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Abstract

Background: Leprosy is caused by infection with Mycobacterium leprae and is characterized by peripheral nerve
damage and skin lesions. The disease is classified into paucibacillary (PB) and multibacillary (MB) leprosy. The 2012
London Declaration formulated the following targets for leprosy control: (1) global interruption of transmission or
elimination by 2020, and (2) reduction of grade-2 disabilities in newly detected cases to below 1 per million
population at a global level by 2020. Leprosy is treatable, but diagnosis, access to treatment and treatment
adherence (all necessary to curtail transmission) represent major challenges. Globally, new case detection rates for
leprosy have remained fairly stable in the past decade, with India responsible for more than half of cases reported
annually.

Methods: We analyzed publicly available data from the Indian Ministry of Health and Family Welfare, and fit linear
mixed-effects regression models to leprosy case detection trends reported at the district level. We assessed correlation
of the new district-level case detection rate for leprosy with several state-level regressors: TB incidence, BCG coverage,
fraction of cases exhibiting grade 2 disability at diagnosis, fraction of cases in children, and fraction multibacillary.

Results: Our analyses suggest an endemic disease in very slow decline, with substantial spatial heterogeneity at both
district and state levels. Enhanced active case finding was associated with a higher case detection rate.

Conclusions: Trend analysis of reported new detection rates from India does not support a thesis of rapid progress in
leprosy control.
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Background
Leprosy (Hansen’s disease) is a chronic infectious disease
caused by infection with Mycobacterium leprae, a myco-
bacterium closely related to the tuberculosis agent. The
clinical condition of leprosy is characterized by lesions
on the dermis of the skin or damage to the peripheral
nerves [1, 2], and patients are classified as either pauci-
bacillary (PB) when presenting up to five skin lesions, or
multibacillary (MB) when exhibiting more than five le-
sions [3]. Typically, a patient demonstrates symptoms
specific to either paucibacillary or multibacillary leprosy
from the outset of infection, and maintains that condi-
tion throughout the duration of disease (though some

borderline cases initially diagnosed as paucibacillary may
later resolve into multibacillary form [4]). Patients with
paucibacillary leprosy control the disease largely via cell-
mediated immune pathways, while humoral immune re-
sponses are generally more pronounced among those
exhibiting multibacillary characteristics [4]. Both mani-
festations of leprosy can be readily treated via effective
multidrug therapy (MDT): a combination of rifampicin
and dapsone for paucibacillary cases, with the addition
of clofazimine in multibacillary cases [5]. Because of the
disease’s treatability, leprosy has been a longtime target
for elimination campaigns; indeed, in 1991, the World
Health Assembly set a goal for “elimination of leprosy as
a public health problem” by the year 2000 [5].
In spite of these goals, leprosy has proven elusive, per-

haps due in part to a slow pathogen lifecycle that

* Correspondence: travis.porco@ucsf.edu
4Francis I. Proctor Foundation, University of California, San Francisco, CA, USA
6Department of Ophthalmology, University of California, San Francisco, San
Francisco, CA, USA
Full list of author information is available at the end of the article

© 2015 Brook et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Brook et al. Parasites & Vectors  (2015) 8:542 
DOI 10.1186/s13071-015-1124-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-015-1124-7&domain=pdf
mailto:travis.porco@ucsf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


necessitates protracted treatment regimens [5], delays in
diagnosis due to stigma (e.g. [6]), or even the possibility
of asymptomatic carriers (e.g. [7]). In leprosy endemic
regions, it has been suggested that most of the popula-
tion will be exposed to M. leprae within a lifetime,
though few will develop actual disease [8, 9]; indeed, ap-
proximately 5 % of the population in some endemic areas
has been said to carry active M. leprae in nasal passage-
ways, most without demonstrating signs [5, 10, 11]. Des-
pite over a century of research, the mechanism of
transmission for leprosy has yet to be fully resolved [2,
12]. Respiratory inhalation of aerosolized M. leprae parti-
cles and repeated contact with nasal mucosa and/or skin
excretions are thought to play a role [13–15]. The rela-
tionship between leprosy and tuberculosis (TB, caused by
M. tuberculosis [16]) is also of note. An inverse relation-
ship between global and regional incidence of leprosy
(decreasing) and tuberculosis (increasing) has led to the
development of theories suggesting mutual exclusion be-
tween the two bacteria [17–19]. The tuberculosis vaccine,
Bacille Calmette-Guérin, or BCG, infects the inoculated
with an attenuated strain of Mycobacterium bovis, operat-
ing (with variable success) by these same principles of
mycobacterium exclusion and, thus, offers some protec-
tion against leprosy [5], as well as TB (in particular, severe
childhood TB [20]).
Despite these challenges, the WHO reports that the

global prevalence of leprosy fell from over five million
cases to fewer than 200,000 since the mid 1980s [21].
The new case detection rate, however, has remained
fairly stable over the past five years. In 2012, several
leading global pharmaceutical companies joined forces
with the World Health Organization (WHO), the World
Bank and the Bill and Melinda Gates Foundation to
issue the London Declaration on Neglected Tropical
Diseases. This declaration addressed several neglected
tropical diseases, including two bacterial diseases—tra-
choma and leprosy—specifically pledging to “sustain, ex-
pand and extend programmes that ensure the necessary
supply of drugs and other interventions to … help elim-
inate [leprosy] by 2020” [22]. The WHO currently states,
“Vigorous case-finding and treatment would lead to glo-
bal interruption of [leprosy] transmission by 2020, and
reduce grade 2 disabilities in newly detected cases to
below 1/million population at global level” [23]. Grade 2
disability is defined as visible deformity or damage
present on the hands and feet, severe visual impairment,
lagophthalmos, iridocyclitis, or corneal opacities [24, 25].
Most leprosy cases today are concentrated in a few na-

tions, most particularly India, Brazil, Indonesia and the
14 other signatories of the 2013 Bangkok Declaration
[26], which reaffirmed these countries’ commitment to
anti-leprosy activities. Leprosy has been endemic on the
Indian subcontinent since ancient times, at least as early

as 2000 B.C. [27], and to this day, the region leads the
world in leprosy incidence. In 2014, India accounted for
more than half of the approximately 200,000 reported
new leprosy cases globally [21]. Thus, India remains cen-
tral to worldwide leprosy control efforts.
We used publicly available data from the National

Leprosy Eradication Programme of India to explore
spatial and temporal patterns in leprosy new case detec-
tion. Our aims were to: (1) estimate the rate of change
in new case detections for leprosy over time and (2) esti-
mate the extent of geographic clustering in leprosy cases
to identify any district or state-level high incidence
regions which may be driving nationwide trends. Add-
itionally, we sought to investigate spatial associations in
leprosy detection with (3) tuberculosis incidence, (4)
BCG vaccination coverage and (5) specific clinical mani-
festations of disease, including the fraction of cases exhi-
biting grade 2 disability, the fraction occurring in
children under age 15, and the fraction presented in
multibacillary form.

Methods
Data
Spatial analysis was based on the GADM database for
administrative boundaries [28] supplemented by an up-
dated version for selected jurisdictions [29]. When dis-
tricts or states were split, we combined the new
districts or states into the old districts or states for
consistency of reporting district over the course of the
analysis.
The years, sources and spatial extent of data used in

our analysis are summarized in Table 1. We analyzed
district level data from the Indian Ministry of Health,
which reported annual new case counts for leprosy for
a (2008–2015) time series (year 2008 corresponding to
the twelve month period ending March 31, 2008 and so
on) [30–43]. The National Leprosy Eradication Pro-
gram also provides estimated populations for each dis-
trict, as well as state level estimates for the fraction of
multibacillary cases, the fraction of cases among chil-
dren, and the fraction with grade 2 disability at diagno-
sis. State-level new case data for tuberculosis, available
for years 2008–2014, were obtained from reports of the
Indian Ministry of Health and Family Welfare’s Revised
National Tuberculosis Control Programme (RNTCP)
[44]. BCG vaccination coverage estimates by state were
obtained from publicly available data from the Indian
government’s 2011 Evaluation Report on Integrated
Child Development Services (ICDS) and were reported
as averaged over a 5-year period [45]. Additionally, a
group of 209 districts were identified as high endemic
districts based on 2010–2011 reports [46]. These re-
gions were targeted for subsequent enhanced activities.
We entered this list of districts for use as a binary
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regressor. All data were extracted from PDFs using au-
tomated PDF to CSV conversion, or manual double
data entry.

Statistical analysis
The primary outcome variable was the leprosy annual
new case detection rate (ANCDR), defined as the num-
ber of new cases in a district divided by the estimated
population of the district during that year, as published
by the Indian National Leprosy Eradication Program.
We conducted four analyses: spatial autocorrelation,
trend analysis by linear mixed effects regression, cor-
relations between the annual new case detection rate
and other variables at the state level, and a regression
analysis of the multibacillary to paucibacillary fraction.
All analysis was conducted in R v. 3.1 for MacIntosh
(R Foundation for Statistical Computing, Vienna,
Austria), using packages sp, maptools, spdep, sperror-
est and lme4.
Spatial autocorrelation was assessed by computation

of Moran’s I based on the adjacency matrix. We com-
puted the spatial correlogram out to 10 lags (connec-
tions between regions). In addition, the spatial block
bootstrap (R package sperrorest) was used in assessing
the significance of all regression coefficients for linear
mixed effect regressions. Confidence intervals were
computed using the basic bootstrap method [47].
At the district level, we fit linear mixed-effects regres-

sion models for longitudinal analysis of the annual new
case detection rate [48]. Estimates were obtained for sev-
eral models, each with different fixed effect predictors,
but time (years) was used as a fixed effect in all. We also
included the following time-varying predictors, based on
the state containing the district: tuberculosis incidence,
the fraction of cases exhibiting grade 2 disability, the
fraction of diagnoses in children, and the fraction of
cases in multibacillary form. BCG coverage was reported
by state as a non-time varying regressor (a 5-year aver-
age). Finally, we used a binary indicator variable for
whether or not an observed value for the annual new
case detection rate in a district occurred in one of the

209 districts targeted for enhanced leprosy case detec-
tion activity after 2011 [46]. Each model included a ran-
dom slope and a random intercept; an unstructured
correlation matrix was assumed. We weighted the dis-
tricts proportional to the population in conducting re-
gression. To quantify the importance of predictor
variables in linear mixed models, we computed the mar-
ginal and conditional R2 values [49, 50]. The marginal R2

estimates the variability explained by the fixed effect pre-
dictors; the conditional R2 estimates the variability ex-
plained by both fixed and random effects. The specific
years of data used in each analysis are shown in Table 4
of the Appendix. The mathematical specification of each
we examined is given in the Appendix.
We also examined the Spearman correlation be-

tween state level values of the annual new case de-
tection rate and five predictor variables: the TB
incidence rate, the extent of BCG coverage, the frac-
tion of cases exhibiting grade 2 disability at diagno-
sis, the fraction of cases in children, and the fraction
of leprosy cases classified as multibacillary. Confi-
dence intervals were generated using the spatial
block bootstrap at the state level.
Finally, we examined the relationship between the

number of multibacillary cases and the number of
paucibacillary cases in a state, using linear mixed ef-
fects regression with state as a random effect. We
transformed the data according to f(x) = log(x + 1),
and clustered by state (so that successive years from
the same state were not considered independent).

Results
Trend analysis by linear mixed effects regression
A total of 604 analytic districts in India were exam-
ined over the 2008–2015 time series. Figure 1 com-
piles district-level data to summarize the annual new
case detection rate for leprosy by state (grouped by
region), excluding the Union Territory of Dadra and
Nagar Haveli (which has a small population, and a
high annual new case detection rate). Pronounced

Table 1 Summary of data used in linear mixed effects regression

Data Years available Spatial level Source

New case counts, leprosy 2008-2015 District [30–43]

Enhanced case finding, 2012 and after - District [46]

TB incidence 2008-2014 State [44]

BCG coverage Non time-varying regressor (5 yr avg) State [45]

Fraction exhibiting grade 2 disability 2011-2015 State [38–42]

Fraction in children <15 years 2011-2015 State [38–42]

Fraction in multibacillary form 2011-2015 State [38–42]

All data utilized in linear fixed effects regression models (Tables 2 and 3), including years available, spatial extent and sources
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differences are evident between different regions, with
the Northeast showing the lowest rates.
Figure 2 shows the mean district level new case find-

ing rate per 10,000 individuals per year, for different re-
gions, broken down within each region into districts
selected for enhanced activity and districts not selected
for enhanced activity. The overall magnitude of such
changes and their relation to ongoing regional trends are
depicted in this figure.

We first fit a very simple linear mixed model to our
district-level data including no effect of time or of any
other fixed predictor, and allowed only a random inter-
cept (representing the height of a flat trend line for
each district). This model explained approximately
98 % of the variance in the annual new case detection
rate (conditional R2). Using a model including only a
linear time trend (not adjusting for enhanced case find-
ing, model I in Table 2), we found the estimated overall
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Fig. 1 Temporal trends in new case detection rate per 10,000, by state or union territory (excluding the Union Territory of Dadra and Nagar Haveli
(pop. approximately 350,000), which shows new case detection rates ranging from 3.8 to 9.9 per 10,000)
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slope (fixed effect) was − 0.0182 (with a 95 % CI of
−0.026 to −0.01), P < 0.001. Adjusting then for
enhanced case finding (model II, Table 2; including a
binary indicator for every district in which enhanced
case finding was conducted, if the year was 2012 or
later), we found a linear trend of − 0.0237 (with a 95 %
CI of −0.032 to −0.015), P < 0.001. Since these slopes
are expressed in units of new cases per 10,000 popula-
tion per year, they represent very small rates of change
per year.
Table 2 shows the results of additional linear mixed

effects regression models of the district-level annual
new case detection rates. Adding time (a fixed effect
overall trend, and a random effect allowing each dis-
trict to have a different rate) to the models does not
(and cannot) substantially increase the overall R2,
which is already very high. All models showed a gen-
tle, but statistically significant, linear trend towards
declining new case detection rates for leprosy. The
linear trend was more pronounced in models consid-
ering each variable’s interaction with time. Addition-
ally (unsurprisingly), all models in which we included

the indicator for enhanced activity showed a significant ef-
fect for that variable. When increased surveillance ef-
forts were employed in an attempt to locate more
cases in specific districts, more cases were found.
We estimated both a fixed effect and random ef-

fect slope. Adding the estimated random effect for
each district to the overall fixed effects yields an
overall slope for that region. We mapped these
slopes these in Fig. 3, which shows the estimated
trend map by each district, adjusting for enhanced
case finding. We first applied the transformation
log((NEWCASES + 0.5)/POPULATION). These trends
were derived from model II (Table 2), which includes
an overall rate of change (linear trend), a term for
enhanced case finding, and a random slope and
intercept for each district. The map demonstrates
the extent of spatial clustering in new case detection
for leprosy across India and visibly highlights those
districts with modestly large or small estimated
slopes. East Midnapore district in the state of West
Bengal stands out in the east (shown in red) as hav-
ing the largest estimated decline, largely due to a

Fig. 2 New case detection rate, by region and case finding effort. The average of districts selected for enhanced case finding activity are shown
in solid; the average of other districts in dashed lines
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reported over tenfold drop in new case detection in
2014 and 2015.

Spatial autocorrelation
As a measure of spatial autocorrelation, we computed
Moran’s I based on the average new case detection
rate over the period 2008–2015, at the district level.
The overall value was 0.124 (P < 0.001). Year by year,
the results are similar, ranging from 0.0987 to 0.134.
Examination of a spatial correlogram (up to lag 10)
based on the adjacency matrix of the districts indi-
cates that Moran’s I drops off rapidly with increasing
lag, falling below 0.05 after lag 3 in nearly all cases.
The median of the mean distance between the cen-
troid of each district and those of its neighbors was
approximately 74.3 km; our choice of 1.5° for spatial

block bootstrap is meant to be roughly double this
value. However, this analysis does not consider state
boundaries or the possibility of heterogeneity in
spatial scale.

Correlations between case detection trends and state-level
predictors
While the longitudinal analysis shows that the inter-
cept (initial value for the annual new case detection
rate) of each district is the overwhelmingly most im-
portant single statistical predictor of future values, it
does not relate these initial values to the other pre-
dictors of interest: TB incidence, BCG coverage, frac-
tion of cases exhibiting grade 2 disability, fraction of
cases in children, and fraction of cases in multibacil-
lary form. Table 3 shows the correlation coefficients
between these quantities at the state level. No statistically

Table 2 Regression coefficients for analysis of district level new case detection rates

Model Time trend Covariate Interaction Enhanced CFA Marginal R2 Conditional R2

I. Time only − 0.0182 - - - 0.0014 0.993

(− 0.027 to − 0.0035) - - -

II. Case finding activity − 0.0237 - - 0.0811 0.0021 0.993

(− 0.036 to − 0.011) - - (0.021 to 0.21)

III. TB, time − 0.0234 − 8.83 × 10− 5 - 0.0646 0.0016 0.994

(− 0.04 to − 0.0058) (− 0.00015 to 0.00047) - (− 0.0078 to 0.22)

IV. TB, time, interaction − 0.0625 − 0.00173 5.57 × 10− 4 0.0529 0.002 0.994

(− 0.093 to − 0.046) (− 0.0027 to − 0.0011) (0.00036 to 0.00089) (− 0.025 to 0.19)

V. BCG, time − 0.0236 − 0.00738 - 0.0787 0.0078 0.993

(− 0.036 to − 0.012) (− 0.016 to 0.0088) - (0.0091 to 0.21)

VI. BCG, time, interaction − 0.177 − 0.00924 0.00178 0.0885 0.0047 0.993

(− 0.25 to − 0.088) (− 0.016 to 0.0068) (7 × 10− 4 to 0.0026) (0.023 to 0.22)

VII. Fraction grade 2, time − 0.0171 2.34 × 10− 4 - 0.213 0.0073 0.993

(− 0.03 to − 0.0062) (0.00019 to 0.00039) - (0.14 to 0.39)

VIII. Fraction grade 2, time,
interaction

− 0.0195 − 9.82 × 10− 4 4.04 × 10− 4 0.213 0.0072 0.993

(− 0.034 to 0.0043) (− 0.0046 to 0.011) (− 0.0034 to 0.0016) (0.16 to 0.38)

IX. Fraction children, time − 0.0227 0.00379 - 0.135 0.0035 0.993

(− 0.039 to − 0.012) (− 0.0072 to 0.009) - (0.058 to 0.28)

X. Fraction children, time,
interaction

0.0166 0.0259 − 0.00496 0.144 0.0039 0.993

(− 0.0083 to 0.041) (0.0081 to 0.04) (− 0.0077 to − 0.0026) (0.081 to 0.29)

XI. Fraction MB, time − 0.0226 0.0567 - 0.127 0.0026 0.993

(− 0.039 to − 0.013) (− 0.21 to 0.16) - (0.046 to 0.29)

XII. Fraction MB, time,
interaction

− 0.127 − 0.83 0.178 0.142 0.0037 0.993

(− 0.2 to − 0.083) (− 1.5 to − 0.52) (0.092 to 0.30) (0.076 to 0.32)

The specific statistical models are specified in the Appendix. All models include calendar time in years, and all models except for the base model include a term
“Enhanced CFA” indicating whether a particular district-year corresponds to one of the 209 districts selected for enhanced case finding activity. Models include
tuberculosis incidence (state level), the average BCG coverage (state level), percent of grade 2 disability at diagnosis (state level), percent of cases in children (state
level), or the fraction multibacillary (state level). Interaction with time is omitted, and then included, in each model in turn. Marginal R2 values indicate the fraction
of variance explained by the fixed effects, and conditional R2 indicate the fraction of variance explained by both fixed and random effects; see text. Confidence
intervals derived by spatial block bootstrap (with a radius of 1.5°; see text for details)
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significant interaction was observed between the annual
new case detection rate for leprosy and TB incidence
or BCG coverage at the state level. A significant posi-
tive relationship was identified between the annual
new case detection rate and the fraction of cases in
children, indicating that a higher proportion of cases
in children <15 years correlates with higher annual
case detection overall. Table 3 also shows a significant
negative relationship between the annual new case de-
tection rate and the fraction of multibacillary cases,
and between the fraction in children and the fraction
multibacillary. Annual case detection rates are higher
when there are proportionally more multibacillary
versus paucibacillary cases, and as the fraction of
cases in children increases, so too does the fraction
presenting in multibacillary form.

Regression analysis of multibacillary to paucibacillary
In addition to our analysis of state-level drivers of tem-
poral trends in leprosy case reporting, we conducted a
regression of the number of multibacillary versus pauci-
bacillary cases, using linear mixed effects regression, lon-
gitudinally analyzing the data by state. The linear term
was 0.382, with a standard error of 0.109. The quadratic
term is significant (P < 0.001); the sign (not shown) indi-
cates that jurisdictions with fewer total cases are some-
what more likely to have a higher ratio of multibacillary
to paucibacillary cases compared to those with higher
case detection rates. However, we note that this effect is
small. Measuring the explanatory capability of the model
by the conditional R2 from regressing the data on the
predicted values [28], the quadratic term only increases
the conditional R2 by a very modest 0.021.
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Fig. 3 Estimated linear trend in annual new case detection rate per district, adjusting for enhanced case finding in specific districts. Red corresponds
to decreasing trend; blue to increasing. Map depicts estimated district-level linear trend lines from linear mixed effects regression model (model II; see
text for details)
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Discussion
National, state and district level leprosy trends in India
suggest a slowly changing endemic disease in very gentle
decline, with the rate of new cases over the 2008–2015
time series diminishing by less than 2 % per year at the
district level. These trends echo global patterns of slow
leprosy decline over the past decade, following a dramatic
decrease in new case reports in the early 2000s [51]. Some
have argued that the substantial reduction in global
reporting of new leprosy cases witnessed between the
1990s and 2000s may be the result of underdetection or
changes in reporting [51]. In 209 Indian districts selected
for enhanced case finding initiatives post-2011, signifi-
cantly more new cases were found in subsequent years
following the induction of heightened surveillance efforts.
Additionally, our analysis demonstrates substantial spatial
clustering and heterogeneity at both the district and state
level for India, including identification of some states or
districts with notable increases in new leprosy cases.
Whatever the case in past centuries [17–19] before

widespread BCG vaccination and chemoprophylaxis, we
found no evidence of a strong relationship between tuber-
culosis and leprosy at the state level in India. Additionally,
we found no evidence of an association between new
leprosy case detection rates and average BCG coverage.
Such lack of correlation is hardly a surprise, given very
high BCG coverage rates and the relative rarity of leprosy
at this time. There is simply not enough variability in
BCG coverage for the efficacy of BCG against leprosy [5]
to become manifest. At the district level, the best pre-
dictor of future annual case detection rates is the past rate;
at the state level, we can distinguish that annual new case
detection rates are higher when the percentage of cases in

children is higher and when the percentage of paucibacil-
lary cases of multibacillary form is lower. Regression
analysis of the rate of multibacillary to paucibacillary case
detection by state further suggests that those states with
higher total new case detection rates report higher levels
of paucibacillary vs. multibacillary, possibly indicative of
lowered detection rates for the more subtle paucibacillary
clinical condition in regions of less intensive case
surveillance.

Conclusions
Enormous strides have been made by India and by other
countries in fighting leprosy. Substantially fewer cases
are reported today than in years past [21]. However, our
analysis indicates both optimism and pessimism in con-
sideration of the challenge of global leprosy reduction.
While overall declining trends in new case detection
rates for leprosy in India have been substantial, spatial
patterns of leprosy persistence suggest that the reality of
this public health burden is more nuanced. Clearly, new
case detection rates can fall because the burden of
disease is truly decreasing in the community. The new
case detection rate could also fall because infected indi-
viduals are becoming diagnosed later, because less effort
is spent on active case finding [6, 51–53], because a
given effort expended in active case finding is becoming
less effective as prevalence declines [25], or because of
changes in reporting criteria (such as not reporting sin-
gle lesion cases [53]). If active case finding activities in
India were curtailed in the years following 2000–2005,
as has been suggested in the literature [51–53], then
reported new case detection rates may not reflect the
true extent of leprosy disease. Many active enhanced

Table 3 Spearman correlation between leprosy annual new case detection rate and selected state level quantities

Leprosy TB BCG Grade 2 Childhood Fraction

ANCDR incidence rate fraction fraction MB

Leprosy 1.0 −0.029 −0.093 −0.032 0.47* −0.40*

ANCDR - (−0.48 to 0.061) (−0.31 to 0.11) (−0.18 to 0.15) (0.28 to 0.70) (−0.50 to −0.27)

TB - 1.0 0.019 −0.11 −0.065 −0.012

incidence (−0.21 to 0.32) (−0.23 to −0.044) (−0.32 to 0.18) (−0.086 to 0.20)

BCG - - 1.0 −0.12 0.090 −0.008

rate (−0.40 to −0.23) (−0.18 to 0.28) (−0.11 to 0.067)

Grade 2 - - - 1.0 0.041 −0.20*

Fraction (−0.13 to 0.13) (−0.11 to −0.26)

Childhood - - - - 1.0 −0.30*

Fraction (−0.49 to −0.86)

Fraction MB - - - - - 1.0

*statistically significant, alpha = 0.05, no adjustment for multiple comparisons
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case finding surveys conducted by Indian researchers in
recent years have reported finding substantial numbers
of new cases in specific locations [54–56], thus support-
ing these views.
A fall in the new case detection rate can, therefore,

be favorable or unfavorable. Yet for the other bacter-
ial disease targeted in the London Declaration—tra-
choma—evaluation is based on objective population
surveys of clinical signs [57] and does not depend on
health care seeking behavior (with active case finding
by the program not typically conducted in any event).
The two diseases could hardly differ more: tracho-
ma—a common subclinical infection whose relatively
uncommon late sequelae are of concern, and lepro-
sy—a now uncommon disabling and disfiguring infec-
tion with insidious onset and a clinical course of
years to decades. Yet the trachoma experience may
contain a valuable lesson: active surveys (which have
been conducted on relatively large scales for leprosy)
could be included for a time as a routine components
of leprosy evaluation [58] as they are for trachoma,
given a suitable survey frequency and a cost-saving
design.
Current recommendations include a goal of “interrup-

tion of transmission.” It is unlikely that transmission can
be completely interrupted or stopped as long as a single
undiagnosed active case exists in the world. Disease inci-
dence and prevalence will eventually drop to zero if and
only if we attain (and sustain) subcriticality—the condi-
tion that one case, on average, causes fewer than one
new case, and thus never replaces itself [59, 60]. The
reproduction number is defined as the expected number
of cases that a given case of disease can directly cause in
a fully susceptible population; thus, subcriticality corre-
sponds to a reproduction number less than one. Reduc-
tion of the reproduction number for leprosy to well
below the replacement value of one, through effective
case finding and cure, should be our goal (e.g. [61]). Un-
fortunately, epidemiological trends suggest that, barring
changes, leprosy will persist—and transmission will be
maintained—in India for many years, likely beyond the
stated 2020 goal of the London Declaration (see also [62,
63]). Far-reaching policy changes may be needed to accel-
erate the projected time course of leprosy reduction. Per-
haps enhanced case holding and case finding [64],
enhanced use of contact investigation and chemoprophy-
laxis [65], or newer technological developments will be
the key to achieving a more rapid pace of decline.

Appendix
Statistical models
We fit specific linear mixed effects regression models [48].
Let Yiτ be the annual new case detection rate in dis-

trict i at year τ. For the state or territory containing

district i at year τ, let Miτ be the fraction multibacillary,
Giτ the fraction with grade 2 disability at diagnosis, and
let Ciτ the fraction of diagnoses in children; these three
variables are available for years 2011–2015. Let Tiτ be
the tuberculosis incidence (per 100,000) for the state
containing district i at year τ, available for years 2008–
2014. Finally, let Bi be the average BCG coverage rate
for the state containing district i . Let Eiτ be 1 if district i
is one of the 209 districts selected for enhanced case
finding and τ ≥ 2012 . Generically, we will let X denote
any of M, G, C, or T.
Model I is

Y iτ ¼ a0 þ a1τ þ u0i þ u1iτ þ �iτ;

where a0 is overall intercept, a1 the overall slope, u0i is
the random intercept for individual i, u1i is the random
slope for individual i, and ϵiτ is a normally distributed
error term with mean 0 and standard deviation σe . Here,
we assume normally distributed random effects with
mean 0 and a general covariance matrix, so that writing
ui ¼ u0i ; u1i½ �T , we have ui is distributed as bivariate
normal with mean vector 0 and covariance matrix D.
Model II is

Y iτ ¼ a0 þ a1τ þ a2Eiτ þ u0i þ u1iτ þ �iτ;

where a2 is the effect of enhanced active case finding.
Models III, VII, IX and XI may be represented

Y iτ ¼ a0 þ a1τ þ a2Eiτ þ a3X iτ þ u0i þ u1iτ þ �iτ;

where a3 is the estimated effect for covariate X (which
may be multibacillary fraction, fraction grade 2 disability
at diagnosis, fraction in children and tuberculosis inci-
dence). Note all these variables are at the state (or terri-
tory) level, so all districts within a state (or territory)
have the same value at each time point.
Model V may be represented

Y iτ ¼ a0 þ a1τ þ a2Eiτ þ a4Bi þ u0i þ u1iτ þ �iτ;

where a4 is the estimated effect for average BCG
coverage.
Models IV, VIII, X and XII may be represented

Y iτ ¼ a0 þ a1τ þ a2Eiτ þ a3X iτ þ a5τX iτ þ u0i þ u1iτ
þ �iτ;

where a5 is a fixed effect interaction term between time
and covariate X.
Finally, model VI may be represented

Y iτ ¼ a0 þ a1τ þ a2Eiτ þ a4Bi þ a6τBi þ u0i þ u1iτ
þ �iτ;

where a6 is an interaction between average BCG cover-
age and time.
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