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Abstract

Background: In the present study, we reconstructed the insulin/insulin-like growth factor 1 signalling (IIS) pathway
for Haemonchus contortus, which is one of the most important eukaryotic pathogens of livestock worldwide and is
related to the free-living nematode Caenorhabditis elegans.

Methods: We curated full-length open-reading frames from assembled transcripts, defined the complement of genes
that encode proteins involved in this pathway and then investigated the transcription profiles of these genes for all key
developmental stages of H. contortus.

Results: The core components of the IIS pathway are similar to their respective homologs in C. elegans. However, there
is considerable variation in the numbers of isoforms between H. contortus and C. elegans and an absence of AKT-2 and
DDL-2 homologs from H. contortus. Interestingly, DAF-16 has a single isoform in H. contortus compared with 12 in C.

elegans, suggesting novel functional roles in the parasitic nematode. Some IIS proteins, such as DAF-18 and SGK-1, vary

developmental processes.

in their functional domains, indicating distinct roles from their homologs in C. elegans.

Conclusions: This study paves the way for the further characterization of key signalling pathways in other
socioeconomically important parasites and should help understand the complex mechanisms involved in
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Background

Roundworms (nematodes) are one of the most diverse
groups of organisms on the planet. Some are free-living,
and many are parasitic, causing substantial disease and so-
cioeconomic problems globally. For example, Haemonchus
contortus (the barber’s pole worm; order Strongylida) is
one of the most destructive parasitic nematodes of live-
stock animals (small ruminants, including sheep and goats)
due to its high pathogenicity and widespread occurrence
around the world [1]. This nematode feeds on blood from
capillaries in the stomach (abomasum) wall, and causes
haemorrhagic gastritis, anaemia, oedema and associated
complications, often leading to the death of severely af-
fected animals. H. contortus is transmitted orally from con-
taminated pasture to the host through a direct life cycle
involving three free-living larval stages, of which the
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infective third larval stage (iL3) is ingested [2]. After a his-
totropic phase in the host animal, the larvae develop to the
fourth stage (L4) and then to adults, which both feed on
blood and cause pathogenic effects in the host animal.

The recent characterization of transcriptomes and draft
genomes of H. contortus [3, 4] provides a solid basis for
future studies of its developmental and reproductive biol-
ogy using genetic, genomic, proteomic and metabolomic
tools. However, a lack of tractable functional genomic
tools for H. contortus and related parasitic nematodes, and
an inability to maintain their complete life cycles in vitro,
hampers functional investigations of genes and gene prod-
ucts in these nematodes (cf. [5-12]). This contrasts the
situation for the free-living nematode, Caenorhabditis
elegans, the best characterized metazoan organism,
which can be readily maintained, and used to investi-
gate fundamental processes and mechanisms, such as
dauer formation [13].

Caenorhabditis elegans, which belongs to “clade V” [14],
is relatively closely related to H. contortus. Published
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information [7, 8, 15-17] indicates similarity in entry into
and exit from the “dauer state” between C. elegans and
strongylid nematodes [18]. This arrested state occurs in C.
elegans when the nematode encounters harsh environ-
mental conditions, such as starvation, crowding and/or a
high temperature [19, 20]. The dauer form can survive for
several months and then resume development to repro-
ductive adults when conditions improve [19]. Consistent
with C. elegans, H. contortus and related nematodes have
a similar third larval stage (L3), which is relatively resistant
to unfavourable conditions and does not feed because it is
encased by a cuticular sheath [2]. The “dauer hypothesis”
[18] contends that the resumption of iL3 development in
parasitic nematodes is functionally and developmentally
analogous to the exit from dauer in C. elegans, and is
regulated by similar mechanisms [13, 15, 16, 21].

Dauer development is governed by multiple signalling
pathways, including the insulin/insulin-like growth factor
1 (IGF1)-like signalling (IIS) pathway [13], which, in C.
elegans, comprises proteins such as DAF-2 (insulin-like
receptor kinase [22-24]), AGE-1 (phosphoinositide-3
(PI3) kinase [25-27]) and DAF-16 (FOXO-class transcrip-
tion factor [28-30]). In C. elegans, signalling via DAF-2
activates AKT-1/2 by phosphorylation which, in turn,
negatively regulates DAF-16, which functions as a central
mediator of multiple biological processes, such as growth,
development, reproduction, longevity, age and stress
resistance [31].

While much is known about the IIS pathway in C.
elegans (reviewed in [31]), only a few studies have ex-
plored the functions of selected parts of this pathway in
H. contortus [32—-34], and no study has yet investigated
its full composition in this parasitic nematode. There-
fore, in the present study, we (i) curated the full-length
open reading frames (ORFs) and defined the comple-
ment of genes that encode peptides/proteins involved
in IIS, (ii) studied the interactions of these genes and
(iii) examined their transcription profiles in all key de-
velopmental stages of H. contortus.

Methods

We employed data relating to a published draft genome
as well as transcriptomes of all key developmental stages
(egg, first- to fourth-stage larvae (L1, L2, L3 and L4) and
adult) and both sexes (L4 and adult) of H. contortus
(NCBI BioProject accession no. PRINA205202; [4, 35]).
This draft genome is ~ 320 Mb in size and has been pre-
dicted to encode 23,610 proteins [4].

Identification of genomic scaffolds containing genes
encoding IIS pathway components

From the complete, assembled transcriptome represent-
ing all eight stages or sexes of H. contortus [4], we iden-
tified and extracted assembled transcripts based on their
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homology matches (E-value cut-off: 107°) to all genes
encoding insulin/insulin-like growth factor 1 signalling
(IIS) proteins in C. elegans [35]. Then, we identified gen-
omic scaffolds containing regions of homology to known
IIS genes by mapping (E-value cut-off: 107) all assem-
bled transcripts using BLAT [36]. We also used IIS
genes from the H. contortus draft genome predicted pre-
viously using MAKER2 [4, 37]. Open reading frames
(ORFs) of individual assembled transcripts were inferred
using the program GeneMark-ES [38, 39]. Using the
Integrative Genomics Viewer (IGV) [40, 41], we then
visually integrated all of these data to obtain a consensus
sequence for individual coding regions.

Identification of protein domains, families and subfamilies
Identifying IIS protein genes encoded in the draft genome
allowed us to then define the complete set of full-length
transcripts. ORFs were verified and corresponding coding
regions inferred from these full-length transcripts using
OREF-finder [42]. Each predicted protein was characterized
by its primary amino acid sequence and structural
and/or functional domains, inferred using all databases
(i.e., PROSITE, HAMAP, Pfam, PRINTS, ProDom,
SMART, TIGRFAMs, PIRSF, SUPERFAMILY, CATH-
Gene3D and PANTHER) within InterProScan v.5.14.53
[43, 44]. Individual predicted proteins were classified
according to family and/or subfamily using informa-
tion in the PANTHER database v.9.0 [45, 46]. Follow-
ing a comparison of those inferred from transcripts
and genomic exons encoding IIS genes with the corre-
sponding C. elegans homologs, we were able to infer
the full complement of full-length transcripts and pro-
tein sequences.

Analysis of differential transcription

Each set of quality-filtered, paired-end RNA-seq reads
for each individual developmental stage or sex of H.
contortus was mapped to the final complement of full-
length IIS transcripts using Burrows-Wheeler Aligner
(BWA) software [47]. For each stage/sex, the numbers
of reads that mapped to individual transcripts were
established using the SAM tools algorithm [48]. The re-
sultant read counts per transcript per developmental stage
were used as input data for DESeq2 and edgeR [49, 50].
Differential transcription was calculated by pairwise com-
parison of all free-living (egg, L1, L2 and L3) and parasitic
(L4 and adult) stages. Genes were recorded as differen-
tially transcribed, using edgeR-calculated common and
gene-wise dispersion factors, if the log, fold change
(log, FC) between free-living and parasitic stages com-
pared with the normalised read count data was > 2, with
a false discovery rate (FDR) of < 0.05. A heat map (repre-
senting mapped reads) was produced using the heatmap.2
function in the gplots package in R [51].
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Results

Identification and characterization of IIS signalling protein
genes

From the complete, assembled transcriptome of H.
contortus, we identified and extracted 3792 assembled
transcripts based on their homology matches (E-value
cut-off: 107™°) to the 45 IIS protein genes, and then
located the regions in genomic scaffolds to which these
assembled transcripts mapped. The manual curation of
the matching genomic and transcriptomic data for H.
contortus identified 27 of 41 IIS gene homologs, and 4
of 40 insulin-like peptide (ILP) gene homologs using
C. elegans genes as references.

Four, 18 and 9 of the 31 full-length transcripts encoded
proteins involved in the upstream, conserved and down-
stream components of the IIS pathway, respectively. The
features of these 31 predicted proteins (including lengths
and pairwise sequence identities to their C. elegans ho-
mologs) are summarized in Table 1. Specifically, the
numbers of isoforms of the predicted IIS genes varied
from those of homologs encoded in C. elegans. Genes,
such as the insulin-like peptide (ins-1), phosphoinosi-
tide 3-kinase (age-1/pi3k), heat-shock factor (hsf-1) and
serine/threonine phosphatase (pptr-1), each have two or
three isoforms in H. contortus, compared with only one
molecule in C. elegans. In contrast, genes, such as those en-
coding the insulin receptor (daf-2), the phosphoinositide-
dependent kinase (pdk-1), the 14-3-3 protein (par-5 and
fit-2), the Nrf family transcription factor (skn-1) and the
FoxO family transcription factor (daf-16), express single
transcripts in H. contortus compared with 2 to 12 isoforms
in C. elegans (Table 1). Individual predicted protein se-
quences ranged in length from 70 to 1455 amino acids,
comparable with their corresponding C. elegans homologs,
and these sequences shared 14.9 % to 84.3 % identity to
their C. elegans homologs upon pairwise comparison
(Table 1).

InterProScan analysis allowed the classification of pre-
dicted IIS proteins, based on domains and protein signa-
tures (Additional file 1: Figure S1). The proteins predicted
for H. contortus (i.e., Hc-PDK-1, -PPTR-1, ~AKT-1, -DAF-
16, —-HSB-1, -SKN-1 and -EGL-9) had the domains and
signatures that were consistent with their respective C. ele-
gans homologs. Hc-DAF-2 consisted of a protein kinase
ATP-binding region signature (PS00107), an iron-sulfur
binding domain (PS51379) and a furin-like cysteine-rich re-
gion (SM00261), which have been found in a number of
eukaryotic proteins, such as epidermal growth factor recep-
tor, endoprotease-4 and receptor tyrosine-protein kinase
(LET-23), known to be involved in signal transduction by
receptor tyrosine kinases [52—55]. Hc-DAF-18 lacked the
protein tyrosine phosphatase catalytic domain (PTPc) motif
and, instead, contained a dual-specificity phosphatase cata-
lytic domain (PF00782). The pleckstrin homology (PH)
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domain (SM00233) was not present in Hc-PDK-1. He-
PPTR-2 (protein phosphatase 2A) consisted of a unique
leucine-rich repeat variant (G3DSA: 1.25.10.10) that
represents a super-helical structure predicted to aid the
binding of large substrates [56]. In comparison to the
14-3-3 proteins FTT-2 and PAR-5 of C. elegans, which
have two protein signatures in PROSITE, the predicted
H. contortus proteins have only protein signature 1
(PS00796). PANTHER family and subfamily classifica-
tions could not be assigned to some predicted IIS pro-
teins of H. contortus, such as Hc-INS-1, Hc-DDL-1 and
Hc-PAR-5. The regulatory subunit, Hc-IST-1, which
contains the PH domain (SM00233; PS50003) belong-
ing to the PH domain-like superfamily (SSF50729) is
not present in C. elegans. The other adaptor protein,
Hc-AAP-1, also contains the SH2 (Src homology 2) do-
main (PR00401), which is a 5-element fingerprint, and
corresponds to the core structural element of the pro-
tein. The predicted Hc-SGK-1 protein consists of the
PX (phox) domain (PS50195; SSF64268), which is an
important phosphoinositide-binding module with vari-
able lipid-binding specificity [57, 58].

Transcription profiles

Significant differences in transcription were recorded
among eight stages/sexes of H. contortus for some of the
31 genes involved in the IIS pathway (Fig. 1). The
insulin-like peptide genes Hc-ins-la, —ins-1b, -ins-17
and -ins-18 were highly transcribed in L1 to L3 stages of
H. contortus, and significantly down-regulated in para-
sitic stages, particularly female L4 and adult stages. In
contrast, downstream genes, such as Hc-daf-2, —aap-1,
—ist-1, —age-la, -age-1b, -daf-18, —pdk-1 and -akt-1,
which encode IIS cytoplasmic signalling proteins, had
the highest transcription in eggs, L3s and female adults
(Fig. 1), except for Hc-sgk-1, which had limited transcrip-
tion in both egg and L3 stages in comparison to all other
stages. The 14-3-3 homologous genes, Hc-ftt-2 and Hc-
par-5, known to regulate daf-16 in C. elegans [59, 60]
were highly transcribed in all life cycle stages, while
Hc-daf-16 was highly transcribed only in the egg, L2
and L3 stages (Fig. 1). Downstream genes transcrip-
tionally regulated by daf-16 (skn-1, hsf-1, hsb-1, ddl-1
and egl-9) were transcribed at high levels in eggs, L3s
and in females of both haematophagous (i.e., L4 and
adult) stages (Fig. 1).

The 1IS signalling pathway of H. contortus

Of a total of 81 genes involved in the IIS pathway of C.
elegans [31], 31 homologs were identified in H. contor-
tus. Specifically, in H. contortus, four insulin-like peptide
(ILP) homologs of 40 in C. elegans as well as 9 of 11
downstream components of the IIS pathway were identi-
fied. However, C. elegans akt-2 and ddl-2 homologs were



Table 1 Pairwise comparisons of sequence identity (%) of proteins representing the insulin/insulin-like growth factor 1(IGF1)-like signalling pathway (lIS) between Haemonchus

contortus and Caenorhabditis elegans

Protein Scaffold Transcripts representing the IIS genes Length (aa) Homologs in Length (aa) Pairwise sequence
C. elegans (Gene code) identity (%)
Hc-INS-1a scaffold1633 Locus_6343_Transcript_1/2_Confidence_0.667_Length_624 100 F13B12.5 109 420
Hc-INS-1b scaffold11919 Locus_3137_Transcript_1/2_Confidence_0.750_Length_686 100 F13B12.5 109 42.0
Hc-INS-17 - Locus_4104_Transcript_1/1_Confidence_1.000_Length_511 106 F56F3.6 108 54.7
Hc-INS-18 - Locus_1267_Transcript_2/3_Confidence_0.600_Length_720 70 T28B8.2 95 474
Hc-DAF-2 scaffold13413 Locus_7014_Transcript_2/3_Confidence_0.714_Length_5695 1455 Y55D5A.5, b, ¢, 672-1928 255-346
defg
Hc-IST-1 scaffold434 Locus_5794_Transcript_4/8_Confidence_0.650_Length_4263 + 1441 C54D1.3 1003 184
Locus_5794_Transcript_6/8_Confidence_0.500_Length_3032
Hc-AAP-1 scaffold6618 Locus_7479_Transcript_1/1_Confidence_1.000_Length_1541 427 Y110A7A.10 522 36.1
Hc-AGE-1a C279481 Locus_4139_Transcript_1/1_Confidence_1.000_Length_3713 1156 B0334.8a 1182 405
Hc-AGE-1b scaffold 1062 Locus_10568_Transcript_2/2_Confidence_0.800_Length_3699 1149 B0334.8a 1182 40.6
Hc-DAF-18 Locus_6617_Transcript_3/3_Confidence_0.714_Length_3487 800 TO7A9.6 962 240
Hc-PDK-1 457723 Locus_2599_Transcript_2/3_Confidence_0.500_Length_2764 576 H42K12.1a, b* 632-636 41.8-424
Hc-SGK-1a - Locus_1010_Transcript_1/1_Confidence_1.000_Length_1434 462 W10G6.2a*%, b 453-463 60.0-61.2
Hc-SGK-1b - Locus_5956_Transcript_1/1_Confidence_1.000_Length_1384 428 W10G6.2a%, b* 453-463 63.1
Hc-AKT-1a scaffold 15637 Locus_6593_Transcript_2/2_Confidence_0.857_Length_2281 540 C12D8.10a%, b, ¢ 254-546 73.2-75.9
Hc-AKT-1b scaffold17120 Locus_44_Transcript_10/11_Confidence_0.651_Length_6534 552 C12D8.10a, b*, ¢ 254-546 732-776
Hc-PPTR-1a scaffold4564 Locus_1388_Transcript_2/4_Confidence_0.700_Length_4420 542 WO08G11 542 80.1
Hc-PPTR-1b C217263 Locus_3418_Transcript_2/2_Confidence_0.667_Length_3679 542 WO08GT11 542 80.1
Hc-PPTR-1c C426137 Locus_351_Transcript_5/7_Confidence_0.556_Length_5020 542 W08G11 542 80.1
Hc-PPTR-2 scaffold6183 Locus_8402_Transcript_1/1_Confidence_1.000_Length_3588 476 C13G3.3a%, b, c*, d* 557-607 70.1-71.2
Hc-FTT-2 - Locus_4342_Transcript_1/6_Confidence_0.556_Length_1420 206 F52D10.33, b* 198-248 80.5-84.3
Hc-PAR-5 - Locus_4342_Transcript_5/6_Confidence_0.667_Length_1898 + 201 M117.2a%, b 126-248 484-82.6
Locus_4342_Transcript_3/6_Confidence_0.667_Length_1669
Hc-DAF-16 C472265 Locus_5600_Transcript_3/3_Confidence_0.714_Length_3611 589 R13H8.1a, b, ¢, d, e f, 303-589 324-432
g hi kI, m*
Hc-SKN-1 scaffold10742 Locus_3183_Transcript_5/6_Confidence_0.684_Length_3607 612 T19E7.2a, b, ¢, d* 223-623 303-385
Hc-HSF-1a scaffold1518 Locus_7749_Transcript_2/2_Confidence_0.875_Length_2372 544 Y53C10A.12 671 335
Hc-HSF-1b scaffold3772 Locus_497_Transcript_5/5_Confidence_0.577_Length_2356 544 Y53C10A.12 671 335
Hc-HSB-1 scaffold9500 Locus_3235_Transcript_1/1_Confidence_1.000_Length_453 91 KO8E7.2 80 60.0
Hc-DDL-1 scaffold11860 Locus_4675_Transcript_1/2_Confidence_0.750_Length_767 + 129 F59E12.10 189 27.1
Locus_8707_Transcript_2/3_Confidence_0.667_Length_738
Hc-EGL-9a scaffold12571 Locus_5190_Transcript_1/1_Confidence_1.000_Length_1701 504 F22E124a, b, ¢, 363-723 14.9-48.6
d* e
Hc-EGL-9b C449377 Locus_3254_Transcript_2/2_Confidence_0.333_Length_2254 482 F22E124a, b, c, d* e 363-723 149-512
Hc-EGL-9¢ scaffold12558 Locus_1766_Transcript_1/1_Confidence_1.000_Length_2016 482 F22E124a, b, c*, 363-723 14.9-49.5
d e
Hc-EGL-9d C457287 Locus_4349_Transcript_1/1_Confidence_1.000_Length_1791 482 F22E124a, b, c* d, e 363-723 14.9-49.5

C. elegans isoforms with the highest pairwise sequence identity to H. contortus homologs are marked (¥)
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Fig. 1 Heat-map displaying transcription profiles for genes (cf. Table 1) involved in insulin/insulin-like growth factor 1 (IGF1)-like signalling (IIS) in
Haemonchus contortus. Hc-ins-1a/1b, —ins-17 and -ins-18 are genes that act upstream (U) of the IIS pathway. Genes Hc-daf-2, —ist-1, —aap-1, —age-1a/1b,
—daf-18, —pdk-1, —sgk-1a/1b, —akt-1a/1b, —pptr-1a/1b/1c, —pptr-2, —ftt-2, —par-5 and Hc-daf-16 are part of the core (C) IIS pathway and genes Hc-skn-1,
—hsf-1a/1b, —hsb-1, —=ddI-1 and Hc-egl-9a/b/c/d are activated downstream (D) of the IIS pathway. Transcription levels in different developmental stages
(egg, L1, L2, L3, L4 and A = adult; f =female; m = male) of H. contortus (see colour scale): low (red), medium (orange), high (yellow) and very high (white) )
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not found in H. contortus, which was confirmed by
searching independent genomic and transcriptomic data
sets [3]. Therefore, overall, the number of core IIS genes
(Hc-daf-2, -ist-1, —aap-1, —age-1, —daf-18, —-pdk-1, —sgk-1,
—akt-1, -pptr-1, —ftt-2, —par-5 and -daf-16) was similar,
with variation mainly in the numbers of isoforms between
H. contortus and C. elegans.

Using information available for C. elegans (from Worm-
Base; [35]), we constructed the IIS pathway for the genes
predicted in H. contortus (Fig. 2). In this pathway, insulin-
like peptides encoded by Hc-ins-1a, —ins-1b, —ins-17 and
-ins-18 are predicted to interact with DAF-2 insulin recep-
tor, thereby activating the receptor. This, in turn, should fa-
cilitate the recruitment of regulatory proteins, Hc-IST-1
and -AAP-1, to activate phosphoinositide 3-kinase (Hc-
AGE-1). The activation of Hc-AGE-1 likely results in a
conversion of phosphatidylinositol 4,5-bisphosphate (PIP,)
to phosphatidylinositol 4,5-trisphosphate (PIP3), which, in
turn, activates phosphoinositide-dependent protein kinase-
1 (-PDK-1). A regulatory lipid phosphatase, Hc-DAEF-18, is
inferred to act as an antagonist to -AGE-1 activity by
dephosphorylating PIP;. Downstream serine/threonine
kinases, Hc-AKT-1 and Hc-SGK-1, are predicted to be
activated by Hc-PDK-1, resulting in the phosphoryl-
ation of Hc-DAF-16 (FoxO transcription factor). The

protein phosphatases Hc-PPTR-1 and -PPTR-2 act as
regulatory subunits that bind and dephosphorylate Hc-
AKT-1. The phosphorylated Hc-DAF-16 interacts with
the regulatory proteins Hc-FTT-2 and Hc-PAR-5, inhi-
biting its subcellular localization into the nucleus and
subsequent regulation of DAF-16 target genes. A num-
ber of downstream target genes are involved in various
processes, such as stress resistance, dauer formation, the
regulation of life span and the activation of transforming
growth factor beta (TGF-p) signalling. The regulation of
IIS genes is important, as it affects the transcription of
downstream gene targets that may result in loss-of-
function phenotypes.

Discussion

Using a bioinformatic approach, we reconstructed the IIS
pathway of Haemonchus contortus from transcriptomic
and genomic data sets for this nematode, and explored
the transcription of individual genes as well as their inter-
actions. The composition of the core IIS pathway in H.
contortus was relatively consistent with that of C. elegans,
although there were considerable differences between
these nematodes in the upstream and downstream targets
of this pathway. In the present study, four insulin-like pep-
tides (ILPs) were identified in H. contortus, as opposed to
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Fig. 2 Reconstruction of the insulin/insulin-like growth factor 1 (IGF1)-like signalling (IIS) pathway of Haemonchus contortus. Four insulin-like peptides
(ILPs) are encoded in H. contortus (orange) compared with 40 in Caenorhabditis elegans. All core functional gene products (green) of the IIS pathway,
except for AKT-2 and DDL-2 (grey), are encoded in H. contortus. Additional transcription factors activated downstream of the IIS pathway, such as SKN-1
and HSF-1, are also predicted in H. contortus. Phosphatidylinositol (34,5)-trisphosphate (PIPs) is the product of the class | phosphoinostide 3-kinases

(PI 3-kinases) phosphorylation of phosphatidylinositol (4,5)-bisphosphate (PIP,); it is a phospholipid in the plasma membrane. Phosphorylation represented
by P (yellow). The insulin pathway controls the transcription of various genes, and regulates key processes, including dauer formation, longevity, stress
resistance and morphogenesis, as well as other pathways such as TGF-3 and involving other key transcription factors

40 ILPs found in C. elegans [61-64]. A similar, marked re-
duction in the repertoire of ILP-encoding transcripts has
been observed in the parasitic nematode Strongyloides
stercoralis (clade IV), where only seven of the 40 ILPs of
C. elegans are represented [65]. The four ILPs predicted
for H. contortus all have representative functional domains
and protein signatures, including an insulin-like domain
representing the insulin/IGF/relaxin family, a disulphide-
rich alpha-helical domain and an insulin family signature
(cf. Additional file 1: Figure S1). In C. elegans, several ILPs
(encoded by ins-1, ins-6, ins-7) have been shown to regu-
late dauer formation, longevity and development [31].
Although the functions of all 40 ILPs are not yet known,
some (e.g., encoded by ins-1, ins-6, ins-7 and daf-28) have
been extensively studied [63, 64, 66—68]. An interesting
feature of these peptides is that they can either act as ago-
nists or antagonists of DAF-2, the only insulin-like recep-
tor kinase in C. elegans [63, 66, 67, 69]. While the basis of
the differences in function is presently unknown, it is hy-
pothesized that neural inputs from chemosensory neurons
in the amphids and transduced by G protein-coupled
receptors (GPCRs) therein trigger specific profiles of ILP
expression, possibly including optimum levels of agonists
and antagonists in one or a few developmental stages,

which combine to precisely regulate the insulin signalling
pathway response (i.e, downstream gene expression) to
the complex set of environmental cues experienced by this
free-living nematode [70]. It is likely that ILP profiles are
similarly regulated in parasitic nematodes. Indeed, the
regulation of ILP expression by upstream cyclic GMP sig-
nalling has been observed in S. stercoralis, where the
administration of 8-bromo-cGMP to cultured larvae
elicits naturally occurring profiles of ILP expression, in
contrast to the baseline levels of expression observed in
untreated controls [71]. The marked reduction in num-
bers of ILPs in parasitic nematodes examined to date
might reflect a rather more specific interaction with their
environments relative to more opportunistic free-living
organisms, such as C. elegans. The homologs of the C.
elegans ILPs identified in H. contortus were encoded by
Hc-ins-1a, —ins-1b, —ins-17 and -ins-18, which all repre-
sent antagonists, implying that the regulation of the IIS
pathway is dependent on their expression patterns in
all life stages of the parasite. High transcription in the
L1, L2 and L3 stages of H. contortus and considerably
lower transcription in L4 and adult stages indicate that
the ILPs of H. contortus are transcriptionally regulated
during the transition from free-living to parasitic stages.
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By contrast to H. contortus, the seven ILPs of S. stercor-
alis constitute a set of peptides whose structures and
patterns of expression in free-living and parasitic stages
suggest members that are either agonists or antagonists
of Ss-DAF-2. This apparent diversity of ILP function in S.
stercoralis could explain the capability of the parasite to
undertake either direct development to infective L3s or
development to a generation of free-living male and fe-
male worms with many biological attributes in common
with non-parasitic nematodes.

Some of the intracellular protein components of the
IIS pathway showed variation in the functional domains
present and in the number of isoforms predicted. For in-
stance, Hc-DAF-18 is a homolog of the mammalian
PTEN protein, which is a well-recognised phosphatase
and a tumour suppressor [72]. In C. elegans, DAF-18, a
lipid phosphatase, acts by inhibiting the activation of
PDK-1 by dephosphorylating phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) to phosphatidylinositol 4,5-
bisphosphate (PIP,) by removing the phosphate in the
D3 position of the inositol ring [73]. Ce-DAF-18 is also
suggested to have tyrosine phosphatase activity, based
on the presence of its functional catalytic domain. How-
ever, in H. contortus, while Hc-DAF-18 might have the
same lipid phosphatase function as its C. elegans homo-
log, the presence of a dual-specificity phosphatase cata-
lytic domain indicates its ability to dephosphorylate both
tyrosine- and serine-/threonine-phosphorylated proteins.
This suggested, additional function of Hc-DAF-18 might
hint to a functional role of the signalling pathway in re-
covery from developmental arrest.

The C. elegans insulin-signalling pathway activates two
Akt family members, AKT-1 and AKT-2, as well as a
serum and glucocorticoid-inducible kinase, SGK-1 down-
stream of the phosphoinositide-dependent kinase, PDK-1.
All of these serine-threonine kinases are activated by
AGE-1/PI3K. Previous studies [74—76] have shown that
null-mutants of Ce-akt-1 and Ce-akt-2 result in non-
conditional dauer arrest and an extension of lifespan. A
knockdown of sgk-1 by RNAi also induces an extended
lifespan, indicating that it functions in a similar manner to
AKT-1 and AKT-2 [77]. Interestingly, in H. contortus, only
two kinases were predicted downstream of Hc-PDK-1,
namely Hc-AKT-1 and He-SGK-1. The absence of AKT-2
might indicate a distinct regulation of IIS pathway in this
nematode during the switch to the parasitic stage and also
during reproduction. The transcription of Hc-akt-1 was
higher in females than in males. The assessment of the
functional domains of Hc-SGK-1 revealed the presence
of a PX (phox) domain, which was not present in its
respective C. elegans homolog. PX, a phospholipid-
binding domain, primarily interacts with PIP; lipids
[78]. The presence of this unique domain is likely to
compensate for the deficiency of AKT-2 by allowing an
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activation of Hc-SGK-1 by both Hc-PDK-1 as well as
PIP3, thereby effecting the expression of downstream
Hc-DAF-16 target genes.

DAF-16 is a member of the FoxO family of forkhead
transcription factors, which are regulators of growth,
metabolism, stress response, cell cycle control and lon-
gevity in many organisms [79]. The nuclear translocation
of DAF-16 from the cytoplasm is inhibited by the phos-
phorylation at its RxRxxS/T motifs [80, 81], which are
conserved among C. elegans DAF-16, mammalian FoxOs
and predicted H. contortus daf-16. The C. elegans gen-
ome encodes twelve DAF-16 transcripts. Although the
functions of these isoforms are not known, it is hypothe-
sized that they have distinct tissue distributions in hypoder-
mis, muscle, neurons, and intestine [29, 80—83]. Studies of
Ce-DAF-16 indicate that biological functions of the iso-
forms vary according to their tissue distribution [80, 83]. In
contrast, in H. contortus, a single homolog of DAF-16 was
predicted. This finding implies that the array of target
genes predicted to be transcriptionally regulated by Hc-
DAF-16 is controlled by a single homolog, possibly
resulting in a more complex regulation of downstream
gene targets and distinct phenotypes. Given that the in-
put signals of IIS pathway are also lesser in number
compared with C. elegans, this information suggests a
novel regulatory mechanism that differs between free-
living and parasitic nematodes. This hypothesis is bol-
stered by a similar reduction in transcripts from the
daf-16 ortholog in S. stercoralis. Here, there are only
two transcripts, designated Ss-daf-16a and Ss-daf-16b,
each expressed under the control of a different pro-
moter [65, 84].

The ‘dauer hypothesis’ suggests that a similar mechan-
ism of action takes place in major signalling pathways
including the IIS, cyclic GMP and TGEF-p pathways,
which control the entry into and exit from arrested de-
velopment in C. elegans, as in parasitic nematodes [18].
The present investigation of genomic and transcriptomic
data sets from H. contortus suggests that the major
intracellular signalling components of IIS, such as daf-2,
age-1, pdk-1 and akt-1, likely have similar functions to
C. elegans homologs. This hypothesis has been sup-
ported for age-1 orthologs in other parasitic nematodes
by the fact that the PI3K inhibitor LY294002 suppresses
developmental activation of iL3 under host-like culture
conditions [85-87]. However, the roles of key genes
encoding ILPs, DAF-18, SGK-1 and DAF-16 in H. con-
tortus appear to be distinct.

Although the ‘dauer hypothesis’ usually considers L3
arrest in parasitic nematodes to be analogous to dauer in
C. elegans [18], H. contortus and related nematodes, such
as Ostertagia and Cooperia spp., can undergo hypobiosis
at the early L4 stage within the host animal [88]. Given
that this latter adaptive state enables transitional parasite
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survival within the host, and regulates parasite transmission
and population size [88], understanding this phenomenon
is of critical importance. Hence, future work should evalu-
ate the involvement of IIS and associated signalling path-
ways in hypobiosis. It would be of particular interest to
reconstruct the TGF-p signalling pathway in H. contortus
and other trichostrongylids, and assess transcription pro-
files throughout development, given the major contrast in
transcription at the L3 stage between various parasitic nem-
atodes including H. contortus (up-regulation) and C. elegans
(down-regulation) (cf. [18]) that suggests an altogether
unique function of DAF-7 in parasitic worms. This line of
investigation will be interesting in light of the fact that C.
elegans offers no exact counterpart to the early L4 arrest
that occurs in these economically important trichostron-
gyles. As such, mechanisms of early L4 arrest will likely rep-
resent a unique adaptation to parasitism for some clade V
nematodes.

Conclusions

In conclusion, the availability of transcriptomic and draft
genomic data sets for H. contortus has enabled the first
detailed bioinformatic exploration of the IIS pathway in
this parasite. We curated the full-length transcripts and
defined the complement of genes that encode peptides/
proteins involved in this pathway by comparison with C.
elegans, reconstructed the pathway with these genes and
investigated their transcription profiles in key developmen-
tal stages of H. contortus. We hope that reconstructing the
IIS pathway for H. contortus will provide a stepping stone
for future studies of development, reproduction, ageing,
longevity, metabolism and/or behaviour in this important
parasitic worm, and a stimulus to explore other signalling
pathways in socioeconomically important strongylids.
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Additional file 1: Figure S1. A schematic representation of functional
domains and motifs as predicted by InterProScan of members of the insulin/
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contortus inferred from full-length transcripts and their Caenorhabditis elegans
homologs. (PDF 216 kb)
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