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Abstract

Background: Effective control of schistosomiasis remains a challenging problem for endemic areas of the world. Given
knowledge of the biology of transmission and past experience with mass drug administration (MDA) programs, it is
important to critically evaluate the likelihood that MDA programs will achieve substantial reductions in Schistosoma
prevalence. In implementing the World Health Organization Roadmap for Neglected Tropical Diseases it would useful
for policymaking to model projections of the status of Schistosoma control in MDA-treated areas in the next 5-10
years.

Methods: Calibrated mathematical models were used to project the effects of different frequency and coverage of
MDA for schistosomiasis haematobia control in present-day endemic communities, taking into account uncertainties
of parasite biology and input data. The modeling approach in this analysis was the Stratified Worm Burden model
developed in our earlier works, calibrated using data from longitudinal S. haematobium control trials in Kenya.

Results: Model-based simulations of MDA control in typical low-risk and higher-risk communities indicated that
infection prevalence can be substantially reduced within 10 years only when there is a high degree of community
participation (>70 %) with at least annual MDA. Significant risk for re-emergence of infection remains if MDA is
suspended.

Conclusions: In a stable (stationary) ecosystem, Schistosoma reproduction and transmission are sufficiently robust that
the process of human infection continues, even under pressure from aggressive MDA. MDA alone is unlikely to
interrupt transmission, and once mass treatment is suspended, the prevalence of human infection is likely to rebound
to pre-control levels over a period of 25-30 years. MDA success in achieving very low levels of infection prevalence is
highly dependent on treatment coverage and frequency within the local human population, and requires that both
adults and children be included in drug delivery coverage. Ultimately, supplemental snail control and significant
improvements in sanitation will be required to achieve full control of schistosomiasis by elimination of ongoing
Schistosoma transmission.
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Background

Schistosomiasis is a chronic inflammatory parasitic disease
caused by multi-year, infection by trematode blood flukes
Schistosoma spp. These blood fluke parasites affect at least
240 million people worldwide [1]. Their control and
possible elimination have been targeted recently by the
World Health Organization in their 2020 Roadmap on
Neglected Tropical Diseases (NTDs) [2], and by the 2012
London Declaration for Neglected Tropical Diseases (http://
unitingtocombatntds.org/resource/london-declaration).
However, effective control of schistosomiasis remains a very
challenging problem for populations living in endemic areas
of the tropical and sub-tropical regions of the world [3].

National and international schistosomiasis control pro-
grams are currently focused on expanding the use of mass
drug administration (MDA) of the anti-schistosomal drug
praziquantel to minimize infection-induced morbidity by
reducing infection intensity among school-age children
and high-risk adult populations [4]. This approach, termed
preventive chemotherapy (PCT), has its limitations, in
that parasite transmission can continue to occur, leaving
populations at risk for reinfection and recurrent risk for
disease [5-9]. The questions posed for the current model-
ing analysis are: Given what is known about the biology of
parasite transmission, and given past experience with
participation in MDA programs, how likely are we to
achieve substantial reductions in Schistosoma prevalence,
and over what time period? In particular, what will be the
likely status of Schistosoma control in treated areas in the
year 2020?

In the present study, we have used calibrated mathem-
atical models to project the effects of different frequency
and coverage of MDA for schistosomiasis control in
present day endemic communities, taking into account
uncertainties of parasite biology and input data (diagnos-
tics). The modeling approach employed in this analysis
is the Stratified Worm Burden (SWB) model developed
in our earlier works [10, 11], and further refined in later
reports [12]. The most recent version of our SWB model
accounts for a number of ecological drivers that play key
roles in Schistosoma transmission dynamics such as in-
host parasite biology (worm mating, aggregation [13-15],
and density dependent fecundity [16, 17]), human host
population structure (demographics, spatial distribution
[18-20]), and snail population dynamics. For the present
study, the model was calibrated using an extensive data
set (epidemiology, demographics, and snail environment)
collected in control studies in S. haematobium- endemic
communities of coastal Kenya [21-25]. In addition to
worm distribution, the new SWB methodology simulates
egg-release by different host worm burden strata. This
plays an important role in estimating human-to-snail
transmission (the force of infection (FOI) for snails). It is
also important for predictive analysis of control programs
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in terms of projecting post-treatment prevalence outcomes,
while accounting for the uncertainty of field diagnostics.

Our approach also allows the incorporation of model
and data uncertainties into prediction uncertainty. Among
these input uncertainties we include limited sensitivity
and specificity of test diagnostics, the effect of stratified
population sampling, parasite in-host biology (irregular
egg-release [26]), and heterogeneities among human hosts
in terms of parasite exposure, susceptibility to infection,
and drug efficacy. Our modeling approach tracks two
types of infection outcomes: (i) simulated egg-count test
results (urine filtration for S. haematobium) that are typic-
ally utilized in MDA control program monitoring and
evaluation, and (ii) the corresponding worm burden levels
(expressed through dynamic SWB-variables) that can now
be tracked with newer molecular diagnostics [27]. The
resulting prevalence levels (“‘egg” vs. “worm”, pg<py)
derived from the model equations are used to evaluate the
effectiveness of different control programs. As an illustra-
tion, we have compared our model projections to prelimin-
ary outcomes of the ongoing Schistosomiasis Consortium
for Operational Research and Evaluation (SCORE) trials for
gaining and sustaining control of S. haematobium in sub-
Saharan countries (www.score.uga.edu, [10]).

Methods

1. The SWB model

We used a coupled human - snail SWB model with
calibrated biological and transmission parameters to
simulate long term impact of MDA control and evaluate
its ability to reach a specific target prevalence or reduc-
tion of parasite burden. As detailed in our previous work
[12], in the SWB model, a human population is divided
into worm burden strata, /(t), defined by a standard
worm burden increment, Aw, with each stratum popu-
lated by human hosts carrying kAw<w< (k+1)Aw
adult worms (Fig. 1). Higher worm burden strata ({/:
k> 1} contribute to parasite transmission, while the low-
est stratum (/15 ) does not (SWB details are further ex-
plained in Additional file 1, Additional file 2, Additional
files 3, 4, and in Tables 1 and 2).

Worms release eggs in an irregular random fashion,
making precise diagnosis of worm burden difficult. Follow-
ing [26], in our estimates of egg outputs, we assume a
negative binomial (NB) distribution for egg-release by mated
worms with density-dependent mean worm fecundity,

Pk = Po e*/ko for k—-th stratum, /1 (1)

where po - maximal egg production/worm, kq - crowding
threshold, linked with an NB aggregation parameter r.
The model parameters that require calibration are re-
lated to parasite biology (in-host worm fecundity factors
{po» ko, r}) and to snail-to human transmission (human
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Fig. 1 Schematic view of egg-release by SWB model population strata. Each host in hy -stratum (k=0,1,2, ... ) carries, on average, ¢ mated
worm couples, having fecundity factor p,. However, because egg-release/worm is random (in a negative binomial pattern with aggregation
re=r ¢, test results for the hy -stratum can actually be distributed over a broad range of egg-counts {d,,}

FOIL 1) for different human population fractions (chil-
dren and adults) having higher or lower risk of new
infection (Fig. 2).

Human communities are coupled to snail transmission
environment via two forces of infection: snail-to-human
A=Az (proportional to shedding snail prevalence z) and
human-to-snail A = A(E) - a nonlinear function of com-
bined human infectivity E. E is determined by a worm
mating factor ¢ which is equal to the product of the
estimated number of mated worm couples in the k-th
stratum, (see equation (14) of Additional file 2), and
worm fecundity (Eq. (1)), namely

E= Zzzlpk(pk hie = ZzzlEk i (2)

Variable E represents the expected “egg release per
host” for a given SWB community. Unlike random
diagnostic tests, environmental egg-release E is viewed as

Table 1 System variables for the SWB model

SWB prevalence strata:

kAw S w < (k+ 1)Aw {h®:k=0,1,...}

with worm burden increment Aw Yihe=1
Demographically structured SWB:

Child A

SAC hi(@

Adult iG]
Population densities per unit habitat:

human H(®)

SEI (susceptible, infected, patent) snail

deterministic process accumulating the random contribu-
tions of multiple human hosts within each community.

2. Egg-test and worm burden diagnostics for SWB
Egg count and hematuria diagnostics prove less reliable
as population prevalence of infection decreases and aver-
age intensity of infection declines [28-31]. Therefore, to
model the process of infection, we must account for the
uncertainties of these standard diagnostics (as used in
most present-day control programs) in assessing true
treatment impact. Two types of diagnostic measures
were simulated in our analysis: pr - infection prevalence
based on egg-tests (real or simulated) and py, - positive
(detectable) worm burden prevalence (as could be deter-
mined by highly sensitive circulating antigen tests [27]).
Both types of outcome are derived using a SWB for-
mulation including a worm fecundity function (1) and
aggregated NB egg-production by mated worms in order
to account for egg-worm variations. The worm preva-
lence can be expressed through SWB variables {/1,(¢)} as

pw(t) = 1-ho(t) (3)

Such a definition assumes that only infective strata (/1)
are detectable by the molecular test (we recall that %, is
technically not an “infection-free” stratum but rather a
“non-infective” one that is free of mated couples). If it
happens that a particular molecular test has higher sen-
sitivity (e.g., one or 2 worms can be detected), definition
(3) could be adjusted accordingly, e.g. pwAt) =1 - a ho(?),
where 0 < a <1 is the detectable fraction of Aw = 10 worms.
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Table 2 Demographic and biological parameters used for Stratified Worm Burden systems

Parameters Name Value
a. Demographic parameters for chidren (0-8 year), SAC (9-12 year) and adults (13+ year) for Mozambique
Host turnover rates
Child Uc=Tc+ ¢ (maturation + mortality) 0.13+0.01/year [34]
SAC Us =Ts + s (maturation + mortality) 0.33 + 0.02/year [34]
Adult Ua (mortality) 0.026/year [34]
Demographic sources
Child SC={b-0,0,...}% per capita birth rate be= 0.04/year [34]
SAC S =145, K, ...
Adult S=1dhg h, ..
Mean daily urine release
Child Ue=700 mL?
SAC Us=1100 mL?
Adult Uy =1300 mL [43]

b. Demographic parameters for chldren (0-20 year) and adults (20+ year) in Kenya

Host turnover rates

Child Uc =T+ ¢ (maturation + mortality) 0.05 + 0.003/year [34]
Adult Ua (mortality) 0.02 — 0.03/year [34]
Demographic sources
Child SC= {6c, 0,0, ...}; per capita birth rate b= 0.032/year [34]
Adult S =dhs, K, ...
Mean daily urine release
Child Uc=1100 mL?
Adult Ux=1300 mL [43]

c. Snail parameters

Snail mortality Vs
Worm mortality y
Recovery/conversion rate r
Patency conversion fraction C

2.6/yearb
0.2/year [44]
Va weeks?

0.05-0.2¢

#from http://www.thepostnatal.com/2011/06/urine-output-at-different-ages/
bfrom [23, 25] and Kariuki et al., unpublished data
“based on results of snail data calibration

Estimated egg-prevalence

001 . .

0 1 2 3 4 5
Force of Infection, A

Projected egg-prevalence curves pe(d) are shown for typical median
values of child and adult parameters (o, ko, r) obtained via our
calibration approach

Fig. 2 Egg-prevalence as function of human force of infection (FOI).

A key link between our model and projected MDA
program egg-count outcomes is the simulated egg-test
results whose values (egg-count distribution) depend on
(i) the screened population sample drawn from the total
population of interest (whether community or a popula-
tion subgroup, typically these are sentinel school age chil-
dren), (ii) the infectious status of the group/community
given by its SWB distribution {#(1)}, (iii) the estimated
egg-release per mated worm (or host) in different strata,
as determined by fecundity function p; of (1). There are
two random steps in this procedure (i) random population
sampling for screening and (ii) random egg-release by
mated worms. The latter is assumed to be NB with
mean = p; (fecundity), and aggregation parameter r
(details are provided in Additional file 2).
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We make iterative use of the simulated egg-test results
in the Bayesian Monte Carlo calibration procedure
adopted here (see Additional file 3). They are also used
to estimate the expected infection prevalence and inten-
sity in simulated MDA control studies, specifically for a
given SWB population {/(¢)} with fecundity p; (1),
mating factor ¢ (equation (14) of Additional file 2), and
aggregation parameter r. The expected (mean) egg-test
prevalence is given by

n r [
pe0) =13 () o @

(see [12] and Additional files 1 and 2).

For mixed SWB population systems with demographic
fractions Hy + Hy + ... =1 (e.g, child-adult, high-low risk),
diagnostic prevalences p = pg or py are given by

p=Hp, +Hp, + .. (5)

where p; is the prevalence (3) or (4) of the i-th group.

3. Model calibration and Data Sources

The coupled (human-snail) SWB model employed in
our current projections was calibrated using a detailed
Kenyan dataset [8, 21, 23, 24, 32] which covers a broad
range of host demographics, incidence, prevalence, and
water use, as well as information about local snail
abundance and geographic distribution. We employed a
Bayesian calibration methodology that aims to estimate
likelihood weights for different parameter choices by
measuring the proximity of simulated egg-test to the real
test data for a given community (see Additional file 3).
The former (simulated test) depends on model parame-
ters (A, po, ko, 7), and we assign each choice of a com-
bined parameter set selection its specific likelihood
weight. The outcome of such calibration is creation of a
posterior ensemble (distribution) of the most likely
parameter values, specific for each community.

While the ten Kenyan villages differed in terms of infec-
tion intensity and prevalence, we found that age-specific
biological parameters maintained stable values regardless of
location and transmission intensity. Building on this obser-
vation, we have ventured to apply Kenyan biological param-
eters (for selected demographic groups) to recent data from
MDA -treated Mozambique populations, adjusting for local
starting prevalence. We hypothesized that these biological
features were a roughly constant feature of the parasite
species, and could be considered comparable across en-
demic locations. Specifically, we chose to estimate our
model’s biological parameters for 3 demographic groups
(constituted from Kenyan data) that were consistent with
the SCORE projects age-group monitoring system in its
operational research trials (younger children (0-8 yr), school
age children (SAC, 9-12 yr sentinel age group), and adults
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(13+ yr)) and derived a posterior ensemble of biological
parameters (pg, ko, r) for each monitored age group. The
calibration results for these Kenya data are shown in Fig. 3
and Table 3. As expected, maximal fecundity, po, decreased
with human host’s age [33], while worm crowding thresh-
old, ko, and aggregation, 1, estimates stayed nearly constant
across different human age groups. In calibrating our model
system, we found remarkably consistent values for the three
specific biological parameters, per age group, across the
spectrum of low-risk to high-risk Kenyan villages. Because
data from the Mozambique sites were more sparse in terms
of individual age level infection and risk for reinfection, we
have used these calibrated Kenyan parameter values for the
simulation of Mozambique community outcomes.

The next calibration step for coupled human-snail
systems involves transmission inputs: FOI A and coeffi-
cients A (snail-to-human) and B (human-to-snail). To
estimate equilibrium FOI A for a particular choice of
biological parameters (po, ko, 7), we use Eq. (4) for a
stationary SWB distribution {/;*(1)}

n ¢
r
pe=1- ( ) B ) = FQipo.kour) - (6)
; 7+ py 0

The right-hand side of Eq. (6) is a function of 1 and
the biological triplet (po, ko, ), as illustrated in Fig. 2 for
typical values of child/adult parameters (po, ko, 7). Solving
this equation for a given observed prevalence, pg, we get
equilibrium FOI, A, and then transmission coefficients A
and B can be estimated from the available human/snail
demographic and infection data (see Additional file 3).
In our analysis, we did not track change in transmission
potential or FOI during MDA. In the Kenya study
experience, even though the community egg output
decreased, snail numbers and snail infection levels
remained about the same despite good coverage of SAC
and treatment of most high intensity infections [25].
There are non-linear aspects of contamination and
miracidia-snail exposure [18], such that snail infection
can persist at a significant rate even in the face of MDA.
In most cases, we believe, significant change in A and B
require environmental changes beyond the impact of
MDA, and the impact of such interventions will be
explored in future papers.

Some uncertainties are built in the system’s setup (e.g.,
multiple demographic/risk groups, transmission environ-
ment, diagnostics); others result from the Bayesian cali-
bration procedure. Rather than “best-fit” parameters, we
look for likely parameter choices. Thus, each community
or population group is described by its “posterior” distri-
bution in the parameter space. To simulate any particular
outcome (e.g, MDA control intervention) for a given
community, we randomly sample its posterior distribution
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Fig. 3 Distributed parasite biological parameters. Model parameters (oo, ko, r) estimated for 3 demographic groups (younger children, (child, 0-8
years old); mid-school age children (SAC, 9-12 years old), and adults (13+ years old) based on calibration using field data collected in the
Msambweni sub-county area of coastal Kenya [32]. The individual parameters modeled are labeled at the top of each panel
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to generate an ensemble of “likely virtual communities”
(parameter choices).

Then we compute the corresponding ensemble of
worm burden and prevalence outcomes and assign each
one its likelihood weight. The final result takes the form
of a distribution of outcome values, and we report its
statistics (mean, variance, confidence levels, etc.).

4. MDA control within SWB systems
The effect of drug treatment on an SWB population is
to shift the treated fraction of stratum /,,(¢) to a lower-
level stratum /,,(¢), where m ~ ¢ n. Parameter ¢ is drug
efficacy measured as fraction of adult worms surviving
treatment [12]. For example, all strata in the lowest
worm-range {/,,:0 <m < 1/} shift to kg (i.e, an effective
clearing of patent worm infection). The next range {4,,:
1/e<m<2/e} goes into h;, etc. In numeric code, each
MDA step is simulated as an “instantaneous event” due
to the short duration of drug action (days) relative to
slow time scale of transmission dynamics (months to
years).

Computationally, dynamic SWB variables {/1; = h(to)}
at the treatment time £, are reinitialized to new (post-
treatment) values {/;'} depending on the two MDA

Table 3 Calibrated Schistosoma biological parameters estimated
for three demographic groups using the Kenyan dataset

Child SAC Adult

Po  Wo k Po Wo k Po Wo k
Mean 37 120 0048 30 120 0052 10 120 0.047
SD 17 43 0027 17 42 0024 68 43 0.026

inputs: treatment coverage fraction (0<f<1) and drug
efficacy €. When the coverage fraction is relatively high
(f~ 1), each stratum has approximately f treated plus (1-f)
untreated hosts, so

b = (-Pho+f D hmy
Osm<1/e
=1l +f Z By
1/esm<2/e
=A-Nh+f D hme. (7)

2/esm<3/e

More generally, for a given coverage level 0<f<1, we
draw a random sample of size T=fH=To+ T1+...+ T,
from the total SWB human population H = Hy + H; + ... +
H,, via a multinomial distribution with SWB probabilities
h;=H;/H. Then, we get estimated coverage fractions for
each stratum {f;= T;/H;} and the relationships among the
Eq. (7) take the form

hi = ()bt Y fuhm (8)

i/esm<(i+1)/e

Reinitialized system (7) or (8) is then solved over the
following time-span until the next MDA “event”. The
process runs according to a prescribed MDA control
strategy in terms of frequency and age groups that have
been targeted. Figure 4 illustrates typical MDA-mediated
rearrangements of SWB stratum frequencies in a human
community when given MDA at different treatment
coverage levels (50 % vs. 90 %).

At each MDA step (or any other time t5), we can
“diagnose” the state of our system (infection intensity,
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Fig. 4 MDA effect on SWB strata. An MDA applied to SWB
population would rearrange variables {h,} by shifting higher-burden
stratum hyx — h. 4, depending on drug efficacy € (worm survival rate
after treatment), and treatment coverage fraction, 1. The plot shows
the predicted effect of different coverage fractions (f=50 %, 90 %)
on a typical SWB distribution, assuming € =0.75

prevalence, etc.) by evaluating variables {/(ts)} and
using prevalence Egs. (3)-(5). For long-term control pre-
dictions, we also take into account projected demo-
graphic changes of the local human populations [34].

5. Control strategies

We studied projections for two types of MDA control re-
sults: (i) short-term outcomes along the lines of the 5-year
SCORE projects (see Fig. 5 for the SCORE ‘gaining con-
trol’ study design) and (ii) long term (30-year) outcomes
of programs targeting extensive reduction of prevalence.

In each case, a virtual host community (village) is con-
structed from several human population age subgroups.
The groups are represented by SWB systems and linked
through birth-maturation source terms (see Additional
file 1). The entire host community is coupled to a
hypothetical snail habitat via calibrated transmission
coefficients A and B that would maintain the locally-de-
termined baseline (equilibrium) human-snail transmission
pattern for infection.

For simulations of SCORE Project outcomes, we mod-
eled outcomes for the three target age groups being
monitored by the project: children 0-8 years old, SAC
sentinel 9-12 year olds, and adults (13+), testing over a
range of coverage levels observed in the field. Combin-
ing typical sub-Saharan rural demographics [34] with
calibrated biological parameters, we generated an en-
semble of virtual villages whose baseline infection and
coverage levels were compatible with recent S. haemato-
bium control data from Mozambique.

For longer term simulations, the modeled programmatic
control target was set at using MDA to reach a<2 %
infection prevalence. This level of prevalence was se-
lected to approximate the successful long-term outcomes
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reported by large-scale national MDA-based schistosomia-
sis control programs of Egypt [35], China [36], and Brazil
[37]. We monitored projected values for two types of diag-
nostics in our study: (i) simulated egg-test prevalence or
its expected (mean) value (4) and (ii) actual worm-burden
(antigen) prevalence.

pw(t) = 1-ho(t) ©)

In this analysis, a series of periodic MDA sessions was
run until the 2 % target was reached or until an arbitrary
time limit (set at 30 years) expired. At each MDA control
session, a fraction of children (f,), and adults (f,) was
scheduled for treatment to simulate non-participation in
MDA delivery. MDA sessions were repeated at regular
time intervals 7 [years]. Drug efficacy was fixed at 75 %
worm reduction, the rate we found most consistent with
the available published data [38].

Simulated MDA outputs of interest to us included (i)
prevalence reduction for communities (or specific
groups) over time or within five years from the present
(the year 2020) and (ii) for long term programs, the dur-
ation 0 < T'< 30 years required to achieve a target reduc-
tion to <2 % prevalence. In particular, we focused how T
depends on the inter-treatment period 7 and coverage
fractions, {T = T(z, f,, f)}, along with which combinations
(z,f. f,) would allow the program to reach its chosen
target.

In most simulations reported, control inputs were
allowed to vary over the following ranges: 0.5<7<3;
05<f.<1; 0<f,<f. . Special cases include community-
wide treatment (CWT, where f, =f. ) and school-based
treatment (SBT, where f, =0 <f,).

Two types of uncertainty enter our analysis and predic-
tions: (i) uncertainty about in-host parasite biology, where
each parameter choice carries an associated “likelihood
weight”, (ii) variability in simulated egg-tests, whose out-
puts depend on random population sampling and irregu-
lar (NB-distributed) egg-release by hosts.

Uncertainty in predictions is managed as follows: In our
simulations for each chosen MDA control, a treatment
history is repeated multiple times for different choices of
likely biological / transmission parameters and egg-test
diagnostics. The resulting ranges of reported outcomes
(eg, prevalence levels pg, pyw, or required program dur-
ation, T') are distributed quantities reflecting the underlying
data/model input uncertainties. This allows statistical pre-
dictions of the estimated mean prevalence reductions and/
or control duration, and the probability of attaining a
particular target prevalence.

6. Short-term SCORE Project predictions and 2020 control
Using characteristics and parameters derived for ‘vir-
tual’ but typical high-risk and low-risk villages (model
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Fig. 5 SCORE control strategies trial for high risk villages. The ongoing treatment strategies trial for high Schistosoma prevalence villages in SCORE
project, comparing different frequencies of CWT, SBT, and treatment holiday intervals. The analysis in this paper focuses on the most aggressive
arms (Arm 1 and Arm 4) of yearly high-risk village community-wide treatment (CWT) vs. school-based treatment (SBT)

parameters calibrated based on our Kenya data), we ran  ensemble of 20 virtual Mozambique-like communities and
simulation of SCORE Project S. haematobium control  a hypothetical snail site with baseline (equilibrium) preva-
outcomes over a projected 10-year period (2010-2020) for  lences of susceptible, prepatent, and patent snails {x*,y*,
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ments (Fig. 6). For our initial simulations, we generated an  fied in terms of i) basal levels of egg-prevalence pp, ii)
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shown by the thick line, and the 25-75 % quantiles are indicated by the gray envelope; Panel b shows the corresponding estimates of worm-based
prevalence, adjusting for the insensitivity and random components of egg counting; Panel ¢ purple bars show the likely range of prevalence values for
9-12 year olds in 25 simulated villages in surveys performed before each of 4 yearly treatments (purple) in a SCORE-like program. Comparison to actual
observed data from the SCORE Mozambique project is shown in yellow
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parasite biological parameters (p, ko, r), and iii) population
sizes N (used for random treatment/test sampling). The
decision to use these specific age-range categories was
based on the availability of in-depth individual-level
data on infection and egg counts for the Kenya and
Mozambique areas included in our analysis. In future, the
SWB can be readily calibrated for other sites depending
on available data, however, the accuracy and precision of
predictions will depend on the depth of data support for
any specific age group. Because adult participation in
community surveys is often more sparse than that of SAC,
we do not have as precise estimates of the range of egg
outputs for the older members of most ‘typical’ S. haema-
tobium affected communities. The work of Wilson, et al.,
[33] suggests that eggs/per worm decline in adulthood
due to acquired anti-fecundity immunity, so that persist-
ent infection with intermittent passage of eggs remains an
important factor in continued transmission. Given these
findings, we felt that using a 13+ aggregated age group
was an appropriate compromise to reflect the reduced
participation of older individuals and the post-12 yo shift
from high intensity towards lower intensity infections. In
the projected simulations, the SAC population numbers
(Ns) varied in the range 500—1000, while non-SAC popula-
tions were estimated from available census data (US Census
Bureau International Database, at http://www.census.gov/
population/international/data/idb/informationGateway.php)
as N¢c=~ 2.8 x Ny (children) and N4 = 12 x N (adults).

Expected prevalence levels for each village and demo-
graphic group were taken from SCORE data for sentinel
9-12 year old SAC, while the non-SAC groups were
assigned random values of pg in the range (0.1-0.4). Bio-
logical parameters (po, ko, 7) for each demographic group
were chosen from the previously calibrated Kenyan pos-
terior ensembles.

The coverage fractions in our simulations followed the
typical SCORE coverage levels obtained over the first
4 years of the program, henceforth denoted Y1-Y4. In
simulating the follow up period (through 2020), coverage
levels were set to the level year Y4 of SCORE participa-
tion, i.e., fsac=0.8 , and 0.1 < f; < 0.4 for other groups.

Although coverage rates {f} for each group are pre-
scribed in our dynamic simulation, the MDA outcome
could vary due to random selection of hosts in the SWB
strata for treatment. The effect of random selection,
however, diminished at high coverage rates f~ 1. To esti-
mate egg-prevalence pr at each control step, we used its
expected value as calculated by Eq. (4).

Results and discussion

To project the expected 2020 impact of MDA in a
SCORE-like program setting, we ran an ensemble of
1000 realizations (50 random realization of each virtual
village) and recorded their SAC prevalence as a function
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of time. Figure 6 shows simulated prevalence ensembles
for 20 communities (median and quartiles) over a 10-
year control period. In panel (a) we plotted the range of
estimated mean egg-test prevalence outcomes from Eq.
(4); in panel (b), we plotted estimated worm burden
prevalence (based on antigen diagnostics) based on Eq.
(3). As expected, prevalence of worm infection was
slightly greater than egg count prevalence because if the
insensitivity of egg count testing for low intensity infec-
tions. Prevalence was seen to decline after each annual
round of MDA, but then to partially rebound due to
reinfection. A period of 8 or more years of annual treat-
ment was required to drop egg prevalence below 5 %.
For validation, Fig. 6, panel (c) compares observed
SCORE data for the 25 Mozambique CWT study com-
munities with our simulated ensemble projections for
CWT control over the initial 4-year period. Our model
predictions showed a slower drop in S. haematobium
prevalence during the initial phase (Y1-Y3), which
caught up with the observed data in Y4. Not shown, in
the projected follow-up period (Y5-Y10), we predict a
further, significant reduction of prevalence (to =6 % by
2020) due to the relatively high treatment coverage
levels achieved by Y4 (fsac= 0.8, 0.1 < f; f4 < 0.4).

Of note, the model is currently parameterized for S.
haematobium control using data from Kenya and
Mozambique. It is possible that calibration and projected
outputs will differ for S. mansoni, based on differences
in snail host species and their related biological character-
istics, and on different likelihood of transmission because
of differences in egg excretion into water bodies (via feces
vs. urine). We are currently examining this question in
model parameterization based on SCORE data from S.
mansoni communities in Kenya and Tanzania. A compan-
ion modeling paper in this issue (Anderson et al., What is
required in terms of mass drug administration to interrupt
the transmission of schistosome parasites in regions of
endemic infection?) has examined impact of MDA on S.
mansoni prevalence based on data from long baseline
control studies in Kenya [39]. We expect that future work
will allow for comparisons of the projections of both
groups’ models, both for S. haematobium and S. mansoni.

Long term target reduction

Our next goal was to explore the effect of a long-term
MDA program targeted at reducing the prevalence to
below 2 %. In particular, we were interested in the influ-
ence of the program’s chosen coverage fraction (f) and
inter-treatment period (z), and we looked for starting and
operational conditions needed to reach the<2 % preva-
lence target within a 30-year time span. Specifically, we
estimated the required program duration, 7, as function of
control inputs T(f, 7).


http://www.census.gov/population/international/data/idb/informationGateway.php
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For these simulations, we generated an ensemble of 20
virtual communities of a Kenyan high transmission type
area. Here, each simulated virtual community was made of
2 age-groups (children — 0-20 year-old, adults —20+), and
their biological parameters (po, ko, 7) were chosen randomly
from the calibration’s posterior ensembles. A hypothetical
snail environment was used for coupled human-snail
system, as in the shorter-term analysis described above.
MDA coverage values for children were allowed to vary in
the range 0.5 <fc<1 while adult coverage was kept at
75 % of children’s participation (f; = 0.75f;) with the inter-
treatment interval examined over a span of 0.5 < 7 < 3 years.

Two types of outcomes for the sentinel child group
were used in these long term simulations, egg prevalence
(4) and worm prevalence (3). In either case, we assumed
20 % of children (out of total population 500) were
screened for prevalence estimates before each MDA
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control step. When the <2 % children’s prevalence target
was reached within 30-year period, we recorded time T
and terminated the program. Otherwise it was left to
run until the terminal value of 30 years, which was then
assigned to the value of T for that simulation.

Each treatment regimen (f¢, f4, ) was repeated 50 times
for each of the 20 virtual villages. The resulting 50 x 20
ensemble of observed values T (means and standard
deviations) were recorded for each choice (f,, 7). Table 4
compiles T-values for egg-test diagnostics, while Table 5
does the same for worm-burden diagnostics. Figure 7
shows the results (mean values of T') as a color map. Not
surprisingly, based on the relative insensitivity of egg
counting for low level infections, the results show that it
takes longer to achieve truly low worm prevalence levels
(Table 5) as compared to egg-count based prevalence
levels (Table 4). Also, it shows that without substantially

Table 4 Time to 2 % target prevalence based on egg-test diagnostics. Shown values represent ensemble mean + SD of program
duration (in years) required to reach a target Schistosoma haematobium infection prevalence < 2 % (T(f, 1)), for different choices of
coverage (f,, columns) and inter-treatment periods (t, rows). Upper panel A shows results for a high risk Kenyan village treated by
CWT; Lower panel B — a low risk Kenyan village treated by SBT. Full results for different delivery strategies in high- and low-risk areas

are shown in Additional file 5

A Community-wide MDA Coverage- High-risk village

Interval 50 % 60 % 70 % 80 % 90 % 100 %
0.5 65+1 45+05 35+05 3+05 25+05 2+05
0.75 19+8 95+4 6=£1 45+05 35+£05 3+£05

1 > 30 235+8 115+55 7+15 55+1 4+£05
1.25 > 30 > 30 25+£75 125£55 75+2 55+£1
15 > 30 > 30 > 30 235+75 12+6 75+15
1.75 > 30 > 30 > 30 30+2 20+8 105+5
2 > 30 > 30 > 30 > 30 29+£3 16+8
2.25 > 30 > 30 > 30 > 30 > 30 24+75
25 > 30 > 30 > 30 > 30 > 30 205+2
2.75 > 30 > 30 > 30 > 30 > 30 > 30

3 > 30 > 30 > 30 > 30 > 30 > 30

B. School-based MDA Coverage- Low-risk village

Interval 50 % 60 % 70 % 80 % 90 % 100 %
0.5 125115 105115 85+105 6.5+ 10 5595 35+65
0.75 1811 15+11.5 135+125 11512 1M1+£125 95+12
1 255+8 195£105 17+115 145+12 135+125 12+£125
1.25 > 30 265+75 205+105 175112 16+125 14+125
15 > 30 > 30 26+75 20.5+10.5 18115 165+£125
1.75 > 30 > 30 295+3 24+9 20511 18+£12
2 > 30 > 30 302 285+5 23+95 195+115
2.25 > 30 > 30 > 30 2905£25 277 21£105
25 > 30 > 30 > 30 > 30 285+5 24+£95
2.75 > 30 > 30 > 30 > 30 295+25 27+65
3 > 30 > 30 > 30 > 30 > 30 29+45
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Table 5 Time to 2 % target prevalence based on antigen-detection diagnostics. Mean + SD of program duration (in years) required
to reach a target Schistosoma haematobium infection prevalence <2 % (T(f, 7). The panels and intervention values are the same as
in Table 4 but using worm antigen-test diagnostics to identify post-treatment infection prevalence

A Community-wide MDA Coverage- High-risk village

Interval 50 % 60 % 70 % 80 % 90 % 100 %
05 12+£65 75£55 45+05 35+£05 3£05 25£05
0.75 > 30 225+9 M+7 75+55 45+1 35+05

1 > 30 > 30 275+65 15+9 85+55 5+£1

1.25 > 30 > 30 > 30 275465 18+10.5 85£55
1.5 > 30 > 30 > 30 > 30 275+65 17+10
1.75 > 30 > 30 > 30 > 30 > 30 245+85
2 > 30 > 30 > 30 > 30 > 30 > 30
2.25 > 30 > 30 > 30 > 30 > 30 > 30

2.5 > 30 > 30 > 30 > 30 > 30 > 30
275 > 30 > 30 > 30 > 30 > 30 > 30

3 > 30 > 30 > 30 > 30 > 30 > 30

B. School-based MDA Coverage- Low-risk village

Interval 50 % 60 % 70 % 80 % 90 % 100 %
05 175+13. 16+135 14+135 13+135 11£13. 105+13.
0.75 245+95 195+12. 175+13. 16+13. 14+135 135+ 14
1 > 30 26+85 21115 19+£125 16.5+ 13. 155+£135
1.25 > 30 > 30 2685 215£11. 19+125 175£13.
1.5 > 30 > 30 29+ 4. 26+85 2111, 19+125
1.75 > 30 > 30 > 30 29+45 255495 20+115
2 > 30 > 30 > 30 > 30 28+ 6. 235+ 10.
225 > 30 > 30 > 30 > 30 > 30 255+09.
25 > 30 > 30 > 30 > 30 > 30 28+65
2.75 > 30 > 30 > 30 > 30 > 30 > 30

3 > 30 > 30 > 30 > 30 > 30 > 30

large coverage fraction (f) as well as a treatment frequency
(1/ 1) of one year or less, prevalence cannot be reduced as
low as 2 % within 30 years.

The next question asked was: What happens after the
target is reached and control program stops? In past
years, theoretical answers to this question have often
been couched in terms of a putative “transmission break-
point” infection levels [40—42]. Transmission breakpoints,
when they exist, could prevent relaxation to pre-control
levels of infection. Once breakpoint is reached (e.g., via
long term, intensive MDA) the system would relax to its
lower and now stable “infection-free” state. Breakpoints
are commonly predicted in MacDonald-type (MWB)
model systems that include parasite mating (see [13, 15]),
but from analysis of our calibrated SWB models, we be-
lieve them to occur only under exceptional circumstances
[12]. In the absence of breakpoints the system is predicted
to relax inevitably to its pre-control (baseline) equilibrium

state. In fact, long term population growth could drive the
equilibrium state even higher.

Our simulations suggest that realistic environments like
Kenya or Mozambique have no, or very low prevalence
breakpoints (well below 2 %), perhaps too low to be of
practical relevance. Figure 8 illustrates a typical MDA pro-
gram that reaches the 2 %-target in relatively short time
(6-8 years), but after termination prevalence ‘relaxes’ to
its pre-control endemic levels by 22—24 years later.

Conclusions

Our model simulations suggest the following conclu-
sions about the currently advocated PCT programs: In a
stable (stationary) transmission ecosystem, Schistosoma
reproduction and transmission are sufficiently robust that
the process of human infection continues, even under
pressure from aggressive MDA. MDA alone is unlikely
to interrupt transmission, and once mass treatment is
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Fig. 7 Heat map of the long term program duration (mean T ) required to reach < 2 % Schistosoma prevalence. Two control strategies (CWT and
SBT) are compared for typical Kenyan villages. Panel (a) show T(f-, 1) map for a high-risk (80 % baseline prevalence) treated with CWT; (b) lower
risk village (30 % baseline prevalence) treated with SBT. The color scale in the center indicates the number of years needed to reach local Schisto-
soma infection prevalence of <2 %, as determined by egg-count diagnostics. The darkest color indicates the target will be reached in 5 years or
fewer, the lightest color indicates the target is not reached in 30+ years of intervention. In both cases, long term simulations take into account

predicted population growth for Kenya [34]

suspended, the prevalence of human infection is likely to
rebound to pre-control levels over a period of 25-30
years. MDA success in achieving very low levels of infec-
tion prevalence is highly dependent on treatment coverage
and frequency within the local human population, and
requires that both adults and school age children be in-
cluded in drug delivery coverage.

The 2020 goals of the London Declaration and the
WHO Roadmap are commendable, in that achieving 75 %
coverage of at-risk school age children will significantly
reduce the prevalence of Schistosoma infections, and
hence reduce the risk of infection-associated morbidity.
However, it is unlikely that the further programmatic
objective of local or regional “elimination (where pos-
sible)” can be met in most locations without additional

1.0 ‘ - ‘ - ‘
0.8
0.6
0.4
0.2

0.00 5

prevalence

10 15 20 25 30
time (year)

Fig. 8 Typical MDA model histories given early target reduction (7=
6 — 8 years), but with subsequent relaxation to endemic equilibrium
following suspension of program intervention. The two prevalence
curves correspond to egg-test (darker blue line) and worm (antigen,
lighter yellow line) diagnostics

interventions beyond the basic school-based MDA now
practiced in most endemic areas. Interval reassessments
of persistent transmission, based on accurate and sensitive
monitoring systems, will be needed to point out locations
or regions where supplemental snail control and sig-
nificant improvements in sanitation will be required
to achieve the ultimate control of schistosomiasis by
elimination of Schistosoma transmission.
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