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Abstract

model validation.

over the basic model.

Background: The mosquito Aedes albopitus is a competent vector for the transmission of many blood-borne
pathogens. An important factor that affects the mosquitoes’ development and spreading is climate, such as
temperature, precipitation and photoperiod. Existing climate-driven mechanistic models overlook the seasonal
pattern of diapause, referred to as the survival strategy of mosquito eggs being dormant and unable to hatch
under extreme weather. With respect to diapause, several issues remain unaddressed, including identifying the time
when diapause eggs are laid and hatched under different climatic conditions, demarcating the thresholds of
diapause and non-diapause periods, and considering the mortality rate of diapause eggs.

Methods: Here we propose a generic climate-driven mechanistic population model of Ae. albopitus applicable to
most Ae. albopictus-colonized areas. The new model is an improvement over the previous work by incorporating
the diapause behaviors with many modifications to the stage-specific mechanism of the mosquitoes’ life-cycle.
monthly Container Index (Cl) of Ae. albopitus collected in two Chinese cities, Guangzhou and Shanghai is used for

Results: The simulation results by the proposed model is validated with entomological field data by the Pearson
correlation coefficient r~ in Guangzhou (¥ =0.84) and in Shanghai ( =0.90). In addition, by consolidating the effect
of diapause-related adjustments and temperature-related parameters in the model, the improvement is significant

Conclusions: The model highlights the importance of considering diapause in simulating Ae. albopitus population.
It also corroborates that temperature and photoperiod are significant in affecting the population dynamics of the
mosquito. By refining the relationship between Ae. albopitus population and climatic factors, the model serves to
establish a mechanistic relation to the growth and decline of the species. Understanding this relationship in a
better way will benefit studying the transmission and the spatiotemporal distribution of mosquito-borne epidemics
and eventually facilitating the early warning and control of the diseases.
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Background

Aedes albopitus (Skuse), also known as the Asian tiger
mosquito, is a competent vector for the transmission of
many blood-borne epidemics such as dengue fever, West
Nile virus infections and Chikungunya fever [1-5]. Ae.
albopictus is a species native to the tropical areas of
Southeast Asia; and during the last century, it has
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rapidly invaded countries throughout the world. Now
the species is pervasively found in the subtropical and
temperate climate areas of East Asia, Europe, Africa, the
Middle East and the Americas [1, 2]. The extensive
spreading of Ae. albopictus is not only prompted by the
increasing trend of international trade and travel [3-5]
but is also mediated by climate change in a global
context [6]. It has been corroborated that the growth of
Ae. albopictus is constrained by the changing nature of
physical environment; as a result, their population dens-
ity is extrinsically impinged by a series of climatic factors
including temperature, precipitation and photoperiod
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[7]. Because of this link to climate change, modeling the
population dynamics of Ae. albopictus based on climatic
factors serves a critical role for further identifying the
causal relation to the transmission and control of
mosquito-borne pathogens [8].

Within the realm of quantitative modeling, the
climate-driven dynamics of the mosquito has been ex-
plored by two types of models: the statistical population
model and the mechanistic population model [9]. The
statistical population model aims to establish a mathem-
atical correlation between the population abundance and
climatic factors using data solicited from controlled ex-
periments or field observations [10-12]. Although these
statistical relationships are relatively straightforward and
can be easily understood, they are flawed in describing
the intrinsic biological mechanism of how the morph-
ology of pathogen carriers is mediated by the environ-
ment. Another overlooked facet in the statistical
population model pertains to the limited coverage of the
species’ life-cycle stages; for example, the majority of
mosquito models have only differentiated between the
aquatic period and the aerial period, while other sub-
stages (e.g. eggs, larvae, pupae) have been less empha-
sized [13]. When climatic factors are involved in
promoting or inhibiting the development, the influence
on each sub-stage of the life-cycle is a critical aspect that
must be further scrutinized [14, 15]. To overcome these
limitations, the mechanistic population model explores
the fluctuation of population by factoring in a priori estab-
lished development process in a context constrained by
environment [8]. For the study of Ae. albopictus, this type
of model and its variations have been applied to specific
geographic regions and have been modified for extensions
to other Aedes spp. [16—22]. One important work in this
area is attributed to Erickson et al. [23], who developed a
stage-structured population model consisting of six ordin-
ary differential equations to correspond to different stages
of Ae. albopictus’ life-cycle, with each equation measuring
the mortality rate and growth rate dependent on a stage-
specific temperature variable. Thereafter, Cailly et al. [24]
established a generic temperature-driven model that ex-
tended the application to different mosquito species.
This model served a more general purpose to represent
the complete life-cycle with ten model compartments
and temperature-driven mortality rate and growth rate
[25, 26]. In a follow-up study, Tran et al. [27] optimized
the parameters and transition functions in Cailly’s
model to estimate the population dynamics of Ae.
albopictus with improved accuracy and a better fit to
field observations.

An overlooked area in the formulation of the mechanis-
tic population model is the phenomenon of diapause. Dia-
pause refers to the physiological mechanism within
certain species that inhibits the development of organism
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as a strategy to survive unfavorable environmental condi-
tions, such as extreme weather [28, 29]. Diapause is ob-
served among Ae. albopictus in selected subtropical areas
and temperate climate areas where the relatively cold sea-
son of a year makes the mosquito eggs become dormant
and unable to hatch [7, 30]. The delay in development
can only be remedied when the eggs are exposed to
enough warmth or a long photoperiod [1, 7]. Many en-
tomologists previously associated Ae. albopictus dia-
pause with environmental conditions using controlled
experiments. For example, Wang [31] and Imai &
Maeda [32] discovered that the intervening factors of
diapause included low temperatures and short photope-
riods; and this conclusion was later confirmed by a
series of controlled experiments [1, 7, 30, 33]. In
addition, comparative studies identified that the unique
mechanism of diapause greatly improved the survival
rate of Ae. albopictus under extreme desiccation and
cold-stress conditions [34, 35]. These findings, however,
have been rarely incorporated in the mechanistic popu-
lation model [27]. Two exceptions are the models pro-
posed by Cailly et al. [24] and Tran et al. [27], where
diapause was quantified as a piecewise function dichot-
omizing the development into diapause period, say last
September through early March, and that of non-diapause
for the rest of year. Compared with Erickson et al. [23], ac-
counting for diapause greatly improved the model per-
formance and generated a close approximation of the field
observation. However, the adjustment was based on a rela-
tive empirical assumption that diapause occurs in the
same time period over different years as well as does not
manifest regional differences. As diapause is a dynamic
process primarily dictated by degrees of temperature and
lengths of photoperiod [31, 32], it is more reasonable to
assume diapause as a temperature- and photoperiod-
driven phenomenon in a general way to consolidate the
effect of temporal as well as regional differences.

Along the line of existing mechanistic population
models [23, 24, 27], this paper, proposes a generic model
to study Ae. albopictus population by considering dia-
pause as a dynamic process conditional on the change of
temperature and photoperiod. By restructuring the
model and tuning the parameters, the study strictly cap-
tures the stage-specific mechanism of the mosquitoes’
life-cycle. In addition, the model has been validated by
field data collected in two Chinese cities over a five-year
span where the phenomenon of diapause was introduced
by seasonality. The proposed model aims to: (i) define a
fine-tuned relationship between major climatic variables
(temperature and photoperiod) and diapause-related
events in Ae. albopictus’s development cycle; (ii) expli-
citly quantify the effect of temperature on the population
dynamics during the aquatic period based on controlled
laboratory experiments and related literature.
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The paper is organized as follows. The Methods sec-
tion first presents the two sets of field observations in
Chinese cities, which are employed as evidence for
model validation. Then the new model is proposed
based on two existing mechanistic population models.
The Results section demonstrates simulation results,
which are further compared and validated with field ob-
servations. The Discussion section discusses the im-
provement of the model over the original model as well
as the sensitivity of non-climatic variables in the model.
Lastly, the Conclusions section summarizes the contri-
bution of the study and proposes directions for future
research.

Methods

Study areas and data

To validate the model, we firstly conducted rigorous
field experiments to collect Ae. albopictus larval samples.
Field observations on the Ae. albopictus population were
conducted in two southern Chinese cities, Guangzhou
and Shanghai, over a respective period of five years. The
two study areas both belong to the subtropical climate
zone with a humid and hot summer and an arid and
cold winter. Compared to Guangzhou, the weather in
Shanghai exhibits a higher degree of seasonality with a
colder spring, autumn and winter.

The field observations were quantified by the monthly
Container Index (CI) of Ae. albopictus larvae in Guangzhou
(2007-2011) and Shanghai (2009-2013) collected by the
China Centre for Disease Control and Prevention (CDC),
as shown in Table 1. To acquire the data, we distributed
50-100 sampling containers with clean water in outdoor
conditions and then checked the larval density at the end
of each sampling period. Generally, the sampling was con-
ducted every 3-5 days in areas where cases of dengue fever
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were observed and every 15 days in other areas. The
corresponding CI was calculated by Equation 1, where
N'denotes number of containers with at least one Ae.
albopictus larva and N denotes the number of total sam-
pling containers [36]. Then we consolidated the CI values
collected in different sampling areas into a monthly index.
This monthly CI represents the monthly Ae. albopictus
population abundance at the larval stage and serves as the
field evidence for model validation.

N+

To correspond to the CI data for each city, we col-
lected daily mean temperature and precipitation data
from China Meteorological Data Sharing Service System.
We also derived photoperiod data using an existing
source [37]. These datasets included Guangzhou over
2007-2011 and Shanghai over 2009-2013.

Basic mechanistic population model

Our proposed model is a natural extension of two basic
mechanistic population models proposed by Cailly et al.
[24] and Tran et al. [27]. These two models were formu-
lated by considering the life-cycle of Ae. albopictus that
consists of two principal periods by distinct habitats: the
aquatic period and the aerial period, as shown in Fig. la.
The two periods can be further divided into the follow-
ing eight sub-stages: four aquatic stages for growth
(eggs, larvae, pupae and emergence) and four aerial
stages for breeding among adults (mating, blood feeding,
gestating and ovipositing) [25]. To simplify the entire
life-cycle, our model merges the emergence stage and
the mating stage into the stage of emerging adults, while
other seven sub-stages are retained, as shown in Fig. 1b.

Table 1 Monthly Cl (in %) of Ae. albopictus larvae in Guangzhou and in Shanghai over a respective five-year period

Guangzhou Shanghai
Month 2007 2008 2009 2010 201 2009 2010 2011 2012 2013
1 0.27
2
3 0.32 573 1.08 046
4 335 2.50 6.23 2.10 642 045 0.90 0.67 0.84 093
5 7.06 9.58 941 16.68 873 2.87 241 1.93 2.05 3.20
6 16.11 13.06 12.61 11.18 9.55 5.05 3.87 641 569 6.87
7 14.11 13.01 16.23 1048 8.14 531 339 7.01 6.69 5.88
8 6.70 15.02 11.28 12.03 10.31 6.58 4.50 6.71 5.74 5.54
9 840 1541 11.20 1093 11.21 5.16 397 5.00 542 417
10 453 1852 7.37 4.80 8.96 2.80 201 2.22 217 2.56
" 217 391 0.59 2.34 6.35 0.29 1.05 1.29 0.62 0.86
12 1.85 0.53 1.16 479

Note: A blank slot indicates the observed larvae during the month is close to 0 (Cl ~ 0.00%)
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In addition, to further account for the effect of diapause,
the abundance of Ae. albopictus eggs are divided into
two groups: non-diapause eggs and diapause eggs to rep-
resent two distinct hatching behaviors.

Temperature plays an indispensable role in mediating
the development and mortality rate of the Ae. albopictus
throughout the life-cycle stages; and the aquatic period
is significantly affected [38]. Erickson et al. [23] firstly
developed a basic six-staged population model to de-
scribe this temperature-driven mechanism. Meanwhile,
Cailly et al. [24] introduced diapause and also accounted
for temperature as the major climatic trigger using a
ten-staged population model. In addition, the second cli-
matic mediator refers to precipitation, which contrib-
utes to the environmental carrying capacity (defined as
the maximum population abundance the environment
can sustain) at both the larval stage and the pupal stage
[12, 39-41]. Based on Cailly et al. [24], Tran et al. [27]
further considered both temperature and precipitation in
the development of Ae. albopictus by a ten-stage mechan-
istic model. Based on these three models [23, 24, 27], an
equivalent seven-stage model is proposed as the basis of
the paper, as given in Equation 2. In this equation, X de-
notes a variable X taking a derivative with respect to time
t in day of year. This equation denotes the daily variation
of population abundance at each of the seven sub-stages
including eggs (E), larvae (L) and pupae (P) in the aquatic

period as well as emerging adults (Aen), blood feeding
adults (Ap), gestating adults (4,) and ovipositing adults (A,)
in the aerial period. In general, this model specifies that the
population at each sub-stage is composed of (1) change of
the population at the current stage (determined by the
mortality rate and development rate) and (2) the population
accumulated from the previous stage. In Equation 2, some
parameters are dependent on climatic variables including
temperature (7) and precipitation (P), as described in
Table 2; other parameters independent of T'and P are given
by experiments from existing literature, as given in Table 3.

E = BA,~(mg + zaiaf p)E

L = zaiaf gE~[mr(1 + L/ky) + f1]L

p =f1L-(mp +fp)P

Aey = fpoe e FPIRIP_ (1, 4y, VA,

Ay = (VaomAan + Y, Ao) (4 + t, + ¥.05)Ap
Ay = YAbAb‘(W‘A +/fag )Ae

A, = faghe=(ma +p, + 7y 4,) A0

- 0, during diapause
dia 1, otherwise

(2)

This proposed basic model is still in need of further
scrutiny, in that it overlooks two important mechanistic
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Table 2 Parameters dependent of climatic variables in the
model

Parameter Definition Reference

*fe Egg hatching rate (day™) Dependent of T [47, 50]

*, Larval development rate (day']) Dependent of T [47]

*fp Pupal development rate (day') Dependent of T [47]

*m, Larval mortality rate (day”) Dependent of T [13]

*mp Pupal mortality rate (day'w) Dependent of T [13]

ma Adult mortality rate (day ™) Dependent of T [13]

*B Oviposition rate by each Dependent of T [53]
female (day ™)

fag Gestating adult development Dependent of T [47, 50]
rate (day )

k, Environmental carrying capacity Dependent of P, k [39-41]

for larvae (ha™)

ke Environmental carrying capacity Dependent of P, kp [39-41]
for pupae (ha™)

facets. First, as noted by Cailly et al. [24, 27] and Tran et
al. [27], diapause characterized only by a single binary
variable (zq;,) appears to be flawed. When applied for a
different region, this model is less effective by assuming
a static diapause period, say late September through
early March (zgi, =0), and the rest of the year as the
non-diapause period (zgi,=1) [27]. As diapause is a
climate-driven phenomenon that differs across geo-
graphic regions and arises on different days [7], a model
that considers the temporal variation of diapause needs
to be considered and validated for all life-cycle stages of
Ae. albopictus. Secondly, when the effect of diapause is
incorporated, the role of climate-dependent parameters
(Table 2) needs to be further scrutinized toward a better
model performance. To address these two concerns, we

Table 3 Parameters independent of climatic variables in the model

Parameter  Definition Value Reference

K Standard environmental carrying 250,000 [24, 27]
capacity for larvae (ha™

Kp Standard environmental carrying 250,000 [27]
capacity for pupae (ha™)

o Percentage of females at emergence 0.5 [47]
stage

me Egg mortality rate (day’1) 0.05 [23,27]

Hem Emerging adult mortality rate (day") 0.1 [27]

Uy Adult mortality rate related to seeking 0.08 271
behavior (day™)

Yaem Emerging adult development rate 04 [27]
(day™)

Yab Blood feeding adult development 0.2 [27]
rate (day™)

Yo Ovipositing adult development rate 0.2 [27]
(day™)
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propose an improved mechanistic population model that
aims to adjust asterisked parameters in Table 2.

Improved mechanistic population model

In this section, we focus on improving the basic model
(Equation 2) from two perspectives: model structure and
model parameters. First, we integrate the confirmed re-
lationship between diapause-related effects and climatic
variables (temperature and photoperiod); and then we
restructured the model by quantifying the conditions
when the diapause arises. Secondly, we adjust several
model parameters, such as development rates, mortality
rates and oviposition rate (see asterisked parameters in
Table 2).

Model structure: relationship between diapause and climate
In our field work, the absence of larvae throughout most
winters indicates the likelihood of diapause in the two
Chinese cities (Table 1). For the study of Ae. albopictus,
the pressing need is to quantify the climatic thresholds
under which diapause occurs and how diapause contin-
gently influences subsequent development. Based on
former experimental findings [31, 42], a female chooses to
lay diapause eggs when two following conditions are sim-
ultaneously fulfilled: (1) the temperature is below 21 °C
and (2) the length of daylight hours is around 13h/14h.
Based on this conclusion, we denote a binary variable z;(£)
as the state of diapause egg oviposition at day ¢ of the year
(Equation 3). This variable is dependent on the average
temperature (7,,.;) and the average daylight hours (D)
observed in the week before . As the oviposition takes
place normally in early autumn [7], here we consider that
the oviposition process starts in the beginning of autumn
(1, August 31 or the 243th day of year [DOY]) and ends
in the day when the diapause period begins (fpegin)-

a(t) = 1, Taver(£) < 21°C and Dayer(£) < 13.5h,t; < £ < tpegin
B9 0, otherwise

(3)

For simplicity, here we denote the percentage of diapause
eggs (rain) as Eq./E, where E = Ey + Eg;, (Ep is the number of
non-diapause eggs and Ey;, is the number of diapause eggs).
According to Tran et al. [27], when a significant portion of
diapause eggs are oviposited (rgi, > 0.9), the species steps
into its diapause period at fyegn. The diapause continues
and ends when these eggs begin to hatch. As observed in
Toma et al. [43], the diapause eggs did not hatch until
weekly mean temperature rose to 10 °C/11 °C and the day-
light hours reached 11h/11.5h. Based on the evidence, we
denote another binary z,(¢) to control for the climatic
threshold for the hatching event, indicating the end of egg
diapause at day ¢ of year (Equation 4), where f.,q is the day
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when the diapause period ends and ¢, is the first day of year
when rg;, (t) <0.1.

() = 1, Taver(t) > 10.5°C and Dyyer(t) > 10.25h, fepg < t < 5
2770, otherwise
(4)

During the diapause period (fpegin < £ < fenq), ON average
Ae. albopictus adults succumb to a temperature of under
9.5 °C (Yaem = Yag=Yar=0 when Ty, <9.5 °C) [43].To
survive such extreme conditions, egg diapause occurs as
an adaptive strategy to improve survival rate compared
with non-diapause egg [7, 34, 35]. However, the mortal-
ity rate and development rate of diapause eggs are less
explored by existing literature; and therefore we denote
these two parameters as myg;, and fy, respectively in
Equation 5 and conduct their sensitivity analysis in Re-
sults section. In addition to Equation 4, the hatching of
diapause eggs is subject to other environmental factors,
such as water and food availability [32, 44, 45]. In ac-
cordance with Tran et al. [27], we consider that the
hatching is also dependent on the first precipitation
event in spring (Pyee > Py, where Py =0 mm).

With these improvements applied in Equation 2, the
adjusted model is presented in Equation 5 to
characterize the population dynamics of Ae. albopictus
in a seven-stage development process, where the nota-
tions follow Tables 2 and 3. This model features the
temperature- and photoperiod- driven mechanism in
both the oviposition z;(f) and the egg diapause z(Z),
while considering diapause egg survival and hatching
during the diapause period.

Eo = (1-21)BA,~(me + fp)Eo

Egia = z21BA0~(Maia + 22f 4i) Edia

L = (fgEo + 2of yiuEaia)~[mr (1 + L/kp) +f ] L

1,) =f1L-(mp +fp)P

Aem :fpge’/‘em(l-%—l’/kl))])_ (mA + deyAem)Aem

Ab = Zdia (YAemAem + YAoAU)_(mA + :Mr + ZdiﬂYAb)Ah
A, = Zdia}’AbAb_ (mA +ng)Ag

Aa :ngAg_ (mA + 4, + ZdiaYAo)Ao

E =Eo+ Eiia

0, Tave(t) < 9-5"C7 tbegingtgtend
1, otherwise

where z,(t) = {
Lhegin = {t| 7aia(t) > 0.9 in the third quarter of the year}

tend = {t|z2(t) =1 in the first quarter of the year}

(5)

Model parameters: temperature-driven mechanism

To derive the asterisked parameters in Table 2, we have
conducted a separate set of controlled experiments to in-
vestigate the response of Ae. albopictus to different
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temperatures in the aquatic period [46]. In these experi-
ments, the development lengths of eggs, larvae and pupae,
and the survival rate of larvae under different tempera-
tures (16 °C, 21 °C, 26 °C, 31 °C and 36 °C) have been
identified (Table 4). Unfortunately, due to limited labora-
tory conditions, several other records, such as the survival
rate of pupae, could not be obtained. Therefore, we have
derived these missing variables from existing literature as
a compromise solution [7, 47, 48], as shown in Table 4.

We then describe these data in a scatter diagrams: the
hatching rate (fz), the larval development rate (f;) and
the pupal development rate (fp) as the reciprocal of the
development length under different temperatures (7),
respectively (Figs. 2a-c). Previous studies have explored a
linear or a quadratic equation [27] to describe the rela-
tionship between the development rates (fxX=E, L, P)
and temperature 7. Our preliminary analysis has identi-
fied a better fit with the Gaussian function. For each
stage X, fx is formulated by the Gaussian curve as a
dependent of 7, as shown in Equation 6. Coefficients
and fitting r-squares for each stage X are given in
Table 5. This relationship describes a biological pattern
that fx gradually increases at a low temperature,
reaches a maximum in an optimal temperature range
(28-34 °C), and then drops to zero at a lethal high
temperature.

f, =1AT) = aexp [ (=) ] . ©

To explore the relationship between the larva/pupa
mortality rate (my, X=L, P) and temperature, we ex-
plored functions established in other literature through
trial and error, such as the monotonous exponential
function (mx = e’ constant) [27] and the linear func-
tion (myx =aT . constant, X =A) [13]. However, none of
these functions fit well with our observations. Our col-
lected data showed that the mosquito had relatively
higher mortality rates under high and low temperatures
(Fig. 2d-f) [47, 48]. Based on this finding, a new regres-
sion function between the myx and T is established,
where my is adjusted to the range of [0, 1], as shown
in Equation 7 and Table 5. This equation provides a
better fit to our observed population abundance and is
relatively consistent with the regression pattern of the
mosquito’s survival rate [49-52]. Appendix A describes
the process of establishing this equation in greater
detail.

my = m,(T) = min L 1 (7)
. = m,(T) = min{ ——————— 1.
|aT2 +bT + c|

In addition to the temperature-driven mechanism of
development rates and mortality rates, we have adopted
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Table 4 Development lengths and mortality rates of Ae. albopictus under different temperatures

Temperature (°C) 5 10 11 15 16 20 21 24 25 26 27 30 31 35 36
Egg hatching length (days) 110° 20° 884 74° 349 60° 259 30° 30° 19% 200 207 20° 244
Larval development length (days) 269°  216° 11.0* 99¢ 700 63% 61° 570 559 121° 120¢
Pupal development length (days) 87° 43¢ 41° 270 229 217 19° 1ef 7P

Larval survival rate (%)° 595 86.3 81.2 75.1 30.0
Pupal survival rate (%)° 833 89.9 938 90.0

Adult survival length (days) = 9 23 36 42 44 40 23

Note: A blank slot indicates no observed data under this temperature

?Data derived from Hawley [7];

PData derived from Delatte et al. [47];

“Data derived from Oliver et al. [48];

9Data derived from Yu [46];

€Adult survival length is defined as the period during which survival rate is over 50 %

an established relationship between the egg ovipostion Results

rate and temperature proposed by Yang et al. [53], as given
in Equation 8. This equation is employed to substitute the
oviposition rate in Tran et al’s model [27], whereas in
their model the rate was formulated as a constant.

B = B(T) = max {-15.837T2 + 1.2897T-0.0163, 0}.

The scientific significance of the proposed model can
only be corroborated by rigorous validation with respect
to field data. To prepare for validation, we aimed to de-
rive the simulation results first with an initial population
of 10° eggs and a starting time #, of January 1%, Then
the model was discretized using the Euler Method in
MatLab 2015 [54]. Specifically, multiple rounds of simu-

(8) lations were conducted on a daily basis over six years in
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Table 5 Coefficients and r-square of the fitting equations
(Equations 6 and 7)

Parameter  Coefficienta  Coefficient b~ Coefficient ¢ r-square
fe(t) 05070 30.85 12.82 0.9081
fi() 01727 2840 10.20 0.9616
fo(t) 0.6020 34.29 15.07 09730
my(t) -0.1305 3.868 30.83 0.8252
me(t) -0.1502 5.057 3517 0.8340
ma() -0.1921 8.147 -2298 09317
Guangzhou (2006-2011) and Shanghai (2008-2013).

The results derived for the first year (i.e. 2006 for
Guangzhou and 2008 for Shanghai) were not used for
comparison, as they were strongly dependent on the ini-
tial setting [24, 27].

We then compared larva abundance between the
monthly observed CI (Table 1) and the monthly simulated
results (Lg, which is relative to the maximum simulated
value over the entire study period) using the Pearson’s cor-
relation coefficient (r). In this case, the study period is
2007-2011 for Guangzhou and 2009-2013 for Shanghai.

Simulated diapause periods

In the model, two parameters mg;, and fy;, related to dia-
pause egg survival remained undetermined. To derive this
set of parameters, we compared them with mg and f¢ in
the original model (Equation 2): mg, = aymg and fy;, = aofg
where 0 <a; <1, 0<a, < 1; and then we traversed a; and
a, in a given range (a;: 0.01-1, a,: 0.01-1) and derived
the optimal combination with the highest r for each city,
as shown in Fig. 3. The highest r was chosen as it
represented the best fit between the field data and the
simulation results, eventually yielding the best model per-
formance. In Guangzhou, the r is comparatively stable
within a narrow range of 0.80-0.85 (Fig. 3a), whereas in
Shanghai, r fluctuates over a wider range of 0.5-0.9
(Fig. 3b). The highest r was derived at a; = 0.1 and a, = 0.1
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for both cities (at = 0.84 for Guangzhou and r = 0.90 for
Shanghai). Based on the optimal combination, we esti-
mated the starting day and ending day of the diapause
with the new model.

Figure 4 summarizes the finding about the diapause
period and the non-diapause period with starting time
(t,) and ending time (t.) in both cities. It shows that on
average, the diapause in Guangzhou began in late
November on the 330st day of the year (DOY 330) and
ended in early March the next year (DOY 46); and in
Shanghai, it began in mid-October (DOY 294) and
ended in mid-March the next year (DOY 69). This result
indicates an average diapause period of 81 days in
Guangzhou and 140 days in Shanghai.

Simulated population abundance

Based on the highest r derived at a; =0.1 and a, =0.1,
we simulated the population abundance for each of the
seven stages on a daily basis. Figure 5 shows part of the
results in the aquatic period (E, L, P) and the aerial
period (Ap, Ag, A,). A general observation is that the
simulated population at each stage is nearly two times
greater in Guangzhou (2007-2011) than that in Shang-
hai (2009-2013). This result might be attributed to the
fact that the duration of the non-diapause period is lon-
ger in Guangzhou, which creates a more favorable envir-
onment for the mosquito to survive and develop. We then
estimated the favorable development period at the larval-
pupal stage (L + P) and at the adult stage (A, + A,) for the
two cities on an annual basis, as given by Table 6.

Model validation
The validation of the model is shown in Figs. 6 and 7,
using the correlation coefficient (r) and zero-intercept r-
square (r3), respectively.

Figure 6 is the comparison between the observed CI
and the simulated Ly over a five-year period in
Guangzhou and that in Shanghai (Fig. 6). The simulated
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Fig. 4 The simulated diapause period (shaded areas) and non-diapause period (white areas) of Ae. albopictus population for a Guangzhou, 2007-
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population is highly consistent with the field observa-
tions (CI), with r equals to 0.84 for Guangzhou (Fig. 6a)
and 0.90 for Shanghai (Fig. 6b). However, a good match
with field data does not fully capture the fluctuation of
population, leading to underestimations (green dots) and
overestimations (red dots) for certain months. Four appar-
ent underestimations are Oct 2008, May 2010 for
Guangzhou and Jun 2011, Jun 2013 for Shanghai.

Figure 7 shows the * for the comparison within each
single year. Generally, over a five-year period, Shanghai
(Fig. 71) has a better fit than Guangzhou (Fig. 7f) in

terms of rg. Specifically, in Shanghai, the simulation re-
sult is overall very satisfactory with the best fit appearing
in 2012 (13 = 0.91, Fig. 7j); in Guangzhou, the simulation
result in 2007 is considerably underestimated (15 =0.67
compared to the average 7§ = 0.71 in Fig. 7f).

These results share similar findings with other case
studies in Shanghai [55, 56] and Guangzhou [57, 58].
Specifically, the predicted population growth periods in
Shanghai (i.e. Fip>1 %, March-November; Fy>1 %,
April-November, Table 6) parallel with existing studies
[55, 56].
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Fig. 5 Simulated Ae. albopictus population over a respective five-year period for Guangzhou (2007-2011) and Shanghai (2009-2013) with respect
to: a-b eggs (red), larvae (blue) and pupae (green); c¢-d blood feeding adults (red), gestating adults (blue) and ovipositing adults (green). Grey areas
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Table 6 Simulated favorable development period (DOY: Fp or F5 >1%) at the larval-pupal stage (L + P) and at the adult stage (A, + Ao)

Guangzhou 2007 2008
Larval-pupal (Fp > 1%) 46-352 47-353
Adult (Fa > 1%) 58-358 73-358

Shanghai 2009 2010
Larval-pupal (Fip > 1%) 77-341 62-324
Adult (Fa > 1%) 114-320 127-320

2009 2010 2011 Average

45-365 45-335 47-354 46-352 (Feb-Dec)

60-364 60-341 65-357 63-356 (Mar-Dec)
2011 2012 2013 Average

73-313 87-315 75-330 75-325 (Mar-Nov)
19-315 121-309 120-318 120-356 (Apr-Nov)

Fip: percentage of larval-pupal population in total population across all stages of a year;
Fa: percentage of blood feeding and ovipositing adults in total population across all stages of a year

Sensitivity analysis

In addition to model validation, another pressing need is
to examine the sensitivity of the new model to the
change of parameters. The nine parameters independent
of climatic variables (given in Table 3) were examined by
using the fraction factorial design [59]. The initial values
of these parameters were assigned according to existing
literature [23, 24, 27, 47]. Then we reassigned a value to
each of the parameters (e.g. mg) within a £10 % range
(e.g. 0.9mg-1.1mg) and derived the maximum r in the

new model (Equation 5). We followed this method by
changing each of the nine parameters, one at a time, and
derived nine maximum r. Fig. 8 shows the results.

It can be seen from Fig. 8 that the change of r intro-
duced by the single-factor sensitivity analysis is generally
minor. The overall improvement of r ranges from 0.004
to 0.017 (or 0.4-2.0 %) in Guangzhou and from O to
0.016 (0-1.7 %) in Shanghai. The greatest change is ob-
served on parameter ¢ in the case of Guangzhou and mg
in Shanghai. This analysis provides compelling evidence
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Fig. 6 Comparison between observed monthly Container Index (Cl, dotted lines) and simulated monthly relative abundance of larvae (Lg, solid
black lines) for a Guangzhou, 2007-2011 and b Shanghai, 2009-2013. Green dots represent underestimation of the model and red dots
represent overestimation




Jia et al. Parasites & Vectors (2016) 9:175

Page 11 of 15

a Guangzhou 2007

20

b Guangzhou 2008 C Guangzhou 2009

Le (%)

confident interval

18 - I 2:0.67 -~ 18 - I 2:0.88 18 - I 2 =0.74 //
0 0 0 P
16 16 -
14 — // @ 14 — //
12 - - 12
—
8 10 — -~ 8 10 o g
o o4 -7 ... o 5 0
6 - - PPt 6
4 - * — 4 -
-~
2 4 ) // 2 4
° Y o —@ T T
o 10 20 30 40 SO 60 70 80 90 100 o 10 20 30 40 SO 60 70 80 90 100
Ly (%) Ly (%) Lg (%)
d Guangzhou 2010 € Guangzhou 2011 f cuangzhou 2007-2011
20 2 20 2 20 2
1s | 15°=0.58 PR 1 J 1?=0.74 o 1s o 1°=0.71 e
16
14
12
g g g 10
o 0 o
6 6
4 4
2 2
[+] T T T T f T T T T o T T T T T T T o T T T T T T
o 10 20 30 40 SO 60 70 80 90 100 o 10 20 30 40 SO 60 70 80 90 100 o 10 20 30 40 SO 60 70 80 90 100
Ly (%) Ly (%) Lg (%)
g Shanghai 2009 h shanghai 2010 i Shanghai 2011
10 10 10
-
° 4 12=0.89 L s 4 ry?=0.79 s 4 1y2=0.79 PR
5 — // B 8
7 — . 7 7
6 — 6 6
g s — - g s 8 s
v} s . 0 a o a
3 — 3 3
2 4~ 2 2
1~ 1 1
o T T T T o - T T T o
o 10 20 30 40 SO 60 70 S0 90 100 o 10 20 30 40 SO 60 70 380 90 100
Lg (%) Lg (%) Lg (%)
i Shanghai 2012 k sShanghai 2013 | Shanghai 2009-2013
10 10 10 /
s 4 rs2=0.91 o s 4 ry2=0.72 -~ s 4 r,2=0.80 -
0 P 0 - 0 P
3 — 8
j 7 - - 7 [ 2
6 6 | - S 6
g g 5] P . s
0 a 0 a - e //’ 0 a
3 3 P 3
2 2 2
1 1 1
o T T T T T o - T o T T
0 10 20 30 40 SO 60 70 S0 90 100 0O 10 20 30 40 SO0 60 70 30 90 100 0O 10 20 30 40 SO 60 70 380 90 100

Ly (%)

Fig. 7 Zero-intercept r-square values (1) derived from the regression analysis between observed monthly larval Container Index (Cl) and simulated
monthly relative larval abundance (Lg) for a-f Guangzhou, 2007-2011 and g-l Shanghai, 2009-2013. Green dots represent underestimation of the
model and red dots represent overestimation. Dashed lines (-=) are thresholds of the predicted interval, while dotted lines (===) are thresholds of the

L (%)

that the proposed model is relatively robust and is not
sensitive to non-climatic variables, corroborating the ap-
plicability of the model.

Discussion

This section evaluates the improvement of the new
model based on several adjustments to the original
model and discusses the difference in model perform-
ance between the two study areas.

Model comparison
First, we would like to examine the improvement of the new
model (designated as Model AB) by comparing with the

original model (Model O) and two partially adjusted models
(Model A and Model B) according to the Methods section.

Model O: Original model (Equation 2)

Model A: Original model with diapause-related structural
adjustment (Equation 5)

Model B: Original model with temperature-related
parameter adjustment (Equation 2 + Equations 6-8)
Model AB: New model with all adjustments applied
(Equation 5 + Equations 6—8)

Figure 9 shows the correlation coefficient r with the
two sets of field data applied into these four models. It
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can be seen from the comparison that although Model
O is well suited for Guangzhou (r=0.77), it does not
perform well for Shanghai (r=0.42). This result is pos-
sibly introduced by the static diapause parameters in
Model O that could not fully capture the climatic-driven
mechanism of diapause, degrading the performance of
the model. When the diapause effect is included, Model
A demonstrates a huge improvement in cases of Shanghai
(r=0.75 or an improvement of 78.6 %), where diapause
shows a confirmed seasonal pattern. Adjusting the model
with only temperature-related parameters (Model B)
yields moderate improvement in both study areas; and the
best performance is achieved with two facets of adjust-
ments applied.

Regional comparison

The results above corroborate the model’s potential in
simulating Ae. albopictus population. However, com-
pared to Shanghai (31.2°N), the performance in
Guangzhou (23.1°N) seems to be less satisfactory (i.e.
curve fitting rate is 90 % for Shanghai and 84 % for
Guangzhou, Fig. 6). This regional difference could be ex-
plained in two very different respects.

First, the effect of the diapause in the low-latitude area
is of arguable existence [7]. Guangzhou is located further
south and has comparatively warm and humid winters.
The mild climatic conditions could be favorable for certain
Ae. albopictus to sustain and develop without taking the
strategy of diapause. For example, our field experiments
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Fig. 9 Correlation coefficients r generated by single-factor adjustment in Model AB for a Guangzhou and b Shanghai. The x-axis includes nine
non-climatic parameters, as given in Table 3. The grey bar is the maximum fitting r by adjusting that parameter within a £10 % range; and the
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showed evidence that during winter times there were still a
very low number of larvae, pupae and adults (Fig. 5) in
Guangzhou that could circumvent the process of diapause.
This observation was supported by Liu et al. [58] that
found in the same region a small proportion of Ae. albopic-
tus larvae hatched after mid-November could still survive
the extreme weather and grow into non-ovipositing
adults. A separate evidence could be found in Fig. 9
that applying the diapause-related structural adjust-
ment is less effective in Guangzhou (r: 0.72 — 0.80)
than in Shanghai (r: 0.42 — 0.75).

Secondly, the seasonality of Ae. albopictus is relatively
complex in tropical climate areas. In an annual develop-
ment cycle, Ae. albopictus population showed one peak
in subtropical climate areas and two peaks with different
magnitudes in tropical climate areas [60]. As Guangzhou
is located in close vicinity to tropical climate areas, our
field observations of CI show interchangeable patterns
(i.e. 2007, 2010 and 2011 have two peaks, while 2008
and 2009 have one peak, Fig. 6a). This dynamic pattern
created a certain degree of uncertainty for validation and
eventually degraded model performance for cases in
Guangzhou. Comparatively, Shanghai with an apparent
single-peak pattern in the years of study yielded better
simulation results (Fig. 6b).

Conclusions

The phenomenon of diapause among Ae. albopictus has
been confirmed in most temperate climate areas and is
of arguable existence in subtropical climate areas [7].
Generally, low temperatures and short photoperiods cre-
ate an unfavorable condition for Ae. albopcitus to de-
velop. To survive the extreme conditions, especially
during winter times, egg diapause occurs as an adaptive
strategy to lower mortality rates [1, 7]. This climate-
driven mechanism of diapause has only been explored in
a limited manner [24, 27].

This paper proposes a climate-driven mechanistic
population model of Ae. albopictus that accounts for the
biological phenomenon of diapause. The model is a nat-
ural extension of two existing mechanistic population
models [24, 27] with emphasis on the climate-driven
diapause conditions and stage-specific moderating vari-
ables. Although the former models also considered dia-
pause, several issues remained unaddressed, such as
identifying the time when diapause eggs are laid and
hatched, demarcating the thresholds of diapause and
non-diapause periods, and incorporating the mortality
rate and the hatching rate of diapause eggs. To remedy
these flaws, an improved generic model is proposed,
capturing the multifaceted climate-driven mechanism of
diapause-related effects. The formation of the model and
the attribution of parameters are fine-tuned to existing
research and field data collected in two Chinese cities
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over a respective five-year period. Overall, the simulation
results are relatively compelling and fit the majority of
our field observations. The study also confirms the re-
spective as well as the joint effects of model structure
and temperature-driven parameters, corroborating find-
ings from other mechanistic models [23, 24, 27].

Admittedly, the proposed model is methodologically
flawed in several aspects. First, the parameter of precipi-
tation was included but was not closely examined in our
model. Existing studies have identified either a positive
[41], a negative [12], or no influence of precipitation on
population abundance [43]. The actual effect of precipi-
tation should be carefully weighted through rigorous
field observations before any attempt to quantify the
variable in the model. Secondly, in the study only the
Container Index was used for model validation and
could not fully represent the multifaceted population
growth of Ae. albopictus. Future research should explore
other monitoring indices, such as the Breteuil Index (BI)
and the Housing Index (HI) to generate a solid and ro-
bust conclusion. Thirdly, the sensitivity analysis on the
non-climatic variables (Table 3) is exclusive of other var-
iables, while the joint effect of multiple variables is not
evaluated. In the future the extension of the assessment
should include multivariate analysis methods, such as
the Fourier amplitude sensitivity testing [59, 61].

Lastly, a promising direction to extend the study con-
siders the incorporation with other non-mechanistic
ecological models, such as the GARP [62] model and the
CLIMEX model [63] and the correlation with epidemic
models, such as the SIR model [64, 65] to describe the
mechanistic transmission and the spatiotemporal distri-
bution of mosquito-borne epidemics. For example, one
such an attempt is the work conducted by Erickson et al.
[66] that integrated the research on Ae. albopcitus popu-
lation [23] with an SEIR model [66]. To this end, better
understanding the mechanism and variables effecting
the Ae. albopictus population growth and improving the
model performance will eventually contribute to pro-
active strategies to predict and prevent contingent
mosquito-borne epidemics.

Appendix. Formulation of the mortality rate at
the larval stage and the pupal stage

To establish Equation 7, we first estimated the daily sur-
vival rate at the larval stage and at the pupal stage with
the existing dataset (Table 4). Specifically, Sx(¢) denotes
the survival rate at time ¢ at stage X (larval or pupal)
and Sx(t — t + d) denotes the total survival rate from day
t to day (t +d). Supposing Sx(f) was stable from day (¢)
to day (¢ + d), Sx(¢) was calculated by Equation 9. Within
the time length of Sx(t — ¢ + d), the daily survival rate at
stage X under different temperatures was calculated
(Table 5). According to Lunde et al [67], we also
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obtained the daily mortality rate mx(t) at stage X under
the corresponding temperature by Equation 10.

Sx(t) = /Sx(t—t +d). 9)

-1n(Sx(¢)), Sx(¢) > 0,

1 ,Sx(l') =0 (10)

my(t) =
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