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Abstract

pipiens pallens and C. inatomii caught from the wild.

co-infected with two different Plasmodium lineages.

competence

Background: Malaria infection in mosquitoes is traditionally detected by microscopic examination for Plasmodium
oocysts and sporozoites. Although PCR is now widely used, the presence of parasite DNA in a mosquito does not
prove that sporogony is achieved. Thus, detection of sporozoites by microscopy is still required to definitively
identify vector mosquitoes. The aim of this study was to confirm sporogony of avian Plasmodium spp. in Culex

Findings: Mosquitoes collected at two sites in Japan were dissected and examined by microscopy for Plasmodium
oocysts and sporozoites. DNA was extracted from the midgut and salivary gland of infected mosquitoes, and the
infecting Plasmodium species was identified by sequencing 478 bp of cytochrome b. Oocysts, or both oocysts and
sporozoites, were found in 3.94 and 0.46 % of C. p. pallens and C. inatomii, respectively. Four (CXPIPO9, GRW4,
GRW11 and SGST) and three cytochrome b lineages (CXINAOT, CXINAO2 and CXQUIO1) were confirmed to achieve
sporogony in C. p. pallens and C. inatomii, respectively. One mosquito each of C. p. pallens and C. inatomii was

Conclusions: These findings demonstrate that C. p. pallens and C. inatomii are natural vectors of four and three
lineages of avian Plasmodium spp., respectively. The data indicate that a systematic procedure combining
microscopy and PCR is a feasible and reliable approach to identify natural vectors of wildlife malaria.
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Findings

Background

Malaria parasitization in mosquitoes is traditionally de-
tected by dissection and microscopic examination for
oocysts in the midgut and sporozoites in the salivary
gland [1-3]. However, many recent field studies have re-
lied on PCR instead [4—6]. Nevertheless, detection of
Plasmodium DNA in a blood-sucking insect does not
prove that the insect acts as vector [7, 8], as parasites
are eliminated in a refractory insect. Thus, while PCR is
sensitive enough to detect DNA from degraded para-
sites, microscopic detection of sporozoites remains
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necessary to verify sporogony and to identify competent
vectors. On the other hand, oocysts and sporozoites vary
little in morphology across Plasmodium species, and are
impossible to identify to species or lineage by micros-
copy [9, 10]. Thus, a combination of dissection and PCR
is required [5, 10, 11]. Unfortunately, this combined ap-
proach has not been adopted, except in studies of hu-
man malaria parasites.

The aim of this study was to use this combined ap-
proach to definitively establish whether Culex pipiens
pallens and C. inatomii are competent vectors for avian
malaria. Although these mosquitoes have been suggested
in PCR-based studies to be primary natural vectors of
avian malaria in Japan [11-13], sporogony has not been
confirmed. Our results suggest that a systematic proced-
ure combining dissection and PCR is a reliable approach
to identify natural vectors of wildlife malaria.
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Methods

Mosquitoes were collected in Rinshi-no-mori park (35°
37" N, 139°42" E) in Tokyo and Sakata wetland (37° 49’
N, 138° 53" E) in Niigata, Japan, where transmission of
multiple avian malaria parasites has been detected by
PCR [11, 13]. The study sites and the ecological differ-
ences between C. p. pallens and C. inatomii are de-
scribed in greater detail in our previous publications [11,
13]. In Rinshi-no-mori park, mosquitoes were collected
once or twice a week from May to September in 2012
and from May to June in 2013, using a sweep net 36 cm
in diameter as previously described [13]. In Sakata wet-
land, mosquitoes were collected on 2-3 July 2013 and
on 30 June and 1 July 2014 using ten battery-operated
suction traps (Inokuchi-Tekko, Nagasaki, Japan) baited
with dry ice. The traps are similar to devices designed by
the Centers for Disease Control and Prevention. Mos-
quitoes collected from the field were kept alive until dis-
section at National Institute of Infectious Diseases in
Tokyo and Tottori University in Tottori.

Mosquitoes were immobilized by chilling or by chloro-
form, dissected according to WHO protocols [1], and
examined under a microscope. The midgut was first ex-
amined for oocysts, and, when oocysts were present, the
midgut and a part of the salivary gland were transferred
to a 1.5 ml tube for DNA extraction. In addition, a
smear of the salivary gland was stained by Giemsa and
carefully examined for sporozoites.

DNA was extracted using REDExtract-N-Amp PCR
Reaction Kit (Sigma Chemical Co., St. Louis, MO). A
478 bp fragment of Plasmodium cytochrome b was amp-
lified by nested PCR according to Waldenstrom et al.
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[14], with slight modification [7]. Amplification products
were purified with QIAEX II-Gel Extraction Kit (QIA-
GEN), and sequenced in both directions on an ABI
PRISM 3130 Genetic Analyzer (Applied Biosystems),
using ABI PRISM BigDye Terminator Cycle Sequencing
Kit version 1.1 (Applied Biosystems, Foster City, CA,
USA). Sequences were analyzed in GENETYX-WIN ver.
11, and compared to published sequences by a BLASTn
search against the NCBI GenBank database and MalAvi
database [15]. Sequences from one specimen each of C.
p. pallens and C. inatomii contained a few doublet
peaks. The electropherograms of these sequences were
carefully inspected by eye, and were unambiguously re-
solved into known Plasmodium lineages.

Results and discussion

Plasmodium spp. from mosquitoes in Rinshi-no-mori park
Five mosquito species were collected from Rinshi-no-
mori park. Culex p. pallens was the most prevalent (n =
533 females), followed by C. sasai (n=19), Lutzia vorax
(n=16), Orthopodomyia anopheloides (n=9), and C.
rubithoracis (n=5). All mosquitoes were dissected, and
only C. p. pallens was found to be infected with malaria
parasites.

Oocysts were observed in the midgut of 21 (3.94 %) C.
p. pallens. Motile sporozoites were found in the salivary
gland of 11 of these specimens (Table 1 and Fig. 1). The
overall sporozoite rate (i. e., the proportion of mosqui-
toes with sporozoites) was 2.06 %. This rate is signifi-
cantly lower (Fisher’s exact test, p=0.001) than the
8.31 % of samples that tested positive for Plasmodium
DNA in a previous study [13]. All infected mosquitoes

Table 1 Avian malaria parasites found from Culex pipiens pallens in Rinshi-no-mori park, Tokyo

Plasmodium lineage Previous PCR study [2]

This study: dissection and PCR

Vector status

(N=1252) (N=533)

DNA Infection rate (%) Oocysts Infection rate (%) Oocysts & sporozoites Sporozoite rate (%)
CXPIPO9 43 343 6 1.13 3 0.56 Competent
SGS1-P. relictum 30 240 4 0.75 5 0.94 Competent
PADOMO02 16 1.28 Unknown
GRW11-P. relictum 3 0.24 1% 0.19 Competent
CXPIP11 1 0.08 Unknown
CXPIP12 4 032 Unknown
CXPIP13 1 0.08 Unknown
CXPIP14 1 0.08 Unknown
GALLUSO1- P. gallinaceum 4 032 Not competent [2, 30]
SYATO05-P. vaughani 1 0.08 Unknown
GRWA4-P. relictum 3% 0.56 Competent
Total 104 831 10 1.87 11 2.06

*One C. p. pallens specimen was co-infected with CXQUIOT and GRW4-P. relictum. GenBank accession numbers: CXPIP09 [AB458850], SGS1-P. relictum [AF495571],
PADOMO02 [DQ058612], GRW11- P. relictum [AY831748], CXPIP11 [AB477121], CXPIP12 [AB477122], CXPIP13 [AB477126], CXPIP14 [AB477125], GALLUSO1-P. gallinaceum

[AY099029], SYATO5 [DQ847271] and GRWA4-P. relictum [AF254975]
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Fig. 1 Oocysts (a, b) and Giemsa-stained sporozoites (c, d) of avian malaria parasites from Culex pipiens pallens and C. inatomii. a—c: CXINAO2 [GanBank:
AB920777] from C. inatomii, d: SGS1-Plasmodium relictum [AF495571] from C. p. pallens. Scale bar,100 um (@), 20 um (b), and 10 um (c, d)

also tested positive by PCR, and four cytochrome b line-
ages of avian Plasmodium spp. (CXPIP09, GRW4,
GRW11 and SGS1) were identified (Table 1). CXPIP09
and SGS1 were the most prevalent, and accounted for
>85 % of infections. The dominance of CXPIP09 and
SGS1 was consistent with PCR-based studies [13]. How-
ever, we did not detect PADOMO2 (Table 1), perhaps
due to the small sample size or the inability of C. p. pal-
lens to support its development. GRW4 and GRW11
that had been previously absent and detected at low fre-
quency, respectively, were found to complete sporogony
in C. p. pallens (Table 1). Notably, one specimen was co-
infected with two different lineages of P. relictum,
GRW4 and GRW11.

Of the four lineages that achieve sporogony in C. p.
pallens, GRW4, GRW11 and SGS1 belong to the same
morphological species, Plasmodium relictum [16—18],
and are the most widely distributed [15, 19]. For ex-
ample, SGS1 was found in 62 avian species from Africa,
Asia, Europe and Oceania. On the other hand, CXPIP09
has been found exclusively in Japan [15], although its
avian hosts are widespread in eastern Asia, such as Cor-
vus macrorhynchos, Passer montanus (2], Lanius buceph-
alus (KS Kim unpublished data), Cyanopica cyana,
Parus minor, Treron sieboldii, and Zosterops japonicus
(Koichi Murata personal communication). The reason
for the limited distribution of CXPIP09 is unknown, as
its natural vector, C. p. pallens, is also found in the same

Table 2 Avian malaria parasites found from Culex inatomii in Sakata wetland, Niigata

Plasmodium lineage Previous PCR study (3] This study: dissection and PCR Vector
(N=7519) (N=1314) status
DNA Infection rate (%) Oocysts & sporozoites Sporozoite rate (%)
cxQuion 15 0.20 2% 0.15 Competent
CXINAOT 9 0.12 1 0.08 Competent
CXPIP10 8 0.11 Unknown
PADOMO02 3 0.04 Unknown
CXPIPO9 1 0.01 Unknown
SYBOR02 1 0.01 Unknown
GALLUSO1-P. gallinaceum 1 0.01 Unknown
CXINAO2 4** 0.30 Competent
Total 38 0.51 6 0.46

**One C. inatomii specimen was co-infected with CXQUIOT and CXINA02. GenBank accession numbers: CXQUIO1 [AB308051], CXINAO1 [AB690267], CXPIP10
[AB477128], PADOMO2 [DQ058612], CXPIP09 [AB474376], SYBOR02 [DQ368392] and CXINAO2 [AB920777]
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geographic range as the hosts [20]. Of note, field popula-
tions of a competent vector species may vary signifi-
cantly in susceptibility to the same parasite species,
depending on innate immunity and the microbiota in
the midgut [21, 22]. Therefore, specific adaptation to C.
p. pallens in Japan might have stringently limited the
distribution of CXPIP09.

Plasmodium spp. from mosquitoes in Sakata wetland

In Sakata wetland, 4293 female C. inatomii were col-
lected, along with C. p. pallens (n=459), C. orientalis
(n=10) and C. tritaeniorhynchus (n=6). Of 1314 C.
inatomii dissected, six specimens had oocysts and
sporozoites (Table 2 and Fig. 1). The sporozoite rate
(0.46 %) was similar (Fisher’s exact test, p>0.05) to
the frequency of Plasmodium DNA (0.51 %) in a pre-
vious study [11]. All six specimens subsequently
tested positive by PCR, and three avian Plasmodium
lineages (CXINAO1, CXINAO2 and CXQUIO1) were
identified, with sporozoite rates ranging from 0.08 to
0.30 %. One specimen was co-infected with CXINAO02
and CXQUIOL. CXINAO2 was a novel lineage, and
was deposited in GenBank under accession number
AB920777. Two C. tritaeniorhynchus and 33 C. p.
pallens were dissected and none were infected.

The current data demonstrates for the first time that
C. inatomii is a natural vector of avian malaria. Indeed,
DNA from seven Plasmodium lineages was previously
detected in C. inatomii from Sakata (Table 2). Of these,
three lineages (CXQUIO1, CXINAO1 and CXPIP10) were
the most prevalent, and comprised >86 % of infections
in 2007-2010 [11]. Thus, sporogony of CXINAO1 and
CXQUIOL in C. inatomii was not unexpected, but the
dominance of the novel lineage CXINAO02 was. The dif-
ference in dominant lineages in mosquitoes between
now and 2007-2010 may reflect changes in the parasite
species circulating among host birds.

Unfortunately, the avian host species for CXINAOL,
CXINAO2 and CXQUIOL are presently unknown. The
spatial distribution of adult C. inatomii is restricted to
areas near larval habitats [23, 24], with flight range esti-
mated at <200 m in Sakata [25]. Culex inatomii feeds
most commonly on Acrocephalus orientalis, a summer
migratory bird that breeds in the reed fields at Sakata
[11]. Hence, A. orientalis warrants investigation as a
candidate natural host of avian malaria parasites found
in C. inatomii.

Conclusions

Microscopic confirmation of sporogony, followed by
genetic identification of infecting Plasmodium parasites,
demonstrated that C. p. pallens and C. inatomii are nat-
ural vectors of four (CXPIP09, GRW4, GRW11 and
SGS1) and three (CXINAOL, CXINAO2 and CXQUIO1)
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lineages of avian Plasmodium, respectively. Ideally,
transmission to a vertebrate host via a mosquito vector
should be experimentally demonstrated [26]. However,
such demonstration is difficult for wildlife parasites, usu-
ally because of limited availability of natural hosts and
vectors. In addition, previous studies have shown that
experimental transmission from wild mosquitoes to la-
boratory hosts (such as poultry in case of avian malaria)
is difficult to achieve as well, usually because infected
wild mosquitoes are rare and are reluctant to take blood
meals under laboratory conditions [27-29]. In light of
these, we believe that demonstration of sporogony via a
systematic procedure combining dissection and PCR is
the most feasible approach to identify natural vectors of
wildlife malaria.
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