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Abstract

with this trematode, was performed.

electrophoresis

Background: Echinostoma caproni is an intestinal trematode extensively used as experimental model for the study
of factors that determine the course of intestinal helminth infections, since this markedly depends on the host
species. Although the host-dependent mechanisms for either chronic establishment or early parasite rejection have
been broadly studied, little is known regarding the parasite response against different host environments.

Methods: To identify host-dependent differentially expressed proteins, a comparative proteomic analysis of the
excretory/secretory products released from E. caproni adults, isolated from hosts displaying different compatibility

Results: A total of 19 differential protein spots were identified (14 overexpressed in mice and 5 overexpressed in
rats). The establishment of chronic infections in mice is mainly associated with the overexpression by adult worms
of antioxidant and detoxifying enzymes (e.g. glutathione S-transferase, hydroxyacylglutathione hydrolase, thiopurine
S-transferase, etc.) and metabolic enzymes like enolase, leucine aminopeptidase or malate dehydrogenase.
However, the overexpression of cathepsin L and the structural protein actin observed in worms isolated from rats
seems not to be effective for the colonization of the intestinal mucosa of this host.

Conclusions: The observed differences suggest that protein expression and/or release is modulated by the local
environment generated inside the host and provide useful insights in regards to the resistance mechanisms
developed by parasites to ensure their long-term survival.
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Background

Although intestinal helminth infections are highly preva-
lent around the world, they are still amongst the most
neglected tropical diseases [1] causing a significant impact
on the essential components that comprise human devel-
opment indices [2]. Moreover, parasitic helminth infections
in livestock are responsible for significant economic losses
in this sector, due to decreases in productivity and the cost
of antihelminthic treatments [1]. Recent studies have esti-
mated that around 40 million people are currently infected
with food-borne trematodes, including members of the
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family Echinostomatidae, mainly in the east and southeast
Asia [3]. About 20 species belonging to 9 genera of
the Echinostomatidae are known to cause human infections
worldwide [4, 5], constituting an important group of food-
borne trematodes of public health relevance, with preva-
lence that reaches up to 3 % in some regions of Asia [6, 7].
In addition to their importance for human health,
echinostomes, and particularly the species Echinostoma
caproni, have been used for decades as experimental
models to study the relationships between food-borne
trematodes and their vertebrate hosts [8, 9]. Echinos-
toma caproni is an intestinal trematode with no tissue
phases in the definitive host. After infection, metacercar-
iae excyst in the duodenum and juvenile worms migrate
to the ileum, where they attach to the mucosa [9]. This

© 2016 Cortés et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-016-1465-x&domain=pdf
mailto:alba.cortes@uv.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cortés et al. Parasites & Vectors (2016) 9:185

species has a wide range of definitive hosts, although its
compatibility markedly differs among rodent species in
terms of worm survival and development. In high-
compatible hosts, such as mice, the infection is character-
ized by high worm establishment, high egg output and
long-term survival of worms [10]. Rats, conversely, are
low-compatible hosts in which worms are expelled from
the 2 weeks post-infection (wpi) and worm establishment
and egg release are significantly lower than in mice [11].
Other host-dependent phenotypic differences have been
reported. Morphological parameters such as body area,
collar width or ventral sucker area, amongst others, are
larger in high-compatible hosts than in low-compatible
ones [10, 11], which has been related to the energy cost
required for the greater replacement of tegumental spines
that occurs in hosts of low compatibility [12].

Differences in host-parasite compatibility have been
mainly attributed to the differential immune response
generated by the host against the infection. Previous stud-
ies have shown that the establishment of chronic infec-
tions in CD1 mice is dependent upon the local production
of INF-y, whereas the early rejection of E. caproni in rats
is associated with the development of a local Th2/Th17
phenotype with elevated levels of IL-13, IL-17A and IL-23
[13, 14]. Moreover, differential proteomic analyses of the
infection-induced intestinal alterations suggest that the
expulsion of E. caproni in rats is associated with an
increased regenerative capacity of the epithelium, medi-
ated by local IL-13 [15]. In contrast, the establishment of
chronic infections in mice causes mitochondrial dysfunc-
tion in the intestinal epithelial cells and a dysregulation
between proliferation and cell death, eventually leading to
tissue hyperplasia [16, 17].

Although comparative immunological and pathophysio-
logical studies regarding how hosts enable chronic infec-
tions or rapidly promote parasite rejection are extensive in
the E. caproni-rodent model, there is limited understand-
ing of worm response against different host environments
at the proteomic level. In this sense, the study of excre-
tory/secretory and tegumental molecules has led to the
discovery of potential candidates for diagnosis, treatment
and vaccination against helminthiases [18]. Although the
excretory/secretory proteome of E. caproni has been pre-
viously analyzed [19], herein we followed a new approach
based on comparative proteomics. Host-dependent differ-
entially expressed proteins are studied in the excretory/
secretory products (ESPs) of E. caproni adult worms
obtained from experimentally infected mice and rats to
investigate proteome plasticity and identify proteins
involved in parasite adaptation that enable its long-term
establishment in the host. Quantitative differences were
evaluated by single stained 2-dimensional gel electrophor-
esis (2DGE), using Progenesis SameSpots software. This
experimental approach has been proved a consistent and

Page 2 of 10

reliable method for the detection and matching of protein
spots from other pathogenic organisms [20, 21].

Methods

Parasites and experimental infections

The strain of E. caproni and the infection procedures
have been previously described [22]. Briefly, encysted
metacercariae of E. caproni were removed from kidneys
and pericardial cavities of experimentally infected Biom-
Phalaria glabrata snails and used to infect CD1 mice
and albino Wistar rats. A total of 9 mice (male, 5 week-
old) and 9 rats (male, 3 week-old) were infected by gas-
tric gavage with 75 and 100 metacercariae, respectively.
All animals were necropsied at 4 weeks post-infection
(wpi) and adult parasites were used to obtain ESPs. The
animals were maintained under standard conditions
with food and water ad libitum. This study has been
approved by the Ethical Committee of Animal Welfare
and Experimentation of the University of Valencia
(Ref#A18348501775). Protocols adhered to Spanish (Real
Decreto 53/2013) and European (2010/63/UE) regulations.

Isolation of ESPs

To recover the ESPs of E. caproni, adult worms were
collected from the intestine of experimentally infected
mice and rats at 4 wpi. After collection, parasites were
washed with pre-heated RMPI culture medium (Gibco®,
Life Technologies) and maintained at a concentration of
10 worms/ml for 12 h, at 37 °C, in RPMI containing
cOmplete mini EDTA-free protease inhibitor cocktail
(Roche). The medium was then collected and centri-
fuged at 15,000 g for 30 min at 4 °C. After centrifugation,
the supernatant was collected and protein concentration
was measured using Bio-Rad protein assay. To increase
the biological variability of samples, a total of 3 bio-
logical replicates were employed. Each replicate was pre-
pared by incubating a total of 60 worms recovered from
3 different mice or rats (20 worms from each host). The
experimental design is outlined in Fig. 1.

Analysis of ESP proteins by 2-Dimensional Gel Electro-
phoresis (2DGE)

The 2DGE was carried out essentially as previously
described [23], solubilizing protein samples in 7 M urea,
2 M thiourea, 4 % CHAPS (w/v), 20 mM DTT and 2 %
(v/v) Biolytes 3-10, containing bromophenol blue (all
chemicals from Bio-Rad). Loads of 150 pg of protein
were applied onto linear pH 5-8 IPG gels (7 cm length,
Bio-Rad) and subjected to isoelectric focusing on a Bio-
Rad PROTEAN® IEC Cell at 20 °C using the following
program: (i) passive rehydration for 16 h; (ii) step 300 V
for 1 h; (iii) gradient 4,000 V for 2 h and (iv) step
4,000 V for 6.5 h. After the electric focusing, the strips
were reduced (2 % DTT) and then alkylated (2.5 %
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iodoacetamide) in equilibration buffer containing 6 M
urea, 0.375 Tris pH 8.8, 2 % SDS and 20 % glycerol.
The second dimension was performed using 12 % poly-
acrylamide gels with Tris-glycine SDS buffer. The re-
solved proteins were detected using Silver Stain Plus kit
(Bio-Rad).

Comparison of 2D protein profiles

Quantitative proteomic analysis of the ESPs of E. caproni
adults isolated from high- and low-compatible hosts was
carried out using Progenesis SameSpots software (ver-
sion 4.5) (Nonlinear Dynamics Ltd.). The comparison of
single-stained 2DGE data was performed as previously
described by Smith et al. [20] with slight modifications.
Triplicate 2D gels of the ESPs of E. caproni adults from
mice and rats were analyzed. Each sample was prepared
from a pool of parasites recovered from different

infected animals, hence representing three independent
biological replicates (Fig. 1).

Dried, silver-stained 2D gels were scanned using an
ImageScaner III (GE Helthcare) to generate 16-bit grey
level images at resolution of 600 dpi. Firstly, gel images
were normalized to minimize experimental variation and
allow multiple comparisons. After normalization, 2D
profiles were aligned using a combination of manually
and automatically generated vectors. Spot detection was
performed with the in-built software routines and the
outlines transferred across the whole of the gel series,
and it was manually supervised to ensure that each spot
was well defined. Minimal editing was needed to exclude
artifacts, overlapping spots or single spots that were rec-
ognized as two. The edited datasets were transferred to
the Progenesis SameSpots statistical package for analysis.
Protein spots showing statistically significant differences
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in abundance between the ESPs of parasites recovered
from mice and rats were selected using Student’s ¢-test
(P <0.01) and False Discovery Rate (FDR) (g < 0.05).

Protein identification by mass spectrometry (MS) and
database search

Those spots showing significant host-dependent differ-
ences were manually excised from gels, washed twice with
double-distilled water and digested with sequencing grade
trypsin (Promega). Digested samples were diluted in 12 pl
of 5 % formic acid and 6 pl of the resulting suspension
were injected onto a 50 mm x 300 um C18 trap column
(Agilent Technologies) using a Shimadzu Prominance
Nano HPLC. Samples were desalted on the trap column
for 5 min using 0.1 % formic acid (aq) at 30 pl/min.
Peptides were then eluted onto an analytical nano
HPLC column (150 mm x 75 pm 300SBC18, 3.5 um,
Agilent Technologies) at a flow rate of 300 nL/min and
separated using a 35 min gradient of 1-40 % buffer B
followed by a steeper gradient from 40-80 % buffer B
in 5 min. Buffer B contained 90/10 acetonitrile/0.1 %
formic acid, and buffer A consisted of 0.1 % formic acid
(aq). The column eluates were subsequently ionized
using a 5500 QTRAP system (AB Sciex) operated in an
Information Dependent Acquisition, IDA, mode. Full
scan TOFMS data was acquired over the mass range
350-1400, and for product ion MS/MS 80-1400 m/z
ions observed in the TOF-MS scan exceeding a thresh-
old of 100 counts and a charge state of +2 to +5 were
set to trigger the acquisition of product ion, MS/MS
spectra of the resultant 20 most intense ions.

Database search was performed using X!Tandem and
MS-GF+ search engines on the E. caproni genome data-
base, available on-line at http://parasite.wormbase.org/
Echinostoma_caproni_prjeb1207/Info/Index/, and on the
E. caproni transcriptome database [24]. Searches were
done with tryptic specificity, allowing two missed cleav-
age and a tolerance in mass measurement of 10 ppm in
MS mode and 0.5 Da for MS/MS ions. Carbamidometh-
ylation of Cys was used as fixed modification and oxida-
tion of Met and deamidation of Asn and Gln as variable
modifications. Only proteins identified with 2 or more
validated peptides were taken into account. Search
results were imported into PeptideShaker v.1.2.2 [25] for
peptide and protein inference. Only proteins with a false
dscovery rate < 1 %, having at least two unique peptides
(containing at least seven amino acid residues) were
considered as positively identified. Proteins were classi-
fied according to Gene Ontology (GO) categories using
the software Blast2GO basic version 3.1 [26].

Validation by 1DGE and western blotting
In order to validate the usage of Progenesis SameSpots
software for the comparison of the ESP proteomes of E.
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caproni, western blot analyses were performed on several
differential proteins for which either homologous or heter-
ologous antibodies were available. For the 1DEG, 40 pg of
protein were loaded onto each lane of 10 % resolving and
4 % stacking polyacrylamide gels and electrophoresed in
Tris-glycine SDS buffer. Proteins were transferred to
nitrocellulose membranes (0.45 mm) in 20 mM Tris,
192 mM glycine and methanol 20 %, pH 8.3. After 90 min
blocking with 5 % skimmed milk in phosphate saline buf-
fer containing 0.05 % of Tween-20 (PBS-T), blots were in-
cubated for 2 h in PSB-T with the following antisera:
rabbit polyclonal anti-E. caproni enolase (1/2,000) [23];
rabbit polyclonal anti-E. caproni actin (1/2,000) [27];
rabbit polyclonal anti-Fasciola hepatica leucine aminopep-
tidase (LAP; 1/4,000), kindly provided by Dr. C. Carmona,
Universidad de la Reptblica, Montevideo, Uruguay [28];
and sheep polyclonal anti-F. hepatica cathepsin L1 (1/
1,000), kindly provided by professor J. P. Dalton, Queen’s
University, Belfast, United Kingdom [29]. Membranes
were then washed and probed with peroxidase-conjugate
secondary antibodies: goat anti-rabbit IgG (1/10,000 for
enolase; 1/8,000 for actin and 1/16,000 for LAP) and
rabbit anti-sheep IgG (1/5,000 for cathepsin L1) in PBS-T
for 2 h. Negative controls were performed by incubating
the same amount of protein with sera from hosts, i.e.
rabbit or sheep, immunized with PBS. All the incubations
were performed at room temperature and under gentle
agitation. Blots were developed with Lumi-Light Western
Blotting Substrate (Roche) following the manufacturer’s
instructions and images were taken with a ChemiDoc™
imaging system (Bio-Rad). The bands were quantified
using the image analysis software Image] (National Insti-
tutes of Health).

Results

Comparison of host-dependent E. caproni-ESP proteomes

In order to identify host-dependent differentially
expressed proteins, ESPs of E. caproni adults obtained
from mice and rats were subjected to 2DGE and 2D-gel
images were analyzed with Progenesis SameSpots soft-
ware (Fig. 1). A total of 883 protein spots matched
through the 6 gels included in the analysis, and 56 of
them showed significant statistical differences between
the two groups (P<0.01 and ¢<0.05). Thirty protein
spots were overexpressed in the ESPs of worms recov-
ered from mice (hereinafter, overexpressed in mice),
whereas the reminder 26 showed a greater expression in
the ESPs of E. caproni adults isolated from the intestine
of rats (hereon, overexpressed in rats). Finally, 19 of
these differential spots were successfully identified by
MS and database search: 14 overexpressed in mice and 5
overexpressed in rats (Fig. 2 and Additional file 1). Fold
differences (F) between the average normalized volumes
for each host species ranged between 1.5 and 5.3, and
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Fig. 2 Representative 2-dimensional gel electrophoresis image. Grey circles indicate spots overexpressed in the excretory/secretory products (ESPs) of
rats and black circles indicate spots overexpressed in the ESPs of mice

the details of the computational comparison can be seen
in Additional file 2. The validity of this comparison was
assessed by 1DGE and western blot using polyclonal anti-
bodies against 4 proteins (LAP, enolase, cathepsin L and
actin), that were overexpressed either in mice or in rats
(Fig. 3). Host-dependent differential expression was con-
firmed for the 4 proteins, thus strengthen the reliability of
inter-gel matches and gel-based protein quantification.

Identification of host-dependent differentially expressed
ESP proteins

To avoid erroneous identifications due to mismatched
spots, protein identification was performed in duplicate.
Selected protein spots were removed from a gel of mouse
and a gel of rat, and were independently identified by MS.
Only when the two identifications coincided the protein
was considered to be unambiguously identified. Moreover,
database search was performed employing specific protein
sets based on both E. caproni transcriptome [24] and gen-
ome assemblies. Details of protein identification in each
database are shown in Additional file 3. A total of 19 pro-
tein spots were identified using the transcriptome data-
base. However, neither dihydrolipoamide dehydrogenase,
nor malate dehydrogenase were identified when genome
data was used (Table 1 and Additional file 3).

In order to investigate the processes and functions
overrepresented in each ESP, proteins were classified
according to GO categories. This classification was not
possible in the case of rats due to the small number of
identified proteins. In mice, however, proteins with

enzymatic activity and involved both in energy and non-
energy metabolism were highly abundant (Additional
files 4 and 5). Among the enzymes involved in energy
metabolism there were the glycolytic enzymes hexoki-
nase (F: 1.9) and enolase (F: 1.7); malate dehydrogenase
(F: 5.1), which is involved in the Krebs cycle; and 6-
phosphogluconate dehydrogenase (F: 2.2), an enzyme in
the pentose phosphate pathway. LAP (F: 1.5) and retinal
dehydrogenase (F: 3.5) are metabolic enzymes involved
in non-energy metabolism that were also overexpressed
in mice (Table 1).

The protein group displaying a greater number of dif-
ferentially expressed spots was that of antioxidant and
detoxifying enzymes. In this group, 3 differential spots [2
overexpressed in rats (F: 4.6 and 2.9) and another one
overexpressed in mice (F: 2.0)] were identified as aldo-
keto reductases. Other antioxidant and detoxifying
enzymes such as hydroxyacylglutathione hydrolase (F:
1.8), dihydrolipoamide dehydrogenase (F: 5.3) and gluta-
thione S-transferase (GST, F: 1.8) were overexpressed in
mice (Table 1). Among proteins overexpressed in rat we
found the structural protein actin (F: 2.0), cathepsin L
(F: 2.3) and a protein with fasciclin 1-like domains,
which could not have been accurately identified (spot
number 1, F: 2.9).

Discussion

ESPs are composed of a complex mixture of molecules,
including proteins, lipids, nucleic acids, etc. Protein
secretion is known to occur through different ways,
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Fig. 3 Western blot validation of several differentially expressed protein spots. Representative images of blots confirming host-dependent differential
expression of the four tested proteins. Validations were performed in duplicate, employing distinct biological replicates from each host. Fold changes
were calculated using ImageJ software (National Institutes of Health) on the two replicates, and are presented as the ratio between the mean values
calculated for each host species. Spot numbers refer to Fig. 2 and Table 1

including: 1) classical, signal peptide-driven secretion;
2) non-classical secretion; and 3) through secretory ves-
icles like exosomes. Independently of the way for re-
lease, every protein present in the extracellular milieu
is susceptible of playing a role at the host-parasite
interface, as they are crucial for the interaction between
parasites and their hosts during infection and path-
ology. Moreover, it has been demonstrated that not
only parasite-derived proteins can modulate the host
immune response [30], but also changes in the intes-
tinal cytokine milieu directly influence the parasite
proteome and this may affect its establishment [31, 32].
The E. caproni-rodent model is a well-established
experimental model for the analysis of interactions
between adult parasites and their vertebrate hosts [8].
A number of studies have been performed and showed
that host-related factors are determining for the course
of the infection [9, 12—17]. However, little is known
about how each environment affects the phenotype of
the parasite and its potential implications in terms of
worm rejection or chronic establishment.

In this study, host-dependent ESP profiles are investi-
gated using a quantitative 2D-proteomic approach. By
combining the available 'omic data on E. caproni (ie.
genome and transcriptome assemblies), we aimed at in-
creasing the number and accuracy of our identifications.
Sequences for dihydrolipoamide dehydrogenase (spot 6)
and malate dehydrogenase (spot 7) were not found in
the genome assembly of E. caproni when homologous
sequences from other trematodes were used for blasting
in this database. This suggests that these genes may have
been mis-annotated, and reinforce the idea that the
combination of several databases may aid to increase the
number of protein identifications in the case of non-
model organisms. However, despite the combination of
DNA- and RNA-based data, an accurate identification of

the protein of interest is not always possible due to the
lack of specific proteomic data [33]. This has been the
case of the differential spot number 1 (Fig. 1). Both gen-
ome- and transcriptome-derivative sequences display
significant similarity with 3 different proteins from para-
sitic trematodes belonging to distinct genera (Table 1
and Additional file 3). Although these 3 proteins have
the common feature of containing fasciclin 1-like
domains, each one has different functions, making diffi-
cult to infer its role in the interaction with the host in
the case of E. caproni infections.

Several enzymes involved both in energy and non-
energy metabolism were highly abundant among the
proteins overexpressed in mice. Although these are typ-
ically intracellular proteins, they are usually present
extracellularly, either secreted or attached to parasite
surface, where they can carry out atypical functions and
participate in host-parasite interactions [34]. Enolase is
one of the most commonly found extracellular metabolic
enzymes and has been described as the most antigenic
protein in the ESPs of E. caproni [23]. Furthermore, E.
caproni enolase has been suggested of great importance
for the attachment to the host intestinal mucosa, due to
its ability to bind plasminogen in vitro [35]. More
recently, the enolase of the protozoan parasite Leish-
mania donovani has been demonstrated to be Thl-
stimulatory, with the recombinant protein displaying a
strong ability to proliferate lymphocytes along with sig-
nificant IL-12, IFN-y and nitric oxide production [36].
The over-secretion of this enzyme in adults obtained
from mice, which develop strong Thl local responses,
may indicate therefore the immunomodulatory ability of
the E.caproni enolase, favoring the development of type
1 responses that are important both for the chronic
establishment of the parasite [14] and the protection of
chronically infected high-compatible hosts [37].
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Table 1 Identification of differentially expressed proteins

Page 7 of 10

Spot® Identification® Protein® Species (GI) Host® Fold MW pl Exp/Theo
Genome Transcriptome Change’ Exp/Theo
Antioxidant and detoxifying enzymes
6 v Dihydrolipoamide Schistosoma japonicum M 53 47.8/53.0 72/65
dehydrogenase (226486712)
[ v Aldo-keto reductase S. mansoni (256080704) R 29 33.6/335 6.4/7.7
12 N Aldo-keto reductase S. mansoni (256080704) R 46 33.0/335 6.6/7.7
13 N N Aldo-keto reductase S. mansoni (350645579) M 20 31.3/355 6.7/77
16 W V Hydroxyacylglutathione Clonorchis sinensis M 18 25.0/296 6.9/6.9
hydrolase (358335388)
17 N N Thiopurine S-methyltransferase  S. japonicum (226484786) M 21 23.0/28.1 6.7/7.1
19 N N Glutathione S-transferase class-  Fasciola hepatica (3913799) M 18 16.5/25.3 7.1/59
mu
Metabolic enzymes
2 N N Leucine aminopeptidase C. sinensis (156600435) M 15 61.5/59.9 7.8/6.1
3 N N Retinal dehydrogenase 1 C. sinensis (358342257) M 35 50.0/52.6 6.8/6.0
4 v V Hexokinase C. sinensis (358342257) M 19 48.7/50.0 7.2/62
5 \J N 6-phosphogluconate S. haematobium (844860554) M 22 48.7/52.8 7.3/6.2
dehydrogenase
7 N Malate dehydrogenase C. sinensis (358332642) M 5.1 47.8/55.7 7.3/6.6
8 \J N Enolase Echinostoma caproni M 17 455/46.1 6.8/64
(112950027)
Structural/Motor proteins
9 v v Putative actin S. mansoni (353233111) R 20 437/41.7 5.9/53
18 v Regulator of microtubule S. haematobium (844834702) M 1.9 21.0/243 6.0/86
dynamics protein 1
Cysteine proteases
15 \J N Cathepsin L F. gigantica (7271891) R 23 26.1/37.0 6.1/5.5
Protein binding
11 N N Stress-induced C. sinensis (350002666) M 28 324/363 6.5/6.3
phosphoprotein 1
Unknown
19 N N Periostin C. sinensis (358341487) R 29 90.0/105.3 6.8/5.8
N N Fasciclin 1-like Paragonimus westermani
(119712173)
N N Gynecophoral canal protein S. mansoni (1354127)
14 \J N Putative TyrA protein S. japonicum (226479962) M 28 324/416 6.5/7.0

Protein identification was performed using X!Tandem and MS-GF+ search engines on the Echinostoma caproni genome and transcriptome databases and BLASTp
against NCBInr protein database. Spot numbers refer to gel image in Fig. 2

Spot reference number

PPositive identification (V) in each of the two databases employed
“Identification details are compiled in Additional file 3
4Gl accession number in the Protein database of NCBI
®Host species in which every protein spot was overexpress. (M) Mouse; (R) Rat

fAverage Normalized Volume ratio

9Three different proteins were associated with the same accession number both in the E. caproni genome and transcriptome databases

Similarly, LAP is a cytosolic metalloprotease involved in
digestion and, possibly, invasion and migration through
the host tissues [38], being a potential drug target and vac-
cine candidate against helminthiases [39, 40]. The overex-
pression of this enzyme in the high-compatible host

suggests that it may have a role in the colonization of the
intestinal mucosa by E. caproni.

Antioxidant and detoxifying enzymes were predomin-
ant among the identified proteins. Three differential
spots, 2 of them overexpressed in rats and the other one
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overexpressed in mice, were identified as aldo-keto
reductases (Table 1), a superfamily of NAD(P)(H) oxido-
reductases involved in the reduction of aldehydes and
ketones to primary and secondary alcohols. The overex-
pression of different spots depending on the host species
may indicate that the expression of different members of
this superfamily is somehow regulated and depends
upon the environment inside the host.

Parasites causing long-lasting infections are exposed
to high amounts of reactive oxygen and nitrogen spe-
cies generated as a result of the host immune response,
which ultimately lead to parasite death [41]. GST is a
key enzyme at this first line of defense, having a major
role in limiting the damage caused by nitroxidative
stress [41]. Previously localized in the tegument and the
ESPs of several trematode species, including E. caproni
[19, 42, 43], herein GST was found about two times
overexpressed in the ESPs of adults obtained from the
intestine of mice. The establishment of E. caproni
chronic infections in mice coincides with the develop-
ment of local Thl-type responses, with high mRNA
expression of IFN-y and iNOS [14], and the population
of mucosal neutrophils rapidly increasing at the site of
infection [10]. Hence, in this scenario an intense activa-
tion of antioxidant systems seems to be imperative to
ensure the long-term survival of the parasite. The
expulsion of E. caproni from the rat intestine, in con-
trast, has been associated with the development of local
Th2/Th17 biased responses, in the absence of increased
IFN-y nor iNOS mRNA expression [12, 13]. In this
host, intense eosinophil infiltration has been reported
in the intestinal mucosa [44]. Eosinophil peroxidase is
responsible of direct oxidative damage on parasite sur-
face [45]. Thus, according to our results, a lesser
expression of GST by E. caproni adults in the intestine
of rats may increase their susceptibility to the granulocyte-
mediated immunity, thereby impairing their establishment
in the intestine of rats. Furthermore, hydroxyacylglu-
tathione hydrolase and dihydrolipoamide dehydrogenase
are detoxifying enzymes previously described in the ESPs
of other parasitic trematodes [46, 47], and their high secre-
tion may contribute to the chronic establishment of the
parasite in the high-compatible host.

Instead of self-protective proteins such as antioxidant
and detoxifying enzymes, E. caproni adults isolated from
rats seem to over-release proteins related to worm inva-
siveness, such as cathepsin L and actin. Cathepsins are
papain-like endopeptidases, used by helminth parasites
in essential aspects of their relationship with the host
[48]. Much available knowledge on cathepsins of infec-
tious helminths comes from tissue dwelling trematodes
such as F. hepatica or Schistosoma spp. [49, 50]. How-
ever, non-helminthic intestinal parasites have been also
shown to secret cathepsin proteases that are able to
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cleave the non-glycosylated ends of the soluble mucin
Muc2, degrading the polymeric structure of mucus
matrix and enabling the invasion of the epithelium [51,
52]. Moreover, protease release is considered a resistance
mechanism against mucus-mediated helminth clearance
[53]. The over-secretion of cathepsin L in adults
obtained from low-compatible hosts is, therefore, sur-
prising and difficult to explain according to our current
knowledge. Notwithstanding, mucus hyper-secretion
seems not to be involved in the expulsion of E. caproni
in rats [54]. Overexpression of actin, however, is in
agreement with previous studies performed with both E.
caproni [12] and the related species Echinostoma friedi
[55], and has been attributed to an accelerated turnover
of tegumentary spines with the aim of increase the an-
choring capacity to the mucosal surface of non-
permissive hosts [12].

Conclusions

Host species has been shown to be determining for the
course of E. caproni infections in terms of worm survival
and development. However, the parasite response against
each particular environment is still poorly understood. In
the present paper, we have shown the proteome plasticity
of E. caproni adult worms through the identification of
host-dependent differentially expressed and/or released
proteins. Both parasites and hosts are able to influence
each other. Our results seem to indicate that, additionally
to immune-mediated mechanisms, a poor adaptation of E.
caproni to the microhabitat generated in the rat intestine
may facilitate its rapid rejection from this host. In contrast,
the ESP profile of mice-grown worms suggests a better
adaptation of the parasite to the Thl-type environment
developed in the intestine of this host, thereby enabling its
chronic establishment. The identification of precise host-
dependent mechanisms that govern parasite adaptation
appears as a suitable approach to develop new strategies
for the control of helminthic infections. Moreover, the
identification of proteins implicated in parasite resistance
may help to recognize useful targets for drug and vaccine
development.
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