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Abstract

Background: Recently, there has been a re-emergence of cutaneous leishmaniasis in endemic countries and an
increase in imported cases in non-endemic countries by travelers, workers, expatriates, immigrants, and military
force personnel. Old World cutaneous leishmaniasis is caused primarily by Leishmania major, L. tropica and L. aethiopica.
Despite their low sensitivity, diagnosis traditionally includes microscopic and histopathological examinations, and in
vitro cultivation. Several conventional PCR techniques have been developed for species identification, which are
time-consuming and labour-intensive. Real-time PCR using SYBR green dye, although provides rapid detection, may
generate false positive signals. Therefore, a rapid and easy method such as a FRET-based real-time PCR would improve
not only the turn-around time of diagnosing Old World cutaneous Leishmania species but will also increase its
specificity and sensitivity.

Methods: A FRET-based real-time PCR assay which amplifies the cathepsin L-like cysteine protease B gene encoding a
major Leishmania antigen was developed to differentiate L. major, L. tropica, and L. aethiopica in one single step using
one set of primers and probes. Assay performance was tested on cutaneous and visceral strains of Leishmania parasite
cultures and isolates of other protozoan parasites as well as human biopsy specimen.

Results: The assay readily differentiates between the three Old World cutaneous leishmaniasis species based on their
melting curve characteristics. A single Tm at 55.2 ± 0.5 °C for L. aethiopica strains was distinguished from a single Tm at
57.4 ± 0.2 °C for L. major strains. A double curve with melting peaks at 66.6 ± 0.1 °C and 48.1 ± 0.5 °C or 55.8 ± 0.6 °C
was observed for all L. tropica strains. The assay was further tested on biopsy specimens, which showed 100 %
agreement with results obtained from isoenzyme electrophoresis and Sanger sequencing.

Conclusion: Currently, there are no published data on real-time PCR using FRET technology to differentiate between
Old World cutaneous Leishmania species. In summary, our assay based on specific hybridization addresses the
limitations of previous PCR technology and provides a single step, reliable method of species identification and
rapid diagnostic applications.
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Background
Leishmaniasis, an infection caused by obligate intrama-
crophage protozoa transmitted predominantly by the
bite of an infected phlebotomine female sandfly is en-
demic throughout tropical and subtropical regions [1].
Cutaneous leishmaniasis (CL), which is characterised by
ulcerative lesions on the skin (localised CL) and nonul-
cerative nodules (diffuse CL) is endemic in 88 countries
with an estimated 1.5–2 million new cases every year
and a total of 12 million cases worldwide [2, 3]. There
has been a recent re-emergence of this disease in en-
demic countries and an increase in imported cases in
non-endemic countries where travelers, workers, expa-
triates, immigrants, and military force personnel have
been the main victims [2, 4–6]. CL is amongst the top
ten diseases in tourists returning from tropical countries
with skin problems [2, 7]. Old World CL (OWCL),
prevalent in southern Europe, Mediterranean basin, Africa
and the Middle-East is caused primarily by Leishmania
major, L. tropica and L. aethiopica [4, 8], although CL
cases due to L. donovani and L. infantum strains have also
been reported [9, 10].
Diagnosis of CL traditionally includes microscopic

examination of Giemsa-stained biopsy smears or tissue
aspirates, histopathological examination, and in vitro
cultivation. These methods however, in spite of their
high specificity, are poorly sensitive and their sensitivity
largely depends on the sampling procedure, parasite dis-
tribution and ad hoc expertise. Serological assays such as
Enzyme-linked Immunosorbent Assay (ELISA), indirect
fluorescence antibody test (IFAT) and western blot (WB)
are preferred for the diagnosis of visceral leishmaniasis
(VL) rather than CL due to the low titre of circulating
antibodies against the parasite and cross-reactivity with
other antigens (e.g. Trypanosoma cruzi) [11].
Molecular diagnostic methods such as PCR are the

current preferred method of diagnosis due to their high
specificity, sensitivity (98–100 %) and speed [12, 13].
Identification of the parasite at the species level is often
crucial for epidemiological studies, transmission control
measures, disease prognosis and choice of treatment
[14, 15]. Before the advent of PCR protocols, the species
of Leishmania was determined by enzyme-based assays
such as Multi Locus Enzyme Typing (MLET) which
were both time-consuming and labour-intensive. Sev-
eral PCR-based techniques have been developed for spe-
cies identification that require post-PCR processing
such as electrophoretic analysis, PCR-restriction frag-
ment length polymorphism (PCR-RFLP), PCR-ELISA
and sequencing [16–19].
Real-time PCR not only allows the accurate detection

and quantification of specific DNA in real time but also
allows species identification without the requirement of
post-PCR processing. Samples can be processed in less

than one hour and the technique has been reported to
rapidly differentiate single nucleotide mutations within a
target DNA sequence [20]. To date, real-time PCR using
SYBR green dye I has been reported several times for
species discrimination [14, 21–24]. However, this method
detects all amplified double-stranded DNA, including
non-specific reaction products and can thereby generate
false positive signals [25]. Recently, probe-based real-time
PCR using Fluorescence Resonance Energy Transfer
(FRET) identifies and distinguishes between New World
tegumentary Leishmania species in clinical samples based
on melting curve profiles with high specificity [26] thereby
eliminating false positives.
Different PCR primers have been developed or applied

for the detection and/or identification of Leishmania
species [27]. One gene of interest, the cpb gene, encodes
for cathepsin L-like cysteine proteinase B (cpb), a major
antigen of Leishmania parasites and is conserved among
the Leishmania species [28]. Its polymorphic and multi-
copy nature presents an excellent opportunity for the
development of species specific and sensitive primers
[29]. Currently, separate primer sets targeting the cpb
gene are needed to identify the OWCL species using
conventional PCR, therefore requiring post-PCR pro-
cessing [27] and this technique has demonstrated a lack
of sensitivity in clinical samples [30].
In the present study, we describe a real-time PCR

assay using FRET technology that is based on the ampli-
fication of the cathepsin L-like cysteine protease B (cpb)
gene, to differentiate the main OWCL species: L. major,
L. tropica, and L. aethiopica, in cultured parasite isolates
and biopsy specimens. Currently, there are no published
data on real-time PCR using FRET technology to differ-
entiate between these OWCL species. This FRET-based
real-time PCR assay requires specific hybridization be-
tween the probe and its target to generate a fluorescent
signal thereby addressing the limitations of the SYBR
green technology and providing a rapid, single step, reli-
able method of species identification for OWCL.

Methods
Ethics statement
Samples were obtained from multiple reference laborator-
ies including the Canadian National Reference Centre for
Parasitology/J.D. MacLean Centre for Tropical Diseases at
McGill University (Montreal, QC), Centre Hospitalier Régional
Universitaire of Montpellier and University Montpellier I
(Montpellier, France) and Walter Reed Army Institute of
Research (Silver Spring, Maryland) and were considered
exempt. All samples used in this study were anonymized.

Leishmania reference strain samples
DNA from L. major, L. tropica, and L. aethiopica pro-
mastigotes and cryopreserved promastigote cultures of
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various Leishmania reference strains were provided by
the International Biological Resources Center for Leishmania,
affiliated to the French National Reference Center for
Leishmanioses, University Hospital Center of Montpellier,
France. Additional DNA from L. aethiopica strains (pro-
mastigote stage) was provided by the Walter Reed Army
Institute of Research, USA. An overview of all strains used
is presented in Table 1.

Cutaneous lesion specimens
Cutaneous biopsy specimens which were sent to the
National Reference Center for Parasitology between
2005 and 2006 for Leishmania testing, and were found
to be positive in culture and by conventional PCR [31],
were used to validate the real-time PCR assay. These
biopsy culture isolates were also species typed by isoen-
zyme electrophoresis at the Walter Reed Army Institute of
Research, USA. An overview of the specimens used is pre-
sented in Table 1.

Cell culture and DNA extraction
Cryopreserved promastigotes and patient skin biopsies
suspected of being positive for Leishmania were culti-
vated in vitro at 27 °C in RPMI 1640 medium (Wisent,
St-Bruno, QC) supplemented with 20 % fetal bovine
serum, non-essential amino acids (Wisent, St-Bruno,
QC), MEM amino acids (Wisent), 1 mM sodium pyru-
vate, 2 mg/ml dextrose, 2 mM L-glutamine, 100 u/ml
penicillin/streptomycin, and 25 mM HEPES. A set of
control DNA standards from cultured promastigotes
was prepared to determine the sensitivity of the real-
time PCR. Promastigotes of L. major, L. tropica and L.
aethiopica were suspended in PBS and uninfected hu-
man blood, counted in a Neubauer hemacytometer
(Hausser Scientific, Horsham, PA) and diluted at a con-
centration of 106 parasites/200 μl. Ten-fold dilutions
were made to 10−2 parasites/200 μl. DNA was extracted
from the promastigote dilutions and directly from pa-
tient skin biopsies using the QIAamp DNA Mini Kit
(QIAGEN, Hilden, Germany) according to the manufac-
turer’s instructions. Following centrifugation and wash-
ing steps, DNA was eluted from the spin columns in
200 μl elution buffer and stored at -20 °C until use. Simi-
larly, non-leishmanial protozoan DNA was extracted
from blood specimen positive for Plasmodium species,
Trypanosoma cruzi and Trypanosoma brucei, and from
parasite cultures of Toxoplasma gondii RH strain (cour-
tesy of Gary E. Ward, University of Vermont), Giardia
lamblia ATCC® 30957 (courtesy of Gaetan Faubert,
Institute of Parasitology, Quebec), Cryptosporidium
parvum Iowa strain (courtesy of Michael Arrowood,
Center for Disease Control) and Entamoeba histolytica
ATCC® 30015.

Primer and probe design
Consensus primers and probes, designed by TIBMol
Biological (New Jersey, USA), were based on the
alignment of cpb sequences for L. major (Gen-
Bank: AJ512654), L. tropica (GenBank: DQ286773) and
L. aethiopica (GenBank: DQ071678). Alignment was
done using ClustalW2 (v2.0.12, European Bioinformatics
Institute, http://www.ebi.ac.uk). By comparing the cpb
sequences of L. major, L. tropica and L. aethiopica, oli-
gonucleotides were designed such that the FRET
hybridization assay could selectively amplify DNA from
each species, but allow for differences on melting curve
temperature (Tm) analysis. The cpb sequence was al-
most identical for L. tropica and L. aethiopica with 96 %
similarity. L. major cpb sequence shared 92 % similarity
with that of L. tropica and 91 % similarity with that of L.
aethiopica. A single primer and probe set was designed
to amplify specimens from the OWCL species (Fig. 1a).
Probes were designed to be specific for L. tropica and
identify a single base-pair mismatch in L. major and two
base-pair mismatches in L. aethiopica. The forward pri-
mer contains one wobble base to identify adenosine in
the cpb gene of L. aethiopica and L. major as well as
guanine in L. tropica cpb gene. Primers and probes
(Table 2) were aligned with OWCL species and with
those causing visceral and mucocutaneous forms
(Fig. 1b).

FRET-based real-time PCR
Real-time PCR reactions were performed using the Light
Cycler Fast Start DNA Master HybProbe kit (Roche,
Mannheim, Germany) and contained 2 μl of 10× Master
Mix, 5 mM final MgCl2 concentration, 0.2 μM of each
probe, 0.5 μM of each primer, and 2 μl of template DNA
in a final volume of 20 μl. Real-time PCR cycling was
performed on the Light Cycler 1.5 (Roche) with amplifi-
cation at 95 °C for 10 min followed by 40 cycles of 95 °C
for 5 s, 53 °C for 8 s, and 72 °C for 9 s, with single fluor-
escence acquisition at the end of each annealing step.
Amplification was followed by a melting program of 95 °C
for 20 s, 40 °C for 20 s, and a final increase to 85 °C at the
rate of 0.2 °C/s with continuous fluorescence acquisition.
To ensure the reproducibility of the assay, DNA from ref-
erence strains (L. major MHOM/IL/81/Friedlin, L. tropica
MHOM/IQ/65/L75, and L. aethiopica MHOM/ET/96/
WR2315) were included as positive controls in each run.
An uninfected human DNA sample and a water sample
were included as negative template and non-template con-
trols respectively in each run.

Direct sequencing and analysis
In order to ensure primer specificity and for validation,
PCR products amplified from both promastigote and cu-
taneous biopsy DNA were subjected to agarose gel
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electrophoresis containing ethidium bromide and visual-
ized under ultraviolet light. The band of interest was puri-
fied with QIAquick Gel Extraction Kit (QIAGEN, Hilden,
Germany) and sent for direct Sanger sequencing to the
McGill University and Génome Québec Innovation Centre,
Montreal, Canada. Sequencing of samples was performed
with cpb F and cpb R primers. The quality of the sequences
were evaluated and edited with Geneious software (version
9.0.4 – restricted access) and the Leishmania species were
identified by BLASTm accessible at Genbank (http://blast.
ncbi.nlm.nih.gov/Blast.cgi). The sequences were subse-
quently aligned with the primers and probes using
Jalview software (version 2.9.0b2 - restricted access).

Results
Species-specific FRET-based real-time PCR
Using the FRET hybridization approach, species-specific
real-time PCRs were performed on 28 DNA samples iso-
lated from promastigote cultures of L. tropica, L. aethio-
pica and L. major reference strains. A species-specific
amplicon with cpb F and cpb R primers was visualized
in all L. tropica, L. aethiopica, and L. major strains.
Melting curve analysis was able to differentiate between
the species. A single Tm at 55.2 ± 0.5 °C for L. aethiopica
strains was distinguished from a single Tm at 57.4 ± 0.2 °C
for L. major strains. A double curve with a melting peak
at 66.6 ± 0.1 °C and a peak at either 48.1 ± 0.5 °C or 55.8 ±
0.6 °C was observed for all L. tropica strains (Fig. 2).
The sensitivity of the real-time PCR was tested using

serial dilutions of parasite DNA extracted from a known
number of parasites. The cpb DNA of L. major, L. tro-
pica and L. aethiopica could be detected at a level corre-
sponding to 0.01 parasite per reaction volume of 20 μl.
The detection limit was 10−1 parasite/200 μl of human
blood, taking into account the amount of biological sam-
ple used in the reaction (2 μl of sample DNA) and the
elution volume of the extracted DNA (200 ul).

Non-species-specific real-time PCR
The specificity of the technique was validated using DNA
from 18 strains of Leishmania causing mucocutaneous
and visceral leishmaniasis from both the Old and New

Table 1 Overview of Leishmania strains used

Species Strain Parasite
culture

Biopsy Provider

L. aethiopica MHOM/ET/96/WR2315a No No WRAIR

MHOM/SD/99/WR2885a No No WRAIR

MHOM/PH/2010/
WR2970a

No No WRAIR

MHOM/ET/83/130-83c No No FNRCL

MHOM/ET/90/DISKOc No No FNRCL

MHOM/ET/70/L96c No No FNRCL

MHOM/ET/81/1091-81c No No FNRCL

MPRV/ET/71/L111c No No FNRCL

L. tropica MHOM/IQ/65/L75 Yes No FNRCL

MHOM/SU/74/K27 Yes No FNRCL

I000/IL/98/LRC-L757 Yes No FNRCL

MHOM/AF/06/NRCP2559b Yes Yes NRCP

MHOM/AF/05/NRCP358b Yes Yes NRCP

MHOM/SU/66/IIIc No No FNRCL

MHOM/KE/91/EB135c No No FNRCL

MHOM/MA/95/LEM3015c No No FNRCL

MHOM/IR/2000/LEM4036c No No FNRCL

L. major MHOM/IL/81/Friedlin Yes No NRCP

MHOM/DZ/05/NRCP684b Yes Yes NRCP

MHOM/BF/06/NRCP2082b Yes Yes NRCP

MHOM/BF/06/NRCP2204b Yes Yes NRCP

MHOM/TN/06/NRCP248b Yes Yes NRCP

MHOM/BZ/05/NRCP2620b Yes Yes NRCP

MRHO/SU/59/P-STRAINc No No FNRCL

MHOM/SU/73/29-ASKHc No No FNRCL

MHOM/IL/83/IL24c No No FNRCL

MTAT/KE/00/T4c No No FNRCL

MHOM/DZ/89/LIPA228c No No FNRCL

L. chagasi MHOM/BR/74/M2682 Yes No FNRCL

L. infantum MHOM/TN/80/IPT1 Yes No FNRCL

MHOM/MA/67/ITMAP263 Yes No FNRCL

L. donovani MHOM/IN/80/DD8 Yes No FNRCL

MHOM/KE/55/LRC-L53 Yes No FNRCL

MHOM/IQ/77/BUMM3 Yes No FNRCL

MHOM/YE/86/LEM934 Yes No FNRCL

MHOM/SD/90/2828 Yes No FNRCL

L. mexicana MHOM/BZ/82/BEL21 Yes No FNRCL

MNYC/BZ/62/M379 Yes No FNRCL

L.
panamensis

MHOM/PA/71/LS94 Yes No FNRCL

L. guyanensis MHOM/GF/79/LEM85 Yes No FNRCL

L. peruviana MHOM/PE//84/UN56 Yes No FNRCL

MHOM/PE/84/LC39 Yes No FNRCL

Table 1 Overview of Leishmania strains used (Continued)

L. braziliensis MHOM/PE/90/AC Yes No FNRCL

MHOM/CO/90/UA482 Yes No FNRCL

MHOM/BR/75/M2904 Yes No FNRCL

MHOM/BR/75/M2903b Yes No FNRCL

WRAIR Walter Reed Army of Institute of Research, USA
NRCP National Reference Centre for Parasitology, Canada
FNRCL French National Reference Center for Leishmanioses, France
aDNA samples were provided by WRAIR
bDNA was extracted directly from patient biopsies
cDNA samples were provided by FNRCL
For all other strains, DNA was extracted directly from parasite
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World as well as DNA from other protozoan parasites
(Table 3). Non-specific low melting peak temperatures of
44.5 °C was observed for both L. chagasi and L. infantum,
and 45.0 ± 0.7 °C for L. donovani. The primers cpb F and
cpb R had no specificity for DNA from New World Leish-
mania species and non-leishmanial parasites (Table 3).
We tested the cross-reactivity of our assay by analysing

17 samples known to contain other parasites including

Plasmodium falciparum, P. ovale, P. malariae, P. vivax,
Trypanosoma cruzi, Trypanosoma brucei, Toxoplasma
gondii, Entamoeba histolytica, Cryptosporidium parvum
and Giardia lamblia along with the reference strains L.
major MHOM/IL/81/Friedlin, L. aethiopica MHOM/ET/
96/WR2315 and L. tropica MHOM/KE/91/EB135. Final
concentrations ranging from 0.08 μg/mL to 6.4 μg/mL
were used to assess the specificity of the real-time PCR.

Fig. 1 a Primer and fluorescence probe positions selected for FRET-based real-time PCR of Leishmania cathepsin L-like cysteine protease B gene.
Sequences of forward (cpb F) and reverse (cpb R) primers were aligned with the corresponding target sequences. Forward primer harbors one
wobble base (R = A/G). FRET hybridization probes (cpb sensor 2 and cpb anchor 2) were both designed antisense for detection of parasite. Sensor
FRET hybridization probe was designed to be specific for cathepsin L-like cysteine protease B gene of L. tropica (GenBank Accession number:
DQ286773) with one nucleotide mismatch difference from that of L. major (GenBank Accession number: AJ512654) and two nucleotide mismatch
differences from that of L. aethiopica (GenBank Accession number: DQ071678). b Alignment of the OWCL species and species causing visceral
and mucocutaneous leishmaniasis. Sequences are colour-coded by percentage identity
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Cross-reactivity was ruled out since amplification was only
observed in the three reference strains (Fig. 3).

FRET-based real-time PCR on biopsy samples
We used the FRET hybridization assay on DNA
extracted from seven patients found positive for Leish-
mania by conventional PCR amplification of the
120 bp region of kinetoplast DNA [32]. By melting
peak temperature comparison with the reference
strains, five of these patients were identified as being
infected with L. major and two with L. tropica (Table 1).
Species identification for these samples was confirmed
by isoenzyme analysis at the Walter Reed Army Insti-
tute of Research, USA and further confirmed by Sanger
sequencing.

Direct sequencing and analysis
A distinct band of 154 bp was visualized for all L. major,
L. tropica and L. aethiopica strains. Similarly, a band was
also seen at 154 bp for all species within the L. (L.) dono-
vani complex.
Sequence comparison with available data in the Gen-

bank database confirmed the amplification of the Leish-
mania cpb gene in all seven DNA biopsy specimen.
Specimen positive for L. major by FRET real-time PCR
showed 100 % identity with several L. major cpb gene se-
quences including those found in isolates from Tunisia
(Accession No. JN400175) and those positive for L. tro-
pica showed 99–100 % identity with several L. tropica
cpb gene sequences deposited at the GenBank database.

Discussion
We describe the development of a FRET-based real-time
PCR using primers and probes targeting the cpb gene se-
quence to detect and identify the OWCL species (L.
major, L. tropica and L. aethiopica) in a single step. This
assay was able to produce unique, specific, and reprodu-
cible melting curves that could distinguish the three
OWCL species (Fig. 2). The cpb sequence for each of
the three species of interest has a single or double nu-
cleotide difference from each other, allowing a difference
of at least 2 °C between the Tm values, and enabling
easy and reproducible distinction during melting curve

Table 2 Primers and probes for the simultaneous detection and
identification of OWCL species

Name Sequence (5’ ➔ 3’) Function

Primers cpb F CGGCARCATCGAGTCGC S

cpb R GGTCCCGTTCATGTTTCG AS

Fluorescent-labeled
probes

cpb
sensor 2

TCGAACGCCTGCAGCATC—FL AS

cpb
anchor 2

LC640-GCCCGCCGCCGCA
A—PH

AS

S sense sequence, AS antisense sequence

Fig. 2 Example of a species-specific FRET-based real-time PCR result. OWCL species were differentiated by melting curve analysis. Single peaks
visualized in L. aethiopica (Tm = 55.2 ± 0.5 °C) strains were distinguished from those of L. major (Tm = 57.4 ± 0.2 °C) or L. tropica with the latter
showing double peaks (Tm = 66.6 ± 0.1 °C and 48.1 ± 0.5 °C or 55.8 ± 0.6 °C)
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Table 3 Melting curve temperatures obtained from FRET-based real-time PCR assay

Species-specific

Species Strain Peak Tm (°C)

Leishmania aethiopica MHOM/ET/96/WR2315 Single 54.5

MHOM/SD/99/WR2885 Single 54.5

MHOM/PH/2010/WR2970 Single 55.3

MHOM/ET/83/130-83 Single 55.5

MHOM/ET/90/DISKO Single 55.5

MHOM/ET/70/L96 Single 55.5

MHOM/ET/81/1091-81 Single 55.5

MPRV/ET/71/L111 Single 55.5

L. tropica MHOM/IQ/65/L75 Double 55.3 | 66.8

MHOM/SU/74/K27 Double 47.5 | 66.5

I000/IL/98/LRC-L757 Double 55.5 | 66.8

MHOM/AF/06/NRCP2559 Double 47.3 | 66.5

MHOM/AF/05/NRCP358 Double 48.5 | 66.5

MHOM/SU/66/III Double 48.5 | 66.5

MHOM/KE/91/EB135 Double 56.5 | 66.5

MHOM/MA/95/LEM3015 Double 48.0 | 66.5

MHOM/IR/2000/LEM4036 Double 48.5 | 66.5

L. major MHOM/IL/81/Friedlin Single 57.0

MHOM/DZ/05/NRCP684 Single 57.3

MHOM/BF/06/NRCP2082 Single 57.5

MHOM/BF/06/NRCP2204 Single 57.3

MHOM/TN/06/NRCP248 Single 57.3

MHOM/BZ/05/NRCP2620 Single 57.3

MRHO/SU/59/P-STRAIN Single 57.3

MHOM/SU/73/29-ASKH Single 57.5

MHOM/IL/83/IL24 Single 57.5

MTAT/KE/00/T4 Single 57.5

MHOM/DZ/89/LIPA228 Single 57.5

Non-species specific (causing visceral or mucocutaneous clinical manifestations)

Species Strain Peak Tm (°C)

L. chagasi MHOM/BR/74/M2682 Non-specific single 44.5

L. infantum MHOM/TN/80/IPT1 Non-specific single 44.5

MHOM/MA/67/ITMAP263 Non-specific single 44.5

L. donovani MHOM/IN/80/DD8 Non-specific single 45.8

MHOM/KE/55/LRC-L53 Non-specific single 44.5

MHOM/IQ/77/BUMM3 Non-specific single 44.5

MHOM/YE/86/LEM934 Non-specific single 45.8

MHOM/SD/90/2828 Non-specific single 44.5

L. mexicana MHOM/BZ/82/BEL21 None -

MNYC/BZ/62/M379 None -

L. panamensis MHOM/PA/71/LS94 None -

L. guyanensis MHOM/GF/79/LEM85 None -
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Table 3 Melting curve temperatures obtained from FRET-based real-time PCR assay (Continued)

L. peruviana MHOM/PE/84/UN56 None -

MHOM/PE/84/LC39 None -

L. braziliensis MHOM/PE/90/AC Undefined peak -

MHOM/CO/90/UA482 None -

MHOM/BR/75/M2904 None -

MHOM/BR/75/M2903b None -

Other protozoa

Species Strain Peak Tm (°C)

Plasmodium falciparum 10-4881 None -

10-4830 None -

Plasmodium malariae 10-3066 None -

Plasmodium ovale 10-2848 None -

Plasmodium vivax 99-551 None -

Trypanosoma cruzi 10-4342 None -

10-3447 None -

08-3341 None -

08-2636 None -

08-2634 None -

Trypanosoma brucei 09-255 None -

08-3460 None -

00-659 (control) None -

Toxoplasma gondii RH strain None -

Entamoeba histolytica ATCC® 30015 None -

Cryptosporidium parvum Iowa strain None -

Giardia lamblia ATCC® 30957 None -

Fig. 3 Cross-reactivity of OWCL FRET-based real-time PCR tested with other protozoa
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analysis. The variation between strains within a single
species is minor and did not interfere with the identifica-
tion of any of the cutaneous strains tested. The Tms for
all L. major and L. aethiopica strains showed standard
deviations of only 0.2 and 0.5 °C, respectively.
L. tropica presented a unique bimodal peak with the

second peak showing a consistent Tm. The first peak
however showed greater Tm variation. It has been sug-
gested that the first peak could indicate DNA fragments
denaturing at lower temperatures such as primer-dimers
and non-specific products which usually melt at a lower
temperature than desired products [33]. However, all L.
tropica strains tested showed only one discrete band on
the agarose gel. Sequencing results from all L. tropica
strains showed internal sequence differences. In the past,
phylogenetic analysis and Multilocus Enzyme Electro-
phoresis (MLEE) have revealed genetic diversity and a
high degree of allelic heterozygosity within L. tropica
isolates [34, 35]. These differences may reflect distinct
lineages of each strain and may explain the variation in
melting characteristics of the first peak. Thus, species
differentiation by melting curve analysis can be based on
more than a single peak and its associated Tm [36–38].
In our assay, the unique bimodal peak from a single
amplicon can be used in the detection and differenti-
ation of L. tropica species from other cutaneous species.
Melting curve peaks for visceral species of L. chagasi,

L. infantum and L. donovani were visible at 44.8 ± 0.6 °C.
Peaks at low melting point temperatures are usually indi-
cative of either primer-dimers due to their small size or
amplification of non-specific products. However, gel re-
sults for these species indicate the presence of the target
band at 154 bp. Although, the presence of a band confirms
the identity of the parasite at the genus level, real-time
PCR using melting curve analysis would enable species
identification. In this case, the presence of a low Tm could
be used as a possible marker to differentiate between
Leishmania (L.) donovani complex and L. tropica com-
plex. However, a prospective study would be necessary to
assess and validate this.
The Tm values for the control reference DNA were

highly reproducible on repeated melting curve runs. The
melt peaks obtained with our technique are specific for
Leishmania species and DNA from other protozoa was
not amplified. Other investigators, using melting curve
techniques such as high resolution melt analysis, found
non-specific amplicons with non-leishmanial DNA
although these did not overlap with the Leishmania
species [39].
We also tested our FRET-based real-time PCR on

seven patient biopsy samples received by the NRCP that
were confirmed to be positive for CL by culture and
conventional PCR, and were identified as L. major (five
samples) and L. tropica (two samples) by the Walter

Reed Army Institute of Research using isoenzyme electro-
phoresis. The five samples isoenzyme-typed as L. major
showed Tm at 57.3 ± 0.1 °C and those typed as L. tropica
showed double peaks at Tm 47.9 ± 0.9 and 66.5 °C, thus
yielding Tms consistent with our previous results. This
highlights the fact that our assay can be performed dir-
ectly on patient samples without the need for isolation
of parasites. We acknowledge that a small number of
samples were used in this study. Ideally, this method-
ology could be further validated using a larger number
of strains from a wide variety of sources and geograph-
ical areas. A future study conducted on a large sam-
pling of clinical specimen would be necessary to
validate this assay on patient DNA. Interestingly, one
of the patients (MHOM/BZ/05/NRCP2620) positive
for L. major in our real-time PCR assay as well in a
blind panel for isoenzyme-typing by the Walter Reed
Army Institute of Research, had demonstrated travel
history to Belize. Given the above results, the presence
of L. major in Belize comes as a surprise where this
specie was not previously reported in this country. It is
possible that the patient may have traveled to a Leish-
mania major endemic country prior to travel to Belize.
However, rare cases of L. major-like strains have been
reported and confirmed in New World countries [40, 41].
Species differentiation by real-time PCR is a highly ef-

fective tool in diagnostic laboratories that overcomes the
drawbacks of conventional PCR. To date, most real-time
PCR assays for cutaneous species differentiation have
been developed using the SYBR Green method. Never-
theless, this method has failed to identify or differentiate
between some species or requires separate PCRs for
each species [14, 21, 23, 42, 43]. Recently, real-time
PCRs have been developed in conjunction with FRET-
based melting curve analysis for species and genus iden-
tification [44–46]. To our knowledge, this FRET-based
nested real-time PCR was used to identify New World
tegumentary leishmaniasis species targeting the mannose
phosphate isomerase gene and the 6-phosphogluconate
dehydrogenase gene by melting curve analysis [26].
Using this approach, results can be obtained within a
short turnaround time and with relatively low costs.
Whole product melting curve analysis is recommended

for species identification because it is more tolerant to
small sequence differences that might result from intra-
specific variation [47]. For diagnostic purposes, a probe-
based real-time PCR assay is the preferred method due to
its enhanced specificity as well as ease of analysis of the
melting curves for species detection and differentiation.
Melting curve analysis replaces post-PCR analysis involv-
ing nucleotide sequencing followed by comparison to a
reference library of Leishmania strains [48].
Kinetoplast DNA, which has often been used as a

target due to its high sensitivity in the diagnosis of
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leishmaniasis, can only identify the parasite to the genus
or subgenus level [49]. The cpb gene, which has a rela-
tively high copy number and showcases polymorphism
between species, appear to give a more reliable species
identification. It has been shown previously that the cpb
gene could serve as an ideal target to differentiate be-
tween the different Leishmania species [29, 30, 45, 50]
with a very high sensitivity (100 %) [51]. However, in
contrast to previous assays targeting the cpb gene which
were only able to distinguish between Leishmania com-
plexes [52] or required multiple PCRs and post-PCR pro-
cessing [15, 30, 45], here we developed unique primers
that can differentiate between the three OWCL species in
a single rapid step.

Conclusion
In conclusion, we report a new highly sensitive FRET-
based real-time PCR that can simultaneously identify the
three species of Old World cutaneous leishmaniasis, L.
aethiopica, L. major and L. tropica, from direct patient
samples in a single step that could be used for rapid clinical
diagnosis. However, as in any diagnostic procedure, the re-
sults of this assay need to be assessed in a routine diagnos-
tic setting in light of the patient’s history and symptoms.
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