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Abstract

Background: Chagas disease is a key health problem in Latin America and is caused and transmitted by Trypanosoma
cruzi and triatomine bugs, respectively. Control of triatomines has largely relied on the use pyrethroids, which has proved
to be ineffective in the long term. Alternatively, the use of entomopathogenic fungi has been implemented to control
triatomine bugs. These fungi are highly efficient as they induce a reduction in immune response on insects. Meccus
pallidipennis is the main triatomine vector of Chagas disease in Mexico. In this work we investigated the effects of two
entomopathogenic fungi, Metarhizium anisopliae and Isaria fumosorosea, on M. pallidipennis nymphs in terms of insect
survival and immune response.

Methods: We had an infected and a control group for each fungal species and assessed: a) insect survival during 30 days;
and, b) phenoloxidase (PO) and prophenoloxidase (proPO; two key traits in insect immune response) at 24, 48, 96
and 144 h. For survival we used Kaplan-Meier survival analysis while for immune response we used factorial, repeated-
measures ANOVA for each fungal species.

Results: Animals treated with M. anisopliae died sooner than animals treated with /. fumosorosea. Infected animals
showed lower PO and proPO values than sham individuals, with a clear decrease in these parameters at 24 h with no
further changes after this time.

Conclusions: Our study widens the possibility of entomopathogenic fungi being used for triatomine control.
The negative effect on PO and proPO seems mediated by a down-regulation of the triatomine immune response.
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Background

Chagas disease is caused by the protozoan Trypanosoma
cruzi and is considered endemic from Mexico to Argentina
[1]. The main transmission source is vectorial, through in-
sect bugs of the subfamily Triatominae (Hemiptera: Redu-
viidae) [2]. For the case of Mexico, Meccus pallidipennis is
responsible of approximately 74 % of vectorial transmission
(Martinez-Ibarra et al. [3]). The biology of M. pallidipennis
explains such high transmission rate: a) a wide distribution
in Mexico [4, 5] b) its relatively high abundance compared
to other triatomines [6] c) its peridomestic nature, meaning
close contact with humans [6] d) it is one of the triato-
mines with the highest 7. cruzi infection rates [7]; and e)
its capacity as highly efficient vector in terms of egg incu-
bation and hatching time, egg-to-adult mortality, ovipos-
ition rate and post-feeding defecation times [8].

Given the risk that M. pallidipennis implies for T.
cruzi transmission, there have been several efforts to
control it. One of these is the use of synthetic pyre-
throids such as bifenthrin, cyfluthrin and deltamethrin
insecticides. However, these pyrethroids are not reliable
given the high bug re-infestation in dwellings after pyreth-
roid spraying [9, 10], which is associated with insecticide
resistance [11, 12]. Although some other control method-
ologies have been proposed and/or explored (e.g. using
genetically-modified endosymbiont bacteria that impede
T. cruzi development [13], using natural predators [14]),
possibly more than one control action is needed [15].
Here we explored the use of two entomopathogenic fungi,
Metarhizium anisopliae (Hypocreales: Clavicipitaceae)
and Isaria fumosorosea (Hypocreales: Cordycipitaceae),
against M. pallidipennis nymphs. Use of these fungi has
been highly successful for controlling different insect pests
and vectors such as Asian tiger mosquitoes Aedes albopic-
tus [16)], cattle ticks Rhipicephalus microplus [17], Asian
citrus psyllids Diaphorina citri [18] and diamondback
moth Plutella xylostella [19]. As a matter of fact, several
strains of M. anisopliae and 1. fumosorosea, that are highly
efficient to kill triatomines, have been identified [20-23].
Thus, entomopathogenic fungi seem a viable route for
triatomine biological control [12, 23-25].

The mechanism that makes entomopathogenic fungi so
successful during insect attack, starts with the conidium
contact with the insect cuticle [26]. During this, the fungus
adheres, penetrates, disseminates and exits the insect body
[27]. Once inside, the fungus evades the insect’s immune
system by: 1) enzyme (e.g. proteases and chitinases) devel-
opment that degrades the insect cuticle; 2) development of
blastospores and hyphal bodies in the hemolymph which
inhibit insect immune response; and 3) production of
secondary toxic metabolites such as destruxins and
beauvericins [28]. However, perhaps the largest attri-
bute of entomopathogenic fungi as a vector and pest
control relies on their immunosuppressive action. In
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support of these, several studies have found that two
key insect immune players, phenoloxidase (PO) and,
its precursor, prophenoloxidase (proPO), become down-
regulated during fungal infection in some, but not all, insect
species [29-31]. It is known that during the course of infec-
tion, insects make use of PO and proPO against a plethora
of pathogens [32, 33]. The enzymatic process from proPO
to PO is regulated by a complex proteolytic cascade, which
is activated by the recognition of cell wall components of
fungi and other pathogens [32]. Furthermore, PO gives rise
to cuticle sclerotization and wound repair but also pro-
motes melanine biosynthesis during the formation of
nodules and encapsulation of pathogens [34, 35]. Although
it is unclear how PO and proPO activity is inhibited, one
hypothesis is that fungal destruxins destroy those proteins
present in insect cells responsible for proPO production
[36, 37].

The main aim of this study was to test the efficiency
of two entomopathogenic fungi, Metarhizium anisopliae
and Isaria fumosorosea, to control M. pallidipennis
nymphs. For this, first we infected bugs using each
fungal species individually and assessed survival. Then,
to understand the physiological mechanism underlying
fungal infection, we recorded the activity of PO and proPO
using repeated time measures of the same individual.

Methods

Insects

We used 5th stage nymphs of M. pallidipennis, from a
colony maintained in the insectary of the Biology of
Parasites, Microbiology and Parasitology Department,
Faculty of Medicine, Universidad Nacional Auténoma
de México. This colony was established in 1998 from
insect individuals collected from Oaxtepec village (18°54"
23"”N, 98°58'13"W), state of Morelos, Mexico. Insects
were maintained under controlled conditions of 60 %
relative humidity, 28 °C, and 12/12 h light/dark cycles
at the laboratory.

Nymph infection

Fungi

We used monosporic cultures of M. anisopliae EH-473/4
and L fumosorosea EH-511/3 strains whose insect viru-
lence, pheno-and genotypic characterization and safety for
mammals are well known [38—40]. These fungi are part of
the culture Collection of the Basic Mycology Laboratory,
Microbiology and Parasitology Department, Faculty of
Medicine, Universidad Nacional Auténoma de México,
registered in the “World Federation of Culture Collec-
tions” (WEFCC) as BMFEM-UNAM 834. The original fungal
strains were obtained from the “Coleccién de Hongos
Entomopatégenos (CHE)” from the Centro Nacional de
Referencia de Control Biolégico (CNRCB), Colima City,
Mexico. M. anisopliae was isolated in 1994, from
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Aeneolamia sp. (Hemiptera: Cercopidae), from a sugarcane
crop in San Luis Potosi city, Mexico. The label of M.
anisopliae at CNRCB is CHE-CNRCB 227. The other
fungus, L fumosorosea was isolated in 1994 from Bemi-
sia sp. (Hemiptera: Aleyrodidae) from a watermelon
crop in Colima, Mexico. The label of L fumosorosea at
CNRCB is CHE-CNRCB 304. Fungi were previously
cultivated in potato dextrose agar (PDA, g/l: 300 g of
white potato, 20 g of dextrose, 15 g of agar (BIOXON?®,
Meéxico) and then incubated at 28 °C for eight days [41].
Conidial suspension. The conidia were produced in
PDA medium cultures and incubated at 28 °C for 7 days.
After incubation, conidia were obtained using 3 ml of
0.5 % Tween 80. This suspension was kept on ice through-
out the bioassay, homogenized and two dilutions were
performed: 1:10 and 1:100. The number of conidia was
counted in a Neubauer chamber and the suspension
was adjusted to obtain a final concentration of 1 x 10’
conidia/ml for the infection procedure. The whole pro-
cedure was performed in a laminar flow hood [42].

Survival assessment

Infection procedure and infected group

We applied 30 ul from a suspension of 1 x 10 conidia/ml
of M. anisopliae or I fumosorosea on each nymph’s prono-
tum. Each nymph was placed individually in a sterile plas-
tic Petri dish with sterile filter paper and was incubated at
28 °C with a 12/12 h light/dark cycle. After 24 h, all in-
fected nymphs were transferred to 1 % agar-water (to pro-
vide appropriate humidity conditions for fungal growth)
in plastic Petri dishes (100 x 15 mm) and were again incu-
bated using a Precision 818° incubator at 28 °C and 80 %
relative humidity for one month. We corroborated that
the infection took place by assessing presence of hyphae
and/or mycelium on the insect, and we recorded the num-
ber of dead insects daily [40, 42, 43]. We had three criteria
to assess that an insect was dead due to fungal infection:
a) signs of mycelium presence on the cuticle (by direct ob-
servation under a stereoscopic microscope, Olympus
S7Z40); b) presence of fungal structures inside the insect
using imprints on the day when dead insects were re-
corded; and c) motionless insects. Furthermore, we took
fungal samples from nine infected insects of each fungus.
This was done by taking some sporulating fungi emerging
from the insect cuticle, using an inoculating loop under a
flow hood. Fungal samples were cultivated in PDA cul-
tures, to corroborate the micro- and macroscopic charac-
teristics of each infecting fungal species. For imprints, the
insect cuticle surface was cleaned using 70 % ethanol
and 40 % sodium hypochlorite to remove potential con-
taminants [42]. Subsequently, a longitudinal (from head
to posterior end) cut was gently made using scissors and
the cuticle was removed. A drop of blue cotton was then
placed on the internal area of the cuticle, and this structure
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was placed on a slide, covered with a coverslip and sealed
with nail varnish to be observed under a microscope at
40x. Each evaluated group had 10 insects with 5 replicates
for each fungus, i.e. 50 insects per fungal strain infection.

Sham group

We applied 30 pl of 0.5 % Tween 80 on each nymph’s
pronotum. Each animal was then moved to a Plastic
Petri dish with sterile filter paper and was incubated at
28 °C with a 12/12 h light/dark cycle. Except for the fungal
infections, this sham group was treated under the same
conditions as the infected groups: 24 h after applying 30 pl
of 0.5 % Tween 80, all insects were transferred to agar-
water (1 %; again to provide humidity conditions for fungal
growth) in plastic petri dishes (100 x 15 mm) (see [43])
and were incubated using a Precision 818° equipment at
28 °C and 80 % relative humidity for one month. Similar to
the infected group, mortality of sham insects was recorded
daily for one month. To assess whether an insect was dead,
we also applied the three criteria expressed above. Similar
to the infected groups, we used 10 insects with 5 replicates
for each fungus, i. e. 50 insects for each fungal strain.

Negative effects of fungal infection on PO and proPO

We used the same rationale of infection and incubation
for those animals described above for the survival experi-
ment. However, rather than assessing survival, we collected
hemolymph from both groups every 24, 48, 96 and 144 h
after the infection for both fungal species.

Hemolymph extraction

Using a 1 ml micro syringe, we punctured the insect mem-
brane that separates the coxa and trochanter of one of the
posterior legs [44], and gently pushed the abdomen. The
emerging hemolymph was then collected with a 10 pl
micropipette. Hemolymph was mixed with PBS pH 7.2 1 x
2.9 g of Na,HPO,4.12H,0, 0.2 g of KH,PO,, 0.2 g of KC],
8.0 g of NaCl and deionized water, in a proportion of 1:2.

Protein concentration

For protein quantification and standardization in our
samples, we used the Pierce method with the BCA com-
mercial kit (Thermo Fisher Scientific, Rockford, Illinois).
For this, in each of 96 microwells of a plate (Costar 96;
Corning, New York, New York) we placed 10 ul of
hemolymph, 40 pl of PBS pH 7.2 1 X and 150 pl of the
Pierce re-agent. We used 2 mg/ml albumin to obtain a
standard curve. The plate was covered with foil and was
incubated at 37 °C for 30 min. Absorbance was measured
in an ELISA plate reader (ELX 800, Biotek) at 562 nm.
Protein content was adjusted to 10 ug of protein to record
PO and proPO activity [45].
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Fig. 1 Survival of fifth instar nymphs of Mccus pallidipennis infected with M. anisopliae (EH- 473/4), I. fumosorosea (EH- 511/3) and their
control groups
J
PO activity hour (giving a total of 12 readings). As blanks we used

PO activity levels were quantified spectrophotometrically 100 pl of PBS with 100 ul of L-Dopa. PO readings were
through catalytic conversion of L-dopa 3, 4-dihydroxi-L-  obtained in different time periods: after 24, 48, 96 and
phenylalanine (colorless) to dopachrome (brown-red) 144 h. PO activity was expressed as enzyme units (U),
[46]. Again using a 96 microwell plate, we added 10 pg  where 1 U is the enzyme amount which produces 1 pmol
of protein of each sample contained in 100 pl of PBS. To  of dopachrome (product) per minute [47].

start PO activation, we added 100 ul of the L-DOPA

substrate to a 4 mg/ml concentration. The plate was in-  proPO activity

cubated at 37 °C for 20 min in the dark. After this 20-  proPO activity was recorded via an artificial activation with
min period, readings were taken with an ELISA plate  a-chymotrypsin [46]. We used 1 pg/ml of a-chymotrypsin
reader (ELX 800, Biotek) at 490 nm each 5 min for one  (Sigma®). Using the same 96 microwell plate described
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Fig. 2 Fifth instar nymphs of M. pallidipennis infected with M. anisopliae (EH- 473/4; first row of pictures) and presence of fungal structures
(second and third row) on the internal area of the cuticle along time. These fungal structures are shown as hyphal bodies, conidia and conidia
columns (40x)
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above, we added 45 pl of PBS, 20 pl of hemolymph sample
and 5 pl of a- chymotrypsin. This mixture was incubated at
37 °C for 20 min in the dark. After this 20-min period,
130 ul of L-Dopa was added, and the resulting readings
were recorded at 490 nm, each 5 min for one hour (giving
a total of 12 readings). As blanks, we used 65 pl of PBS with
130 pl of L-Dopa. proPO readings were obtained in dif-
ferent time periods: after 24, 48, 96 and 144 h. To rec-
ord specific proPO activity, we did the same as for PO
described above.

Statistical analyses

We used Kaplan-Meier analysis for survival. Average
survival time as well as risk ratio index were analyzed
using a Log-rank (Mantel-Cox) test. For analyzing the
effect of treatment on PO and proPO, we used four factor-
ial, repeated-measures ANOVA for each fungal species,
with time of PO and proPO assessment as the repeated
measure and treatment (experimental, sham) as the
between-group variable. Previously, and to fulfill normal

distribution assumptions of PO and proPO, we log trans-
formed our data. Analyses were carried out with the re-
peated measures module of SPSS version 21.

Results
Survival
There were differences in survival distribution for the four
treatments (X(3) = 29.12, P<0.0001; Fig. 1). A comparison
of both fungal treatments indicated that individuals treated
with M. anisopliae died sooner than those treated with L
fumosorosea (X(21) =11.49, P=0.0007). For those treated
with L fumosorosea as well as the control groups of both
fungi, no further mortality was detected after 20 days.
Imprints indicate a large invasion of both fungal species
within triatomines (Figs. 2 and 3). In relation to assessment
of fungal infections, cultures from the nine infected nymphs
with M. anisopliae showed the following microscopic
features: branched conidiophores with basipetal catenulate
cylindrical conidia (Fig. 4a). In regards to macroscopical
characteristics, initially the colony had a white color that,
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(EH- 473/4; a, b) and Isaria fumosorosea (EH- 511/3; ¢, d)
A\

Fig. 4 Microscopic and macroscopic features after fungal growth of samples recovered from nine nymphs infected with M. anisopliae

after several days, turned into an olive green color (Fig. 4b).
Cultures from the nine infected nymphs with L fumosoro-
sea showed microscopic fungal features such as simple co-
nidiophores, with a globose basal portion with emerging
fusiform conidia (Fig. 4c). As for macroscopic characteris-
tics, a typical white cotton-like colony was observed with
gray-pinkish color when sporulated (Fig. 4d).

PO and proPO activity according to fungal treatment
Metarhizium anisopliae infection

The general model for predicting PO changes indicated
that the interaction time*treatment was significant (F33; =
11.721, P<0.0001). Changes in PO were not significant
along time (F337;=0.692, P=0.563) but treatment was
(F139 =69.035, P<0.0001). According to the latter, PO
showed lower values in the infected group (Fig. 5a).

The general model for proPO changes was not significant
(F33,=2.192, P=0.108) with non-significant differences
along time (F33, =0.144, P=0.932) but there was a clear
negative effect according to treatment (F3,=31.737, P<
0.0001) where the infected insects ended up with lower
values than sham insects (Fig. 5b).

Isaria fumosorosea infection

There was a significant change in PO when the general
model for the interaction time*treatment was examined
(F331 =4.812, P=0.007). Time did not predict PO changes
(F331=0.522, P=0.671) but treatment did, resulting in
lower values for infected insects (Fy 33 = 61.072, P < 0.0001;
Fig. 6a).

ProPO did not show significant changes according to
the interaction time*treatment (F3,; =2.337, P =0.103).
Time did not affect proPO (F3,; =0.662, P=0.584) but
treatment did with lower values for infected insects
(Fy 23 =28.543, P < 0.0001; Fig 6b).

Discussion

Our survival experiment indicated differences in killing M.
pallidipennis, with M. anisopliae with a higher virulence
than L fumosorosea. As a matter of fact, the former fungus
killed all animals at day 8 while the latter took longer than
30 days. These differences in the action of both fungi are
likely due to a stronger effect of M. anisopliae when
compared to L fumosorosea. For example, M. anisopliae
produces immunosuppressor toxins like destruxin [48]
that may lead to damage hemocytes [49] and cause insect
paralysis (via an increased calcium level in Malpighian
tubules) [50]. These effects take place possibly due to the
ability of M. anisopliae to produce a collagenous coat of
hyphal bodies that mask the recognition of B-1,3-glucans
by the insect immune system [51]. In contrast, little is
known in regards to the effect of I fumosorosea. It is clear
that this fungus takes longer to sporulate than M. aniso-
pliae, possibly due to a more paused beauvericine produc-
tion [52] and hyphal growth [43]. How such effects take
place via inhibition of the insect immune response, is
unclear. Our results partly echo findings in other triato-
mines in which M. anisopliae was used [23, 53, 54]. To
our knowledge, however, I fumosorosea has been less
extensively used against triatomines and one response
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Fig. 5 PO (a) and proPO (b) activity responses in fifth instar nymphs of M. pallidipennis infected with M. anisopliae (EH- 473/4) along time

may be that, as we have documented, M. anisopliae seems
more effective. In fact, other studies in non-triatomines
have corroborated that M. anisopliae is more effective
than L fumosorosea [55-57]. It would be interesting to
compare our results with those occurring at other tria-
tomine ages. Unfortunately, such studies have not been
carried out yet.

Overall, we found that after fungal infection, both proPO
and PO activity decreased. A first defense line in insects is
that of the cuticle, where fungistatic fatty acids, phenoloxi-
dases and melanins impede fungal penetration [58]. In case
such barrier is overcome, via degradation of insect cuticle
hydrocarbons [59], then the insect immune system makes
use of several humoral and cellular components that
include hemocytes that encapsulate fungal parts, PO,
reactive oxygen species and antimicrobial peptides [60]. For
the case of PO, this synthesizes melanin whose antifungal

activity acts directly on the fungal surface which stops
fungal development [36, 61]. Despite this role for PO,
and its precursor, proPO, these immune components
have been shown to decrease during fungal infection
[29-31] although the underlying mechanism for such
decrease is unclear. In relation to this, fungal infection
using Beauveria bassiana in the migratory grasshopper
Melanoplus sanguinipes [62] and of M. anisopliae in
the locust Schistocerca gregaria [29, 63], led to a reduc-
tion in hemocyte number. One way this negative action
can occur is via the use of fungal mycotoxins such as
destruxin [48]. This compound reduces PO activity,
phagocytosis and encapsulation [52]. It is unclear, however,
whether such reduction accompanies or is also a function
of a reduction in hemocyte number. One reason why we
should expect a relation among these negative actions is
that hemocytes carry out the PO cascade so that if these
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cells are affected by fungus, possibly in the form of lysis
[64], proPO and PO are affected too. Furthermore, looking
more closely at proPO values after infection by both fungji,
this immune response showed higher activity after 1. fumo-
sorosea than after M. anisopliae treatment (Figs. 5 and 6).
One has to remember that proPO is the resource tool for
PO production [32] so that if both fungi had the same in-
hibitory PO response, proPO values should remain the
same after the infection by either pathogen. Given the hy-
pothesis of an inhibitory response by our fungi, the insect

still makes use of some proPO for PO production after M.
anisopliae treatment (or at least more so than after L fumo-
sorosea infection). This would imply that the insect shows
some PO-based immune response against M. anisopliae
so that the inhibitory response by this fungus is not as
complete (or less complete) than that elicited by I
fumosorosea infection. This hypothesis would need fur-
ther testing.

Given a first decrease in PO and proPO at 24 h, we did
not detect further changes in these immune components.
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Other studies in insects have found an initial increase in
PO after 10 min of infection [64], followed by a general de-
crease at 24 h and no clear changes after this time [29, 64].
This implied an activation of an immune response followed
by a negative effect of fungi on the entire PO cascade.
Although we did not check what occurred soon after fungal
infection, our results confirm previous claims that fungal
infection affects PO and proPO [29-31].

Given that there are no vaccines available for controlling
Chagas disease, its control relies on local preventive mea-
sures which, historically, has been based on the use of in-
secticides. One alternative to this chemical control is the
use of entomopathogenic fungi which has been imple-
mented in some countries [12] but not in Mexico. Our
findings indeed seem promising although our conditions
still prevent further implementation. For these conditions
we refer, for example, to the fact that we used triatomine
nymphs. It is known that effects of entomopathogenic fungi
on insects may vary according to the ontogenetic insect
stage used [65]. This means, that the effect of other stages
in M. pallidipennis needs to be evaluated. On the other
hand, perhaps the use of more than a single strategy is
needed to control triatomines [15, 33]. One way to do this
is using different pathogens to which insects, or more spe-
cifically triatomines, are susceptible. Such pathogens are,
for example, the bacteria Serratia marcescens (66, 67] Tria-
toma virus [68, 69] or, even, other fungi [33].

Conclusions

As opposed to the use of pyrethroids, entomopathogenic
fungi can be used to control triatomine bugs, the vectors
of Chagas disease. We showed that M. anisopliae fungus
is actually a better control tool than I fumosorosea for
killing 5th stage nymphs of M. pallidipennis. Our results
provide some light to such killing mechanism as, along
with fungal infection, we detected a reduction in PO and
proPO enzymes, two key components in insect immune
defense. Possibly, fungi compromise immune ability via
mycotoxins such as dextrusin as has been shown in
other studies. Thus, our results imply an alternative tool
for Chagas disease control.
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