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Abstract

Background: Dogs in the United States are hosts to a diverse range of ticks and tick-borne pathogens, including
A. phagocytophilum, an important emerging canine and human pathogen. Previously, a Companion Animal Parasite
Council (CAPC)-sponsored workshop proposed factors purported to be associated with the infection risk for tick-
transmitted pathogens in dogs in the United States, including climate conditions, socioeconomic characteristics,
local topography, and vector distribution.

Methods: Approximately four million test results from routine veterinary diagnostic tests from 2011–2013, which
were collected on a county level across the contiguous United States, are statistically analyzed with the proposed
factors via logistic regression and generalized estimating equations. Spatial prevalence maps of baseline Anaplasma
spp. prevalence are constructed from Kriging and head-banging smoothing methods.

Results: All of the examined factors, with the exception of surface water coverage, were significantly associated
with Anaplasma spp. prevalence. Overall, Anaplasma spp. prevalence increases with increasing precipitation and
forestation coverage and decreases with increasing temperature, population density, relative humidity, and
elevation. Interestingly, socioeconomic status and deer/vehicle collisions were positively and negatively correlated
with canine Anaplasma seroprevalence, respectively. A spatial map of the canine Anaplasma hazard is an auxiliary
product of the analysis. Anaplasma spp. prevalence is highest in New England and the Upper Midwest.

Conclusions: The results from the two posited statistical models (one that contains an endemic areas assumption
and one that does not) are in general agreement, with the major difference being that the endemic areas model
estimates a larger prevalence in Western Texas, New Mexico, and Colorado. As A. phagocytophilum is zoonotic, the
results of this analysis could also help predict areas of high risk for human exposure to this pathogen.
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Studies, Ticks, United States, Zoonoses

Background
Dogs are susceptible to infection to numerous tick-borne
rickettsial pathogens including Anaplasma phagocytophi-
lum, the etiologic agent of granulocytic anaplasmosis in
people, dogs, horses, sheep and other animals [1]. A closely
related pathogen, A. platys, causes infectious cyclic
thrombocytopenia in dogs and cross-reacts with antibodies

to A. phagocytophilum. Clinical signs of canine granulocytic
anaplasmosis range in severity, but commonly include fever,
thrombocytopenia, lethargy, and polyarthritis, while infec-
tious cyclic thrombocytopenia, caused by A. platys, is gen-
erally considered a mild disease except when co-infection
exacerbates other diseases such as ehrlichiosis [2]. People
with A. phagocytophlium infections may have flu-like symp-
toms, but rashes are rare, unlike other tick-borne zoonoses
such as Lyme disease or Rocky Mountain spotted fever [3].
Although considered a low risk for human infection, a* Correspondence: lund@clemson.edu
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recent case report suggested A. platys might also be zoo-
notic [4].
In the United States, Ixodes scapularis (the black-

legged tick) and Ixodes pacificus (the western black-
legged tick) are considered the primary vectors of A.
phagocytophilum. Ixodes scapularis is found in at least
32 states in the eastern and central states, while I. paci-
ficus appears limited to five western states [5], but
evidence of autochthonous transmission of pathogenic
strains of A. phagocytophilum to people and dogs has
only been documented in the Northeast, Upper Mid-
west, and limited parts of the western United States [6].
Ixodes scapularis and Ixodes pacificus are also found
northward into Canada. In contrast, Rhipicephalus san-
guineus (the brown dog tick) is thought to transmit A.
platys, although this cycle has not been confirmed in
North America. The distribution of R. sanguineus is
described as cosmopolitan, as these ticks can infest
buildings in otherwise inhospitable climes [7]. Brown
dog ticks also thrive in arid areas with high tempera-
tures. Accordingly, populations of this tick are most
intense and infestations of premises are more common
in the southern United States.
Transmission by tick vectors is considered the pri-

mary means of canine exposure to Anaplasma spp.,
thus variation in regional risk factors is tied to presence
and abundance of competent tick vectors and verte-
brate reservoirs. Factors associated with the presence of
tick vectors include vector amplification hosts, patho-
gen reservoir host population densities, climate, and
topography [8, 9]. Advances in testing and recording
technologies have led to large datasets of diagnostic test
results by county for canine exposure to Anaplasma
spp. [6, 10]. With support from a veterinary diagnostic
company (IDEXX Laboratories, Inc., Westbrook, ME),
the Companion Animal Parasite Council (CAPC) has
compiled a dataset of diagnostic test results that were
reported by veterinary practitioners and a network of
reference laboratories within the contiguous United
States. This database allowed us to conduct the first
comprehensive risk factor study of canine Anaplasma
spp. in North America. The CAPC also convened a
workshop to identify factors that are putatively associ-
ated with canine seroprevalence of tick-borne patho-
gens, specifically focusing on risk factors for which data
are available, so these factors could be quantitatively
evaluated for predictive power with respect to spatial-
temporal seroprevalence patterns [11]. The objectives
of this investigation were to identify risk factors associ-
ated with canine seroprevalence of Anaplasma spp. and
to incorporate these factors into a refined spatial-
temporal analysis. These data allow for the creation of
maps that indicate risk of Anaplasma infections of
people, dogs, horses, and other wildlife.

Methods
Data collection
To spatially analyze the canine seroprevalence of Ana-
plasma spp., the results of 3,950,852 diagnostic tests
performed during 2011–2013 were acquired by the CAPC
from IDEXX Laboratories, who provided qualitative (posi-
tive/negative) results reported for each county in the con-
tiguous United States. Test results were generated using
SNAP® 4Dx® and SNAP® 4Dx® Plus Test kits (IDEXX
Laboratories, Inc.) which are point-of-care ELISAs to detect
antigen from or antibodies to several vector-borne patho-
gens. The tests were performed at both the clinic level and
at reference laboratories. The performance of these test kits
was reported elsewhere [12, 13]. The Anaplasma portion of
these tests uses a synthetic peptide from a major surface
protein of A. phagocytophilum (MSP2/P44) and detects
antibodies to both A. phagocytoyphilum and A. platys [13].

Data analysis
Spatial structure of canine exposure to Anaplasma spp. in the
United States
Two statistical smoothing techniques were applied to the
data to generate a spatial prevalence map of canine expos-
ure to Anaplasma spp. in the United States. A weighted
head-banging algorithm was first used to reveal patterns
in the data [14, 15]. To account for counties not reporting
data, kriging, an interpolation method, was subsequently
used to construct a spatially complete map [16].

Risk factors
Previously, 15 posited risk factors were proposed for canine
exposure to pathogens transmitted by I. scapularis, I. pacifi-
cus or R. sanguineus [11]. Of these, nine were analyzed for
predictive power in explaining the observed regional canine
seroprevalence. To be considered, a factor had to be quanti-
fiable with currently available data; this limited the number
of factors to climate (annual temperature, precipitation, and
relative humidity), socioeconomic characteristics (human
population density and household income), and local top-
ography (surface water, forestation coverage, and elevation)
[11]. Finally, nationwide county-level deer densities were
not available; hence, a state-by-state estimated annual
probability of deer/vehicle collisions was used as a surro-
gate risk factor [17]. Counties within a state were assigned
the collision proportion for the entire state (Additional file
1: Figure S1). The premise was that regions with greater
deer/vehicle collision reports support higher deer popula-
tions. A list of the considered factors and their sources is
provided in Table 1.

Statistical methods
To assess the significance of the putative risk factors, let
Yi,j denote the number of positive tests in the ith county
during the jth year and ni,j the corresponding total number
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of tests performed. An estimate of the ith county’s preva-
lence over the three study years is

p̂i ¼ Y i;1 þ Y i;2 þ Y i;3
� �

= ni;1 þ ni;2 þ ni;3
� �

:

Generalized linear models (GLMs) are used here with
assumptions that the observed data are (1) independent
and (2) follow a distribution belonging to an exponential
family. For further details, see [18]. Here, it is assumed
that the number of positive test results is a true random
sample, obeying a binomial distribution (an exponential
family member). Possible departures from this assumption
are discussed later in the Conclusions. Consequently, a
GLM can be formulated as

g pij
� �

¼ β0 þ
Xp

k¼1
βkXijk

¼ Xi′ jβ;

where g is an invertible link function, Xij = (1, Xij1,…,
Xijp)′ is a vector of risk factors from the ith county dur-
ing the jth year, and β = (β0,…,βp)′ is a vector of regres-
sion coefficients. Herein, g is specified to be the logistic

link; i.e., g pij
� �

¼ log pij= 1−pij
� �n o

: Models of this form

are easily fit using standard statistical software. For a fixed
county, it is unreasonable to assume that seroprevalence
estimates are statistically independent in time. In fact, in
endemic areas, infections persist in reservoir host popula-
tions; consequently, the number of positive test results
from year-to-year in a given county may be highly posi-
tively correlated.
To allow for temporal correlation, a generalized esti-

mating equation (GEE) was used to estimate regression
coefficients [19, 20]. GEEs are similar in form to GLMs,
but account for the correlation between observations
within a particular county over time by minimizing a
“weighted” sum of squares to obtain parameter estima-
tors [19, 20] (GLMs minimize an “unweighted” sum of
squares). To apply the GEE method a working correl-
ation matrix has to be specified; e.g., independent,

exchangeable, auto-regressive, etc. The specification of
this matrix accounts for the temporal correlation within
a given county. In order to prevent misspecification, an
unstructured working correlation matrix was considered
and its components were estimated along with the re-
gression parameters. GEE models can be fitted using
standard statistical software (e.g., SAS, Stata, Splus, and
R) [21, 22].
While GEE techniques account for temporal depend-

ence within a county, they assume observations from
different counties are independent. Consequently, the
weighted head-banging and Kriging algorithms [23, 24],
which implicitly account for spatial dependence, were
used to graphically display prevalence estimates. The
weighted head-banging algorithm, which made use of 20
triples, was first used to smooth the county-level preva-
lence estimates. The weights were set as the reciprocal
of the estimated standard deviation of the prevalence
estimates. Thus, counties with more observations had
more importance in the smoothing. Kriging was then ap-
plied to the head-banging estimates to infill counties not
reporting data and to generate spatially complete preva-
lence maps. Kriging was implemented using the default
settings within ArcGIS. Two main effects models, de-
scribed below, were considered.
In describing model fits, estimated regression coeffi-

cients and their standard errors were obtained by fitting
the proposed model in SAS. In order to retain model
interpretability, this analysis considers only first-order
models. Backward elimination was implemented, with a
cutoff of 0.05, to complete model selection; i.e., the
factor with the highest p-value greater than 0.05 was
removed from the model at each step. Based on vari-
ance inflation factors, it was found that multicollinear-
ity was not a significant issue. From these statistics,
confidence intervals were constructed. To assess the
quality of the model fit, a coefficient of determination,
R2, is reported [25].

Table 1 Candidate factors, considered in both the Endemic Regions and Contiguous US models, along with their units, data sources,
and spatial resolution

Category Factor(s) Scale Source

Climate Annual temperature (F) Division National Climate Data Center (NCDC)

Annual precipitation (in) Division NCDC

Annual relative humidity (%) Station NCDC

Geographic Elevation (ft) County http://www.cohp.org/

Percentage forest coverage (%) County United States Department of Agriculture
(USDA)

Percentage surface water coverage (%) County US Census Bureau

Societal Population density (persons per square mile) County US Census Bureau

Median household income ($) County US Census Bureau

Prostriate Tick Amplification Deer/vehicle collisions (probability) State State Farm Insurance Company

McMahan et al. Parasites & Vectors  (2016) 9:169 Page 3 of 10

http://www.cohp.org/


Endemic region and contiguous US models
Two models were posited. The first was an “Endemic
Regions” model and only used data from regions where
A. phagocytophilum was considered potentially endemic
based on published reports and expert opinion (shown
in Additional file 2: Figure S2). Although data to indicate
a particular region is endemic are imprecise, we subse-
quently show that the conclusions are not heavily
dependent on this region’s definition. The second model
considered was a “Contiguous US" model. Here, an indi-
cator factor was added that demarcated whether or not
a county was located within the A. phagocytophilum-en-
demic area (Additional file 2: Figure S2). This latter
approach made use of all available data.

Results and discussion
Spatial prevalence
Nationwide, from 2011–2013, 3.76 % of tests were
seropositive (4.26 % in 2011, 4.45 % in 2012, and 3.24 %
in 2013). Approximately 1,500 of 3,144 US counties
reported data each year, although this number varied
slightly from year-to-year. Figure 1 shows the distribu-
tion and prevalence of dogs with antibodies to Ana-
plasma spp. by county. Most Anaplasma-positive test
results originated from the Upper Midwest and North-
east, with the highest probabilities coming from north-
ern Wisconsin, northern Minnesota, and eastern New

England. Most counties not reporting data are in regions
where these infections are considered uncommon (e.g.,
the South, Southwest and West), with the exception of
the Rio Grande River Valley north through eastern New
Mexico and Colorado.
Prevalence was highly variable and data were missing for

many counties, thus, to improve map utility, these estimates
were statistically smoothed using head-banging and kriging
algorithms. The expected prevalence of canine exposure to
Anaplasma spp. during a typical year by county is shown
in Fig. 2. These data confirm that canine exposure to Ana-
plasma spp. was most prevalent in the Northeast, upper
Midwest, northern California, and western Texas and east-
ern New Mexico.

Risk factor data
Several factors were significantly associated with the preva-
lence of Anaplasma-positive dogs, although the significant
factors slightly change between the Endemic Regions and
Contiguous US models (Table 2). All factors except for
water coverage were significant with 95 % confidence in the
Contiguous US model. When just the endemic regions
were considered, all factors except water coverage and ele-
vation were significant with 95 % confidence. Temperature,
population density, relative humidity, elevation, and deer
vehicle collisions are negatively correlated with Anaplasma
prevalence and precipitation, forestation coverage, and

Fig. 1 Map illustrating percentages of positive tests for canine exposure to Anaplasma spp. reported from US counties from 2011 to 2013
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median household income are positively correlated with
Anaplasma prevalence.
There was a significant correlation in the prevalence of

Anaplasma spp. in dogs between years, regardless of the
model (Table 3). The highly positive correlations imply
that regions experiencing high or low canine seropreva-
lence will likely experience similarly high or low propor-
tions in the near future. Correlations between proportions
two years apart were lower than those separated by one
year.

Regional prevalence based on contiguous US and endemic
regions models
Based on the Endemic Regions model, the highest preva-
lence estimates were reported for the Northeast followed
by the upper Midwest, western Texas and central coastal
California (Fig. 3). The Contiguous US model estimated
higher prevalence in the upper Midwest but lower
prevalence in Texas (Fig. 4). The model fits are summa-
rized in Table 2. For the Endemic Regions model, preva-
lence estimates for counties in the endemic region were
obtained from the fitted GEE model. This fit only uses
data and factors for counties in the endemic regions.
However, non-endemic regions were assigned the crude
estimates depicted in Fig. 1 to coincide with the usual

notion of prevalence (there are sporadic cases in non-
endemic regions and some dogs also travel). The fitted
models were similar and explain considerable structure:
R2 for the fits are 0.72 (Endemic Regions model) and
0.71 (Contiguous US model).

Conclusions
Like other tick-borne diseases in the United States, the
incidence of human anaplasmosis has been increasing
[26, 27]. Although canine anaplasmosis is not reportable,
the incidence of seropositive canine cases also appears
to be increasing. Similar to Bowman et al. [6], we found
the highest prevalence of Anaplasma antibodies in dogs
from the upper Midwest and eastern New England. These
data also correlated with areas where the highest incidence
of human anaplasmosis were reported, supporting the
suggestion that dogs can make useful sentinels for human
risk [26, 27]. Many of the dogs with antibodies reactive to
Anaplasma are likely due to infection with A. phagocyto-
philum, given the general distribution and concordance
with antibodies to Borrelia burgdorferi in dogs and hu-
man Lyme disease cases [6, 26, 28]. Further support
comes from Qurollo et al. [29],who used A. platys- and
A. phagocytophilum-specific assays to find similarly low
seroprevalence of both pathogens in the Southeast and
West. In contrast, the prevalence of antibodies to A.

Fig. 2 Statistically Smoothed Prevalence Estimates for Canine Exposure to Anaplasma spp. (2011 to 2013). Spatial smoothing was completed via
the head-banging and Kriging algorithms
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phagocytophilum was significantly higher in other regions.
But, notably, there were isolated areas that had unexpect-
edly high prevalence estimates for Anaplasma (e.g., Texas,
New Mexico, and Oklahoma) where neither A. phagocyto-
philum nor known tick vectors are common. Possible
explanations of these findings include (1) exposure to A.
platys or a novel Anaplasma spp., (2) an unrecognized
novel A. phagocytophilum vector-reservoir transmission
cycle in that region or (3) a relatively high frequency of
dogs tested that had previously traveled to endemic re-
gions [6]. These data, while sometimes enigmatic, should

not be ignored as demonstrated by similar unexplained
foci in the upper Midwest, where a novel E. muris-like
agent was ultimately found in association with an unex-
pectedly high seroprevalence of Ehrlichia spp. among dogs
[6, 30, 31].
Data from both the Endemic Regions and Contiguous US

models agreed well with each other and original serologic
data. However, there were some minor differences between
the two models that resulted in some regions having a
higher or lower estimated prevalence. For example, the
Contiguous US model had higher prevalence estimates than
the Endemic Regions model in some regions of the upper
Midwest (e.g., Wisconsin, Minnesota, and Illinois) where
granulocytic anaplasmosis is considered endemic and other
regions of the Midwest (e.g., Indiana, Kentucky, and Ohio)
where granulocytic anaplasmosis is currently considered
rare. Also, the Contiguous US model estimated a lower
prevalence for Maine, where granulocytic anaplasmosis is
common. Lastly, the Contiguous US model estimated lower
prevalence in western Texas, which was arguably influ-
enced by smaller sample sizes.
The estimated regression coefficient for the endemic risk

factor in the Contiguous US model is positive and signifi-
cant. This implies higher prevalence among dogs living in
areas where human granulocytic anaplasmosis is endemic.

Table 2 Estimates, standard errors, and odds ratios for the parameters corresponding to the factors found to be significantly
associated with prevalence of canine exposure to Anaplasma spp. See Table 1 for the factor units

Regression Coefficient Estimate Standard Error Exp(estimate)a (Odds Ratio) 95 % CIb

Endemic Regions model

Intercept 1.2930 0.5858 3.6437 (1.1542, 11.5041)

Temperature −0.0740 0.0067 0.9287 (0.9165, 0.9410)

Median household income 0.0192 0.0021 1.0194 (1.0152, 1.1024)

Population density −0.0110 0.0050 0.9891 (0.9792, 0.9979)

Precipitation 0.0463 0.0200 1.047 (1.010, 1.0925)

Relative humidity −0.0291 0.0057 0.9713 (0.9605, 0.9821)

Forest coverage 0.0780 0.0124 1.0811 (1.055, 1.1078)

Deer/Vehicle collision −0.8158 0.0889 0.4423 (0.3715, 0.5266)

Contiguous US model

Intercept −0.1728 0.5849 0.8413 (0.2671, 2.6501)

Temperature −0.0659 0.0056 0.9362 (0.9260, 0.9466)

Median household income 0.0197 0.0018 1.0200 (1.0163, 1.0236)

Population density −0.0130 0.0043 0.9871 (0.9998, 1.0000)

Precipitation 0.0432 0.0165 1.0441 (1.0108, 1.0785)

Relative humidity −0.0282 0.0050 0.9722 (0.9629, 0.9816)

Forest coverage 0.0708 0.0104 1.0734 (1.0517, 1.0954)

Deer/Vehicle collision −0.8483 0.0780 0.4281 (0.3660, 0.5008)

Elevation −0.0522 0.0240 0.9491 (0.9055, 0.9950)

Endemic/Non-endemic 1.2196 0.1473 3.3858 (2.5363, 4.5195)
aThe Exp (estimate) column shows the estimated odds ratios
bThe CI column gives a 95% confidence interval for the odds ratios. Intervals not containing unity imply that the factor is significant at the 0.05 level

Table 3 Estimated year-to-year working correlation matrix in
each model

2011 2012 2013

Endemic Regions model

2011 1.0000 0.8966 0.8256

2012 0.8966 1.0000 0.8345

2013 0.8256 0.8345 1.0000

Contiguous US model

2011 1.0000 0.8649 0.7407

2012 0.8649 1.0000 0.8032

2013 0.7407 0.8032 1.0000
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Numerous factors were useful predictors for the sero-
prevalence of Anaplasma in dogs. Because rodents and
white-tailed deer are important in the maintenance of
A. phagocytophilum in nature, the association with in-
creased forest coverage and decreased human population
density is likely tied to suitable habitat for these critical
wildlife species. Forest cover was also associated with
higher prevalence of another tick-borne pathogen, E.
chaffeensis, in white-tailed deer [32]. Importantly, forest
fragmentation is highly associated with increasing Lyme
disease incidence so these fragmented habitats will likely
be important areas for A. phagocytophilum; however, the
scale of this study was not fine enough to investigate
edge effects [33].
Climatic variables such as temperature, precipitation

and relative humidity have been associated with preva-
lence of ticks and tick-borne pathogens [34–36]. In both
of our models, precipitation was positively associated
with Anaplasma infections in dogs and temperature was
negatively associated with prevalence. Although one
previous study found no effect of precipitation on the
density of I. scapularis, a more recent long-term study
found that increased regional winter precipitation was
associated with higher tick densities [37]. Ixodid tick
survival and activity are tied to temperature, and a recent

study found that I. scapularis survived better under temper-
atures more representative of northern states compared
with those in the southern states [38]. Relative humidity is
important for ixodid ticks to maintain moisture while off of
the host, but both of our models found that increasing rela-
tive humidity was negatively associated with Anaplasma
seroprevalence in dogs. A plausible explanation for this
finding is that increased humidity may well be related to
decreased tick densities. That is, higher humidity levels are
conducive to mold and fungal growth to which ticks are
fatally susceptible to as eggs and during molting. For ex-
ample, [39, 40] reported that I.ricinus densities on rodents
decreased with increasing relative humidity.
The seroprevalence of Anaplasma spp. in dogs decreased

as deer/vehicle collision reports increased, which was con-
trary to our initial hypothesis given the importance of deer
to the life cycle of I. scapularis [41]. Unfortunately, this
factor does not account for the rural/urban nature of the
habitats or road types (e.g., secondary or tertiary) where the
collisions take place; see [42] for a more in depth discussion
of these issues. While further investigation is warranted to
understand this negative association, other authors
have also found “deer density associations” counter
intuitive, see [32, 40, 43–46] for some of the discus-
sion and related literature.

Fig. 3 Estimated Canine Anaplasma Prevalence from Endemic Region Model. The presented results consist of statistically smoothed prevalence estimates,
where the prevalence estimates were obtained from the fitted Endemic Region model. Spatial smoothing was completed via the head-banging and
Kriging algorithms
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Another puzzling finding was the positive association of
Anaplasma seroprevalence in dogs with increasing house-
hold income. It is conceivable that high Anaplasma spp.
prevalence areas coincide with some of the richer areas of
the United States, thus confounding the factor. While
people in these richer areas may engage in behaviors that
increase the likelihood of ticks feeding on their dogs, such
as outdoor recreational activities, wealthier dog owners
may tend to keep their pet predominantly indoors, thus
minimizing their risk of acquiring ticks [47]. However,
even dogs that spend only small periods of time outdoors
can acquire vector-borne infections; thus, the use of tick
preventives is recommended for all dogs. Dogs in poorer
regions may never be taken to the vet, clearing the infec-
tion themselves or may be treated with antibiotics (and
not tested). Overall, the confounding nature of socioeco-
nomic status merits further study.
The fitted models explain much of the data, but better fits

could be achieved by including additional factors. One diffi-
culty is that these data may not have been a true random
sample, with correlation existing between some of the tests
conducted at the same location. A more problematic issue
lies with sampling biases: dogs in different parts of the
country may be tested for exposure to Anaplasma for
different reasons. For example, veterinarians in the Upper

Midwest and Northeast, where Lyme disease has a high
prevalence, may be more likely to screen all dogs using this
rapid test. However, in areas where canine anaplasmosis or
Lyme disease is uncommon, it is possible that only dogs
with clinical signs or with travel histories to endemic
regions may be tested. Other dogs could be coincidentally
tested when screened for other vector-borne pathogens
(e.g., heartworm), as the SNAP 4Dx Plus Test simultan-
eously tests for four distinct pathogen genera. Diagnostic
tests specific for exposure to A. platys and acquisition of
travel histories of seropositive dogs could help answer these
questions about areas where granulocytic anaplasmosis is
not considered endemic. Unfortunately, such data were
unavailable at the time of this study. Because of these
issues, caution should be used when comparing prevalence
at two different areas of the United States.
The spatial prevalence maps here should not be inter-

preted at too fine of a spatial scale, they are intended as
rough guidance. A county’s estimated prevalence is
impacted by factor conditions in that county and by factor
conditions in adjacent counties. For example, ticks are not
expected to be numerous within New York City (say
Manhattan), even though our mathematical model does
not predict zero prevalence for Manhattan. Due to the
zoonotic nature of anaplasmosis, one may compare the

Fig. 4 Estimated Canine Anaplasma Prevalence from Contiguous US Model. The presented results consist of statistically smoothed prevalence estimates,
where the prevalence estimates were obtained from the fitted Contiguous US model. Spatial smoothing was completed via the head-banging and
Kriging algorithms
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findings of our analysis to the reported geographic distri-
bution of anaplasmosis incidence in humans provided by
the Centers for Disease Control and Prevention [48]. Fur-
ther, as I. scapularis is a primary vector of anaplasmosis
another relevant comparison can be made between our
findings and the predicted geographic density of nymphal
I. scapularis presented in [49]. From these comparisons,
one will note that the geographic patterns of our spatial
prevalence maps are largely in agreement with the spatial
patterns found in these two surrogate measures.
Clearly, our list of risk factors is incomplete. Tick abun-

dances, for example, are likely an important consideration,
but these data are not available for the entire United States.
However, this model can be updated as more factors such
as tick densities, land-use changes, or acaricide use are
obtained.
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Additional file 1: Figure S1. Statewide Deer/Vehicle Collision
Percentages in 2013. (JPG 2151 kb)

Additional file 2: Figure S2. Granulocytic anaplasmosis-endemic areas
of the United States. Areas where granulocytic anaplasmosis is considered
endemic are reflective of counties surrounding established I. scapularis
and I. pacificus populations and where clinical diagnosis of granulocytic
anaplasmosis or competent reservoir hosts have been reported. Counties
where granulocytic anaplasmosis is considered endemic are shaded red;
non-endemic counties are shaded white. (JPG 2025 kb)
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