a slightly larger range expansion for An.
nuneztovari s.l. by 2050 and 2070. The areas of range ex-
pansion and contraction for both species are likely to be
influenced by human activities as more parts of the
Amazon become urbanized, infrastructural projects in-
crease [12] and gold mining continues [105]. This is espe-
cially important as change in LULC was a predictor for An.
nuneztovari s.l., consistent with earlier reports of the spe-
cies colonizing altered environments and being associated
with deforestation [29–32, 98]. Surprisingly, LULC was not
a predictor for An. darlingi in our models despite numer-
ous studies indicating a correlation between the species
and land cover or deforestation [9, 10, 12, 29–32, 98].
Population density was shown as an important predictor
for An. darlingi and a marginal predictor for An. nunezto-
vari s.l., consistent with their known behavior [5, 9] and
that of other species such as Culex pipiens (Linnaeus 1758)
[73]. Elevation was the most important predictor of both
species and malaria for all models. Such a result was ex-
pected considering that recent studies have reported some
other mosquito species at higher altitudes than regularly
found, for example in Ecuador [106] and projected for
parts of Mesoamerica in 2080 [22]. Moreover, malaria has
been reported in highland areas of Bolivia [107] and some
East-African countries [102, 108, 109], so vectors must be
present for transmission. Finally, our results are in agree-
ment with the current understanding of climate interaction
with mosquitoes; i.e., temperature and precipitation were
major contributors to the projected vector distributions for
all climate scenarios. This is supported by other studies
that have established associations between temperature,
precipitation and both An. darlingi and An. nuneztovari s.l.
[12, 13, 98]. These variables have also been linked to other
Anopheles species [102, 110–112], and to An. albimanus
[22] and An. arabiensis [65, 71] in future periods.
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Conclusion
We presented models of the current and future spatial dis-
tribution of malaria, An. darlingi, and An. nuneztovari s.l.
in NSA using bioclimatic, topographic, hydrologic, LULC
and population data. Our analyses reveal that while cli-
matic factors, temperature and precipitation, play import-
ant roles in current and future distribution of malaria
parasites, An. darlingi, and An. nuneztovari s.l. in the re-
gion, aspects of human influence measured by LULC and
population changes will also affect the distribution of An.
nuneztovari s.l. and An. darlingi respectively. As such,
stricter regulations need to be enforced and sustained to
reduce further deforestation in the Amazon. Although the
models project increased range for the vectors, sustained
vector control as well as deployment of novel strategies in
the near future could prevent this expansion. Based on the
factors analyzed, malaria extent is expected to naturally de-
crease in the future. Thus, with increased implementation
of IVM strategies and more effective anti-malaria drugs,
trajectories of climate change and deforestation may com-
plement efforts underway to achieve the goal of malaria
elimination in NSA in the coming decades.
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