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Abstract

Background: Lymphatic filariasis (LF) is one of the neglected tropical diseases targeted for global elimination. The
ability to interrupt transmission is, partly, influenced by the underlying intensity of transmission and its geographical
variation. This information can also help guide the design of targeted surveillance activities. The present study uses
a combination of geostatistical and mathematical modelling to predict the prevalence and transmission intensity of
LF prior to the implementation of large-scale control in sub-Saharan Africa.

Methods: A systematic search of the literature was undertaken to identify surveys on the prevalence of Wuchereria
bancrofti microfilaraemia (mf), based on blood smears, and on the prevalence of antigenaemia, based on the use of
an immuno-chromatographic card test (ICT). Using a suite of environmental and demographic data, spatiotemporal
multivariate models were fitted separately for mf prevalence and ICT-based prevalence within a Bayesian framework
and used to make predictions for non-sampled areas. Maps of the dominant vector species of LF were also
developed. The maps of predicted prevalence and vector distribution were linked to mathematical models of the
transmission dynamics of LF to infer the intensity of transmission, quantified by the basic reproductive number (Ry).

Results: The literature search identified 1267 surveys that provide suitable data on the prevalence of mf and 2817
surveys that report the prevalence of antigenaemia. Distinct spatial predictions arose from the models for mf
prevalence and ICT-based prevalence, with a wider geographical distribution when using ICT-based data. The
vector distribution maps demonstrated the spatial variation of LF vector species. Mathematical modelling showed
that the reproduction number (Ry) estimates vary from 2.7 to 30, with large variations between and within regions.
Conclusions: LF transmission is highly heterogeneous, and the developed maps can help guide intervention,
monitoring and surveillance strategies as countries progress towards LF elimination.
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Background

Lymphatic filariasis (LF) is a mosquito-borne disease
caused by the filarial worms, Wuchereria bancrofti, Bru-
gia malayi and B. timori. Since the launch of the Global
Programme to Eliminate Lymphatic Filariasis in 2000 an
estimated total of 975 million people, including 198 mil-
lion in sub-Saharan Africa, have benefitted from mass
drug administration (MDA) programmes that deliver
antifilarial drugs [1]. As a result of these efforts, it is esti-
mated that the global prevalence of infection has de-
creased by 30 % and 18.2 million cases of LF morbidity
have been averted [1]. At a country level, an increasing
number of national LF control programmes have com-
pleted five or more rounds of MDA and, as a conse-
quence, are conducting transmission assessment surveys
(TAS) to determine whether prevalence of LF is <1 %
and MDA can stop [2]. After stopping MDA, pro-
grammes will still need to conduct surveillance to ensure
transmission has not re-emerged (i.e. there has been no
recrudescence). This can either be achieved by periodic
surveys, for example, by repeating a TAS 2-3 years after
stopping MDA, or through screening of routine blood
samples [3]. For the process of verification, countries
will also need to conduct surveillance in areas judged to
be non-endemic at the start of the programme. To help
reduce costs, surveillance can be stratified according to
the risk of recrudescence. This risk may be predicted
from analysis of the historical, pre-intervention trans-
mission levels, vector type and capacity and environ-
mental and demographic factors known to influence the
intrinsic sensitivity (receptivity) of transmission [4—6].
Recent work at the country level highlights the environ-
mental, socio-demographic, and intervention drivers of
LF and how this information can be used to stratify
areas according to likelihood of transmission being inter-
rupted or persisting [7-9]. Other work has used Bayes-
ian geostatistical modelling to predict the distribution of
LF at country [10] and continental [11] scales.

In this paper, we use a combination of Bayesian geos-
tatistical and mathematical modelling to develop maps
of the prevalence and transmission intensity of bancrof-
tian filariasis in sub-Saharan Africa (SSA) prior to large-
scale control. We use these maps to inform a stratified
approach to LF surveillance. The work builds on recent
work to develop a global atlas of LF infection [12], con-
ducted as part of the Global Atlas of Helminth Infections
project (www.thiswormyworld.org) [13].

Methods

Data sources and data selection

Data on the prevalence of LF infection were identified
from searches of the formal and informal literature and
direct communication with LF control programmes. De-
tails of the search strategies, inclusion criteria, data
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abstraction and geolocation procedures are provided by
Cano et al. [12]. In brief, only population-based survey
data based on random sampling were included, whereas
data from non-random data, including surveys from
hospitals, prisons, mental institutions or military facil-
ities, were excluded. In the current analysis, only surveys
conducted prior to the implementation of countrywide,
population-based MDA were included. Infection preva-
lence was defined as either (i) the proportion of surveyed
individuals with detectable microfilaraemia or (ii) the
proportion of surveyed individuals with detectable anti-
genaemia. A table with a brief description of the surveys
compiled and used in this work is provided as supple-
mental information (see Additional file 1).

Microfilaraemia (mf) was estimated from examination
of thick blood films collected during night blood surveys
to detect the presence of microfilariae using microscopy
[14, 15]. It is generally assumed that the sensitivity of
methods for detecting microfilaraemia is influenced by
the volume of blood sampled and previous authors have
adjusted prevalence estimates according to blood volume
[16]. We therefore investigated this issue further but
found that although estimates of infection prevalence
varied according to blood volume, we were unable to de-
rive consistent adjustment factors and therefore did not
adjust prevalence estimates according to blood volume
(see Additional file 1). It is also known that concentra-
tion and counting chamber methods have greater sensi-
tivity [17] and therefore where estimates were derived
using both concentration methods and thick blood
smears (n =10 surveys), we used only the thick smear
data.

Wiuchereria bancrofti antigenaemia was typically esti-
mated using an immuno-chromatographic card test
(ICT) [14, 18]. These tests are more sensitive than mf
detection and can be conducted on blood collected at
any time of the day and therefore since 2000 have been
the diagnostic method of choice for mapping the distri-
bution of LF caused by W. bancrofti. Recent work has
highlighted potential cross-reactivity of the ICT test with
Loa loa [19], therefore we excluded ICT-based surveys
conducted in areas of L. loa transmission (n =314), as
defined by Zouré et al. [20].

Data derived from parasitological blood examinations
during day time (n = 71), ELISA (n =70), clinical exami-
nations (n =24) and other molecular or antibody-based
tests (i.e. PCR, IFI, new rapid test) (n=17) were ex-
cluded because of the lack of comparable data. Finally,
we excluded data from Egypt since this country is no
longer considered endemic for LF and has a different
transmission ecology from SSA [21, 22]. Figure 1 sum-
marises the survey data selection and Fig. 2 shows the
geographical distribution of survey data by diagnostic
method.
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Fig. 1 Selection of data for inclusion into the modelling, based on sample size, diagnostic method. NA: not available; EWH: eye worm history

Covariate variables

There are a number of climatic, environmental and
demographic factors that influence the transmission and
epidemiology of LF, including temperature, humidity,
elevation and population density [12, 23-25]. We gener-
ated a suite of climatic and environmental covariates
from surfaces interpolated from meteorological stations
or remote sensing imagery, including estimates of mean,
minimum and maximum temperature and precipitation

at 1 km? resolution [26], averaged long-term estimates of
land surface temperature [27], elevation at 1 km? reso-
lution [28], and aridity index [28], averaged enhanced
vegetation index for the period 2000 to 2012 [27], and
land cover data [29]. Estimates of population density were
obtained from the Gridded Population of the World [30]
and the United Nations Environment Programme [31],
which we used to classify areas as urban, peri-urban or
rural areas, based on the assumption that urban extents
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Fig. 2 The spatial distribution of data on the prevalence of microfilaraemia (mf) (n=1217 surveys) and antigenaemia, based on immuno-
chromatographic card test (ICT) data (n =3197 surveys). Countries defined as non-endemic by the World Organization are shown. Also shown are

(UE) have a population densities >1000 persons/km?, peri-
urban >250 persons/km? within a 15 km distance from
the UE edge, and rural <250 persons/km? and/or >15 km
from the UE edge. From these datasets of population
density, population growth rate for the period 1960 to
2010, as a measure of the change rate in population over
this period, was also calculated. A detailed description of
each covariate and source is provided in the supplemental
file (Additional file 2: Table S3). Each covariate grid was
resampled to a 10 km spatial resolution using bilinear
interpolation for continuous surface and a majority ap-
proach for categorical data [32]. Covariate data were ex-
tracted to survey locations using ArcGIS Desktop v10.2
(Environmental Systems Research Institute Inc., Redlands
CA, USA).

Vector distribution maps

LF is transmitted mainly by mosquito species belonging
to the Anopheles, Culex, and Mansonia genera and to
lesser extent Aedes, Coquillettidia and Ochlerotatus gen-
era [33, 34]. Anopheles mosquitoes are the main vectors
of LF through much of west and central Africa and

inland east Africa, whereas Culex species are the main
vectors in coastal east and southern Africa [33]. Studies
have shown that the survival, parasite uptake and devel-
opment of infective L3 stages and overall transmission
potential varies by vector species [35-37]. In order to
capture these species differences, we developed maps of
the distribution of each dominant LF vector species:
Anopheles, Culex and Mansonia.

Maps of the distribution of mosquitoes belonging to
the An. gambiae complex and An. funestus complex
were obtained from the Malaria Atlas Project project
(http://www.map.ox.ac.uk/) [38, 39] and a binary map
displaying the distribution of each complex was created.
Maps of Culex and Mansonia mosquitoes were obtained
from the VectorMap project (http://www.vectormap.org/),
which collates collection records of major vector insects
and uses maximum entropy ecological niche modelling to
develop occurrence maps [40, 41]. The maps present the
probability of occurrence of Cx. quinquefasciatus, Cx.
pipiens, Cx. univittatus, and Mansonia Africana, and
we used a 90 % probability threshold to indicate
dominance of a particular species according to a set
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of presence records obtained from the Global Bio-
diversity Information Facility database [42]. Each of
the species-specific binary maps were combined to
produce gridded maps of mosquito distribution by
genus which, in turn, were combined into a single
map of the different LF vector species at a 5 km
spatial resolution (Fig. 3). The developed maps of
Anopheles, Culex and Mansonia genera were subse-
quently incorporated as covariates in the goestatistical
and mathematical modelling.

Page 5 of 16

Geostatistical modelling approach

The prevalence of mf and prevalence of antigenaemia
were modelled separately due to a poor correlation be-
tween outcomes and the inability to predict one from
another, as detailed elsewhere [43]. Bayesian geostatisti-
cal models, which included both fixed and random ef-
fects, were used to predict the spatial distribution of
each outcome. Fixed effects quantify the effects of the
covariates on LF infections, whereas random effects ac-
count for unexplained spatial variation whose structure

N
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Fig. 3 Predicted occurrence of the major potential vectors of lymphatic filariasis: a Anopheles, b Culex, ¢ Mansonia, and d overlap of species
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can eventually help identify anomalous areas of high or
low risk that can be further investigated.

The ICT-based model accounted for environmental
and demographic covariates and spatial random ef-
fects as data spanned only 15 years and no temporal
trend was observed in the data. From ICT-based data,
we fitted a model in which conditional on the true
prevalence P(x;) at location x;,i=1,...,n, the number
of positive results Y; out of N; individuals sampled at
location x;, follows a binomial distribution Yj|P (x;) ~
Binomial(N,P (x;)). The log-odds of P(x;) is modelled
as logit(P(x,)) = z;f + S(x;) + u;, where z;=(1,z;,...,z;p)
denotes the vector of the intercept and the p covari-
ates considered, and S = (80, 51, . . ., Bp)’ is the coef-
ficient vector. S(x;) is a zero-mean Gaussian process
with Matérn covariance function that represents any
residual spatial variation which is not explained by in-
cluded covariates. The Mitern covariance function is
expressed as

Cov(S(x:),S (%)) = 2°711(v)

where K, is the modified Bessel function of second kind
and order v>0. The integer value of v determines the
mean square differentiability of the underlying process. v
is usually fixed since typically it is poorly identified in
applications. ¢* is the marginal variance and k>0 is a
scaling parameter related to the range p, the distance at
which the S(x;) and S(x;) are almost independent. In par-
ticular, we used the empirically derived definition p =
V/8v/k, with p corresponding to the distance at which
the spatial correlation is approximately 0.1. We also in-
clude in the model a spatially unstructured random ef-
fect, u;, that captures the effects of unmeasured
characteristics that affectall members in the survey. u;
are assumed to be independent zero-mean Gaussian dis-
tributed with precision 7.

The model for mf prevalence incorporated a temporal
fixed effect to capture changes in mf prevalence over
time and a spatio-temporal random effect under the as-
sumption that fitted temporal correlations exist only
with the preceding year [44]. Here, the number of posi-
tive results Y;; out of N;; people sampled at location x;, i
=1,..,n and time ¢=1, 2, 3, follows a binomial
distribution

Yit|P(x;, t)~Binomial(N s, P(x;,t)),
logit(P(x;,t)) = ziuf + E(xi, t) + i,

Here &(x;,t) denotes the between-location-time ran-
dom effect at location x; and time ¢.

— T (ki 1) K (K251,

Page 6 of 16

E(xiy t) = a&(xi, t-1) + w(x;, t),

where |a| <1, and &(x; 1) follows the stationary distribu-
tion of a first-order autoregressive process, namely
N(0, 0%/(1 - a?). Wix, 1) is a spatial correlation term.
Each w(x; t) follows a zero-mean Gaussian distribution.
The w(x;,t) is temporally independent but spatially
dependent at each time t, with Matérn covariance func-
tion. u;; denotes the unstructured random effect and are
assumed to be independent zero-mean Gaussian distrib-
uted with precision 7,,.

Variable selection and model development

We followed a model selection procedure to identify an
optimal suite of covariates to include in the fixed effects
part of the geostatistical models. In order to reduce any
potential collinearity and confounding effects, we first
grouped the variables and use a formal model selection
criterion to select one variable within each of the groups
(Additional file 2: Table S4). Continuous variables with
an absolute value of correlation coefficient higher than
0.8, were part of the same group. Land cover categories
formed another group. Within each group, we investi-
gated the relationship between infection prevalence and
each potential explanatory variable by fitting univariate
generalized linear models relating the logit of infection
to each of the variables (Additional file 2: Table S5). We
compared the univariate models in terms of the Akaike
Information Criterion (AIC) and selected the variables
which had the lowest AIC in the univariate analysis. AIC
is defined as

AIC = —21(9) + 2k,

where l(é

k is the number of parameters. After that, we explored
further simplification of the model by backward elimin-
ation of selected variables until it was no longer possible
to reduce AIC by elimination of any of the remaining
variables.

The age group (either below or above 15 years of age)
of individuals studied on the prevalence surveys was
considered at every step of the modelling process. In
addition, population density was considered for the pe-
riods at which the surveys were undertaken. Since ICT-
based data were available for surveys conducted from
1990 onwards, estimates of population density at 2000
were used. For mf data, in order to take into account
temporal changes in population density, gridded maps of
population density at 1960, 1980 and 2000 were used ac-
cordingly with the period of survey (1950-1969, 1970—
1989, 1990—onwards).

) is the maximum log-likelihood function and
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The selection of covariates at this stage in the overall
model-fitting process ignores spatial and temporal cor-
relation, and as a result is likely to over-state the statis-
tical significance of covariate effects. In the final stage of
the model-fitting process we re-assess the covariate ef-
fects and their significance within a spatial mixed model
for the ICT data and a spatiotemporal mixed model for
the Mf data that take into account the spatial and spatio-
temporal correlation, respectively.

Model validation

We assessed the predictive ability of the model using a
leave-one-out cross-validation procedure. In this ap-
proach, a single observation is retained as the validation
data, and the spatial model is fitted to the remaining
data. Then, the observation in the validation data is pre-
dicted using the fitted model. The validation data needs
to spatially represent the whole region where the preva-
lence is predicted. Therefore, instead of repeating the
cross-validation procedure using each observation once
as the validation data, we used each of the locations of a
spatially representative sample of the prediction surface.
To obtain a valid data set, 20 % of the observations were
sampled without replacement where each observation
had a probability of selection proportional to the area of
the Thiessen polygon surrounding its location, that is,
the area closest to the location relative to the surround-
ing points.

The performance of the model was assessed by com-
paring the observed and the predicted prevalences at
each location, and by calculating the coverage probabil-
ities of 95 % confidence interval (CI), that is, the propor-
tion of times that the observed prevalence rates are
within 95 % ClIs. Specifically, we computed the correl-
ation between the predicted and the observed preva-
lences, the mean prediction error (ME) defined as

ME = lEm:(p* (xi)-p(xi)),

m i=1

and the mean absolute error (MAE) defined as
1 & N
MAE = Jp* (x)-p(x)]
i=1

where m is the number of observations in the validation
data, p*(x;) is the predicted prevalence, and p(x;) is the
observed prevalence at location x;, i=1, ..., m.

Implementation and spatial prediction

The models were fitted using the Integrated Nested La-
place Approximation (INLA) [45, 46] and the Stochastic
Partial Differential Equation (SPDE) [47] approaches.
INLA is a computationally less-intensive alternative to
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MCMC designed to perform fast Bayesian inference on
a large class of latent Gaussian models. By using a com-
bination of analytical approximation and numerical inte-
gration, INLA allows to fit models represented as
follows,

<Yi|Sa 6>~p<Yi|}7i7 6>a

W, = Zcij5j7
j

(816)~N (0,Q(6)™),
(G)NP(B)v

where Y denotes the observation variable that assume in-
dependence conditional on some underlying latent
Gaussian field S and a vector of hyperparameters 6, and
7 is a linear predictor based on known covariate values
c; The analysis of spatial point process data is possible
by combining INLA and the SPDE approach. This con-
sists in representing the continuously indexed Gaussian
field S(x), as a discretely indexed Gaussian Markov ran-
dom field (GMRF) by means of a basis function repre-
sentation defined on a triangulation of the domain of
interest. Thus,

S(x) =

Mo

Wg (x)sg,
g=1

where G is the number of vertices in the triangulation,
¥o(-) are piecewise polynomial basis functions on each
triangle, and {S,} are zero-mean Gaussian distributed
weights. The INLA and SPDE approaches are easily ap-
plied thanks to their implementation in the R-INLA
software package [5].

We assigned a flat improper prior for the intercept, /3,

~N (O, TEOI) with 754 = 0, and independent vague Gauss-

ian priors with fixed precision for all other components
of the fixed effects, f3;~N(0,1/0.001), i=1,...p. The
smoothness parameter v was considered fixed to 1 im-
plying a continuous domain Markov field. In the spatial
model, the vector of weights S=(S;,..,Sg)" is assigned a
Gaussian distribution, S~N(0, Q" ') where Q is a sparse
precision matrix depending on the Matérn covariance
function parameter x and variance o”. In the spatio-
temporal model, for = (&}, ..., &,) ", we use a Gaussian
prior with zero mean and precision matrix depending
on the autocorrelation hyperparameter @, k and o,
To complete the models, we assign 7, a vague
Gamma prior.

The model output provided the posterior distribution
for each of the model parameters. We summarized these
distributions to obtain the posterior mean and 95 % CI
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of the fixed effects and hyperparameters. Predictions of
infection prevalence were provided at a spatial resolution
of 10 km. Maps showing the predicted LF prevalence as
well as its uncertainty were generated by summarizing
the posterior distributions of the prevalence obtained at
each of the prediction locations. Specifically, the pre-
dicted prevalence was represented as the posterior mean,
and its uncertainty was represented using the 95 % CI.
Predictions were standardized to provide estimates for
entire communities (children and adults combined) and
for the period 2000-onwards.

Mathematical modelling of the intensity of LF
transmission

The prevalence of LF infection provides a useful metric
to guide the planning of control, but provides limited
insight to the dynamics of transmission. Instead the in-
tensity of infection transmission is best quantified by the
basic reproduction number, Ry, which for macroparasites
such as LF can be defined as the average number of fe-
male offspring per adult female worm surviving to
reproduction (in the absence of density-dependence i.e.
phenomena such as host immunity or worm mating
probability, which accelerate or curtail the production of
parasite life stages) [48]. Existing analytic expressions for
Ry for LF, and helminths with similar natural history
such as onchocerciasis, are defined in terms of average
worm burden or microfilarial load in a community [49—
51], yet the majority of LF studies only present data on
the prevalence of infection. In the framework published
by Gambhir et al. a simple, differential equation trans-
mission model of LF is used to estimate R, for a given
prevalence value [6]. This model assumes various
density-dependent functions which alter the rates of
transition between state variables in the model (for ex-
ample, the rate of parasite establishment and rate of
parasite fecundity). The model parameter prior distribu-
tions were defined using data from the literature and
parameter posteriors were found by fitting to baseline
mf prevalence data from low, moderate and high trans-
mission settings in Tanzania [52] — settings which are
representative of much of SSA.

For a setting with a particular endemic prevalence,
there is an underlying bite rate and force of infection
which leads to this endemic equilibrium. This param-
eter contributes to Ry (as explained in detail below),
but can only be calculated indirectly through the
method described in detail by Gambhir et al. [53] and
outlined here.

The first stage in estimating Ry is to calculate the ef-
fective reproduction number, Ry in terms of the con-
stant terms in the mathematical model and the density-
dependent functions of the state variables. The effective
reproductive number, Ry is equal to the basic
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reproductive number when a parasite is newly intro-
duced to a population, but as parasites become estab-
lished in the population, density dependent effects, such
a density dependent fecundity, can both limit and facili-
tate transmission, increasing or decreasing Reg. When
the system is at equilibrium, the effective reproductive
number is one (the number of parasites is neither in-
creasing nor decreasing) and the parasite load in the
population is at its equilibrium value. Therefore, we
want to calculate the value of the biting rate parameters
for which this expression equals 1 for a particular popu-
lation parasite load. The expression for R is an implicit
expression which cannot be solved analytically, and
therefore has to be solved numerically for particular set-
tings using the following method. When the function
R is plotted against a population state variable (such as
mf prevalence or community mf load), the resulting plot
increases with parasite density in the population for low
levels of parasite load, but for large levels of parasite
load in the host population density dependent processes
decrease R.q, leading to a “humped” function (Fig. 1 of
Gambhir et al. [53]), i.e. as mf load (or prevalence) is
varied, the function rises or falls corresponding to in-
creasing or decreasing LF transmission. This humped
function has a maximum. When this peak value of R is
more than 1, the effective reproduction number inter-
sects the R.g=1 line twice, meaning that there are two
equilibria [53]. The higher of these is the stable endemic
equilibrium, and the lower is an unstable extinction
‘breakpoint’ [54]. Therefore in the absence of treatment,
we assume that the higher point represents LF prevalence
at stable endemic equilibrium (i.e. pre-intervention). Spe-
cifically, in order to fit the R.g function to the mf preva-
lence data, so that its upper equilibrium corresponds to
the observed endemic prevalence value, we alter the
mosquito-human biting rate parameter — the rate at
which humans are bitten by mosquitoes — until this cor-
respondence occurs. The model parameter values denot-
ing a given endemic prevalence value, are used in
Gambhir et al.,, equation 6 [53] to estimate the value of Ry:

o V105005 (0)67.4(0)
0 udo

where A, a and S are the ‘immigration’ rates of each of
the life stages (adult worms, microfilariae, and L3 infect-
ive larvae respectively; A is a composite parameter, in-
corporating the mosquito-human biting rate which is
estimated using the methodology describe above; u, &
and o are the death rates of each of the life stages re-
spectively; and  fi(1), o(W), 5(W), fo(M) represent the
modifying density-dependent functions acting on each of
the respective parasite life-stage intensities (W, the num-
ber of adult worms per definitive host, M, the mf load
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per host, refer to parasite life stages within the definitive
host population, whereas the L3 infective larval load per
mosquito (larvae develop through L1 and L2 stages but
only become infective once they reach the L3 stage), L,
refers to the parasite life-stage within the vector host.
The host immunity variable, /, increases in magnitude at
a rate equal to the adult worm burden but can also
decay over time, allowing the model to capture the wan-
ing of immunity). Note that for R, host immunity levels
and worm burdens are assumed to be zero as this ex-
pression calculates the number of offspring in a wholly
susceptible population. The above mathematical model
was initially fitted separately for settings where either
Anopheles or Culex species are the predominant vector,
based on the develop vector distribution maps (Fig. 3).
However, the relationship between the mf prevalence
and Ry is practically identical for Anopheles or Culex
species, as the model assumes similar mosquito life ex-
pectancy for each species, and therefore we present a
single relationship between prevalence of mf and Ry. Fi-
nally, the threshold mf prevalence value above which LF
transmission can persist, which is higher than the preva-
lence at which Ry=1 due to the density dependencies
assumed in the modelling framework [53], was
calculated.

Results

Collated survey data

The literature search identified 1224 surveys that pro-
vide data on the prevalence of mf and 3519 surveys that
provide suitable data on the prevalence of antigenaemia,
as estimated by using an ICT (Fig. 2). Most of the mf
data arose from surveys conducted between 1950
and1969 or from 1990 onwards, whereas the ICT data
were mainly collected from 2000 onwards (Table 1).
Figure 2 maps the spatial distribution of the included
mf and ICT data and shows that the majority of data
were available from east and west Africa.

Vector distribution maps
Figure 3 presents maps of the predicted distributions of
Anopheles, Culex, and Mansonia species. Anopheles
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mosquitoes of gambiae and funestus complexes are
widely distributed across sub-Saharan Africa (Fig. 3a). In
contrast, M. africana and Culex mosquitoes show a
more limited and distinct distribution: Culex mosquitoes
occur in eastern Africa, east coast of Madagascar and in
restricted areas of west Africa (Fig. 3b), whereas M.
africana occurs in west and middle Africa, and
coastal areas of east Africa and Madagascar (Fig. 3c).
A wider presence of Culex mosquitoes is predicted in
Nigeria, north-east of Cameroon and north of Angola.
Areas where the distribution of each of the major LF
mosquito vectors occur across west Africa and coastal
areas of east Africa (Fig. 3d).

Spatial prediction of LF prevalence

In the spatial model for ICT prevalence, the model se-
lection process excluded land surface temperature, slope
and distance to water bodies, while in the spatiotempo-
ral model for mf prevalence no covariates were excluded
during variable selection, as based on the AIC criterion
(Additional file 2: Table S5). The predicted prevalence of
LE, based on mf and ICT-based data, are presented in
Fig. 4a and b, respectively, along with estimates of 2.5
and 97.5 % quantiles. Overall, predicted mf prevalence is
lower than predicted ICT prevalence across sub-Saharan
Africa, not exceeding the 5 % threshold in most endemic
areas. Only a few small pockets of mf prevalence higher
than 30-40 % are predicted in east Africa, at the north
of coastal Tanzania and the southeast coast of
Madagascar. Broader areas of high mf prevalence are
predicted in west Africa; south of Mali (Sikasso region),
large central areas of Benin and north-west of Ghana
(bordering with Benin) and at the south of Abuja, the
federal capital of Nigeria.

The ICT-based model indicate large areas of high
prevalence (above 40 %) are predicted along the coast of
east Africa, from southern Kenya to central regions of
Mozambique, and the east coast of Madagascar. High
prevalences of antigenaemia are predicted across large
areas of west Africa and pockets at the north-west of the
Democratic Republic of Congo (DRC) and central
Congo. In general, lower (<5 %) estimates of ICT

Table 1 Summary of data on the prevalence of microfilaraemia (mf) and prevalence of antigenaemia, based on immuno-
chromatographic card test (ICT) by region and time period. Median and inter-quartile range (IQR) are presented

Mf prevalence

ICT prevalence

1950-1969 1970-1989 1990-onwards 1990-onwards
Region N Median (IQR) N Median (IQR) N Median (IQR) N Median (IQR)
Eastern 46 14.1 (2.6-34.6) 109 15.8 (4.6-30.2) 137 11.5 (2.8-21.6) 2002 0 (0-1)
Middle 21 0(0-2.7) 38 0 (0-0) 31 1(0-12) 564 1(0-55)
Northern 3 22 (0-26.8) 1 10 - - - -
Western 304 6.8 (1.2-21.7) 190 73 (2-15.9) 265 6.3 (1.2-15.1) 629 6 (0-26)
Total 374 7.1 (1.1-22) 338 8.1 (0.8-18.9) 433 6.5 (1.2-17) 3195 0 (0-4.8)
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Fig. 4 Predicted geographical distribution of the prevalence of a microfilaraemia and b antigenaemia, based on a Bayesian geostatistical
modelling approach for the period 1990-onwards and before the implementation of large-scale interventions. Point estimates (based on posterior
median) together with lower (2.5 %) and upper (97.5 %) percentiles are presented

prevalence are predicted in inland areas of east Africa
(Ethiopia, Rwanda, Burundi, central and south of Uganda)
and middle Africa (southern and central DRC).

Validation of the spatiotemporal model for mf
prevalence was based on 86 locations and yielded a
correlation coefficient between predicted and observed
values of 0.69 and a mean error of 1.89 % - this indi-
cates that, on average, the model predictions overesti-
mate the observed prevalence by 1.89 %. The mean
absolute error, which illustrates the average magnitude
of the prediction errors, was 4.64 % and the percent-
age of locations from the sample with observed

prevalence falling in the 95 % CI was 7093 %
(Table 2). Validation of the spatial model for ICT-
based prevalence was based on 639 locations and re-
vealed a correlation coefficient of 0.86, mean error of
0.06 %, and mean absolute error of 6.51 %. The per-
centage of locations from the sample with observed
prevalence falling in the 95 % CI was 52.83 % - this
low percentage was due to the fact that intervals do
not cover the actual values which are observed in lo-
cations where prevalence is 0. The coverage percent-
age increased to 77.49 % if we approximated by O the
interval lower limits which are lower than 0.01 %.
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Table 2 Validation statistics for spatio-temporal model for mf prevalence and spatial model for ICT-based prevalence

Model Correlation Mean Error Mean Absolute Error Coverage percentage of 95 % Cl
mf 0.69 1.89 % 4.64 % 7093 %
ICT 0.86 0.06 % 651 % 52.83 %°, 77.49 %°

For the ICT data, coverage percentages are presented for the actual intervals® and for intervals where lower limits turned out lower than 0.01 % those were

replaced by 0P

Predictive distribution of R,

The relationship between the prevalence of mf and Ry is
presented in Fig. 5. Figure 6 shows a predicted map of
Ry based on mf prevalence. The estimated R, values vary
from 2.7 to 30 across sub-Saharan Africa. The areas of
low and moderate intensity of LF transmission (R, value
lower than 10) predominate in all endemic areas and the
highest intensity is predicted in restricted areas of west
Africa (Nigeria, Ghana and Burkina Faso), along the
coast of east Africa, from north-east of Kenya to south-
ern Mozambique and larger areas in central and eastern
Madagascar.

Discussion

Here we present maps of the distribution of LF microfi-
laraemia and antigenaemia across SSA under a pre-
intervention scenario, based on Bayesian geostatistical
modelling. We also present the first attempt to map geo-
graphical variation in Ry, which reflects differential risks
of recrudescence and can be used to inform the design
of post-MDA surveillance activities.

The geostatistical maps presented here indicate lower
and more focal patterns of mf compared patterns of
antigenaemia. The maps also suggest a more restricted
distribution of mf compared to previous mapping work
by Slater and Michael [11] which suggested higher levels
of infection overall and the occurrence of transmission

where LF has never or only occasionally been reported.
For example, the Slater and Michael model predict mf
prevalences above 75 % in Sudan and South Sudan-
Ethiopia border, whereas our predicted prevalence <10 %
and recent surveys using ICTs found low levels of anti-
genaemia [55—57]. Our predicted distribution of antige-
naemia is also consistent with previous country-level
models [8, 58—60]. Uncertainty in predictions based on
mf prevalence data is greatest for central Africa, primar-
ily driven by a scarcity of mf surveys conducted since
1990. This lack of contemporary data is compensated in
part by the inclusion of older data and a temporal effect
in the final model.

Here we also present the first composite map of the
distribution of dominant LF vector species in SSA.
Anopheles mosquitoes, mostly those species belonging to
the gambiae and funestus complexes, are considered the
major LF vector in SSA, particularly in rural settings
where LF is more prevalent [33]. Mosquitoes of the Cu.
pipiens complex, especially Cx. quinquefasciatus, are
suggested to be important vector of LF in eastern Africa,
especially in urban and peri-urban settings [61, 62]. In
west Africa, however, it is widely accepted that Anoph-
eles species are the main vectors since Culex mosqui-
toes, despite being ubiquitous and potential vectors in
the region [63], are considered to transmit LF poorly
[64—66]. Interestingly, the areas where at least two

-
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Fig. 5 The modelled relationship between prevalence of microfilaraemia (mf) and the reproduction number (Ry). Also shown is the distribution of
observed mf prevalence (1990-onwards) included in the mapping analysis (n =434 surveys)

30 40 50




Moraga et al. Parasites & Vectors (2015) 8:560

Page 12 of 16

P71-82
[83-91
[l92-101
[1102-117
[ 18-148
B 14730

0 1,000 2,000 km
| |

| Uncertainty

.High:1

l{l.ow:o

and rescaling to a 0-1 scale

Fig. 6 Geographical distribution of lymphatic filariasis basic reproductive number (a) and uncertainty on Ry estimates (b) prior to the large-scale
implementation of interventions. Uncertainty was calculated as the range of the 95 % confidence interval in predicted R, estimates for each pixel

vector genera occur coincide with areas showing the
highest estimates of antigenaemia and microfilaraemia.
This apparent concordance makes us think that a more
efficient and higher intensity of LF transmission is ex-
pected where multiple potential LF vectors occur.

Strengths and challenges in LF mapping

The presented work has a number of strengths and limi-
tations. Our use of Bayesian model-based geostatistics
provides a flexible and robust approach for spatial mod-
elling that takes into account the spatial dependence
structure of the data and provides a formal expression of
uncertainty in the prediction estimates [67]. Tradition-
ally, Bayesian predictive inference has been implemented
via MCMC methods which make inference tractable for
complex models but present problems in terms of con-
vergence and computational time [68]. We overcome
these issues by using the INLA approach [46] which is a
computationally effective alternative to MCMC designed
for latent Gaussian models. By using a combination of
analytical approximation and numerical integration,
INLA produces fast and accurate approximations to

posterior distributions. The analysis of spatial point data
is possible by combining INLA and SPDE approaches
[47], whereby a continuously indexed Gaussian field is
represented as a discretely indexed Gaussian Markov
random field (GMRF) using a basis function representa-
tion defined on a triangulation of the domain of interest.

Intensity of LF transmission is influenced by a com-
plexity of factors, yet our models incorporated only en-
vironmental and demographic drivers of LF transmission
in pre-intervention scenarios. The models do not in-
corporate socioeconomic status [69-72] or the coverage
of LF interventions, including MDA and vector control,
which will influence transmission, especially once inter-
ventions have been scaled up. The role of vector control
measures in modifying patterns of LF transmission has
recently been highlighted in The Gambia where the
large-scale distribution of bed nets for malaria control
has, in part, contributed to the elimination of LF in the
country [73]. In coastal Kenya, large-scale distribution of
ITNs for malaria control has been proposed to sustain
reduction of LF infection levels, even after MDA is inter-
rupted [74]. An increasing number of studies have
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demonstrated the impact of repeated rounds of albenda-
zole and ivermectin alter patterns of transmission [75]
and over time dramatically reduce transmission [76, 77].
A methodological challenge for incorporating intervention-
related factors into future models is that much of the
available data are presented at an area-level. Bayesian hier-
archical models have been used to address this problem
by providing a natural way to combine data from different
sources taking into account the different uncertainties
[78-80]. However, such models have three important limi-
tations. First, they rely on MCMC methods for Bayesian
inference which are computationally intensive and may
become unfeasible for large datasets. Second, few ap-
proaches for temporally misaligned data exist and they do
not account for correlation in spatial random effects over
time. Third, correlation studies use the predictions from
several models as covariates in regression models and as
such predictions contain error as the predicted values do
not equal the true exposures. These important issues indi-
cate that there is considerable scope to develop new
model-based methods for the analysis of misaligned data.

The vector distribution maps are also not without
their limitations. First, different methodologies were
used for different genera: maps for Culex and Mansonia
were constructed by using maximum entropy ecological
niche (MaxEnt) modelling [40]; and boosted regression
tree (BRT) modelling was used to modelling environ-
mental suitability for Anopheles mosquitoes [38]. Sec-
ond, there is a lack of data for some areas of central and
northeast Africa, introducing imprecision into maps.

Finally, the presented map of RO is based on a
mathematical model of transmission dynamics [53].
The relationship between prevalence and RO is non-
linear and there are very high values of RO for mod-
erate to high levels of prevalence, suggesting great
challenges for control. However, it should be remem-
bered that these values are for a population when
there is no immunity, unlike endemic communities,
and that we do not yet have a reliable estimate for
how long this immunity will last. Therefore the high
values of RO may not represent such a large challenge
for control in the short term. For recrudescence or
re-emergence however, they may represent a higher
risk. The model uses prevalence to estimate transmis-
sion intensity because of the availability of prevalence
data. Alternative measures of transmission intensity
include annual transmission potential and annual bit-
ing rates [81], but these are very rarely measured.
Ideally, the model would have been parameterised
with data from a range of transmission settings, but
there are a lack of detailed data and we recognise
that transmission dynamics will vary in settings other
than Tanzania from where data were used to param-
eterise the model.
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Mapping LF to guide control and surveillance

The developed map of Ry can be used to identify areas
of higher transmission intensity where additional control
efforts may be required to achieve the elimination of LF
infection (i.e. implementing vector control or extending
MDA rounds). Our model predicts a marked geograph-
ical heterogeneity in the intensity of transmission in
SSA. Current MDA strategies do not account for this
spatial heterogeneity, and therefore coverage targets and
implementation schemes are common for all endemic
areas [3]. The precise level and duration of treatments to
achieve LF elimination in different endemic regions re-
mains unknown [82], such that it is difficult to decide
when to stop ongoing MDA interventions [51]. Indeed,
although some model predictions suggest that LF trans-
mission can be interrupted by annual MDA alone, it is
not clear that this can be achieved everywhere with 4-6
yearly rounds of MDA [83].

In recent years, some experts have suggested that
current control programmes based on standard MDA
schemes should give rise to more tailored control
interventions adapted to the local specificities of
LF transmission [6, 14, 84]. Our maps provide
programme managers with a thorough picture of the
initial level of LF endemicity and potential geograph-
ical variation in the intensity of transmission prior to
the implementation of large-scale interventions. The
Rp maps also provide insight into (i) the risk of per-
sistent transmission despite repeated MDA and high-
light that pockets of residual transmission may occur
in settings where overall transmission has declined
[77], and (ii) the possibility of recrudescence, espe-
cially where transmission is highly heterogeneous
[85]. Careful use of the developed maps can guide de-
cision makers and ultimately programme managers
first to define the most appropriate control strategy
and adapt it to local conditions of transmission and
second to identify areas which may require special at-
tention during monitoring and surveillance stages.
How to integrate an understanding of the spatial het-
erogeneity of LF into the design of optimal LF sur-
veillance is the subject of ongoing work.

Conclusions

The transmission of LF is spatially heterogeneous and it is
essential that intervention, monitoring and surveillance
strategies take this variation into account. The developed
maps of mf, antigenaemia and R, are intended to contrib-
ute to this effort. In particular, our maps can help guide
control programmes in future LF surveillance activities by
identifying areas of higher intensity of transmission that
may require enhanced and tailored interventions and by
setting a benchmark for evaluating the impact of scaling
up of LF interventions on the pathway to LF elimination.
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Country maps displaying the results of this modelling
work will be available at the website of the Global Atlas of
Helminth Infection project (www.thiswormyworld.org).
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