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Abstract

genomes of other monogenoidean flatworm species.

Background: The rather species-poor oviparous gyrodactylids are restricted to South America. It was suggested
that they have a basal position within the otherwise viviparous Gyrodactylidae. Accordingly, it was proposed that
the species-rich viviparous gyrodactylids diversified and dispersed from there.

Methods: The mitochondrial genome of Aglaiogyrodactylus forficulatus was bioinformatically assembled from
next-generation illumina MiSeq sequencing reads, annotated, and compared to previously published mitochondrial

Results: The mitochondrial genome of A. forficulatus consists of 14,371 bp with an average A + T content of 75.12 %.
All expected 12 protein coding, 22 tRNA, and 2 rRNA genes were identified. Furthermore, there were two repetitive
non-coding regions essentially consisting of 88 bp and 233 bp repeats, respectively. Maximum Likelihood analyses
placed the mitochondrial genome of A. forficulatus in a well-supported clade together with the viviparous Gyrodactylidae
species. The gene order differs in comparison to that of other monogenoidean species, with rearrangements
mainly affecting tRNA genes. In comparison to Paragyrodactylus variegatus, four gene order rearrangements, i.
e. three transpositions and one complex tandem-duplication-random-loss event, were detected.

Conclusion: Mitochondrial genome sequence analyses support a basal position of the oviparous A. forficulatus
within Gyrodactylidae, and a sister group relationship of the oviparous and viviparous forms.
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Background

Within flatworms (Platyhelminthes) the parasitic
Neodermata represent the most derived forms and are,
at least when compared to the free-living flatworm
lineages, particularly species rich. They include the
ectoparasitic Monogenoidea, and the endoparasitic
flukes (Trematoda) and tapeworms (Cestoda).

Among the Monogenoidea, Gyrodactylidae have
attracted particular attention as some species have been
of great concern for humans. For example, Gyrodactylus
salaris Malmberg, 1957 has caused significant ecological
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and economic damage to wild stocks of Atlantic salmon
(Salmo salar) in Norway and Russia as well as in aquacul-
ture [1]. The majority of the species within Gyrodactylidae
are hyperviviparous ectoparasites on actinopterygian fish
hosts, but there are also some oviparous gyrodactylid
lineages. These lineages were originally placed within
the Oogyrodactylidae [2], which was later rejected as
paraphyletic by Boeger et al. [3], and Oogyrodactylidae
were included in Gyrodactylidae based on morphological
synapomorphies.

Oviparous gyrodactylids are restricted to South America
and occur on freshwater catfishes, mainly on species of
the Loricariidae (Siluriformes). Boeger et al. [4] considered
the oviparous species a basal lineage within Gyrodactyli-
dae. Taking into account their geographical restriction to
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continental South America they argued that the species-
rich viviparous gyrodactylids diversified and dispersed
from there [4]. Accordingly, hyperviviparity and the loss
of ‘sticky’ eggs were interpreted as synapomorphic key
innovations of the viviparous Gyrodactylidae.

In comparison to the enormous diversity of the vivip-
arous gyrodactylids the oviparous lineages appear rather
species-poor; until today only 23 species in seven genera
have been described [5]. Among them is Aglaiogyrodac-
tylus forficulatus Kritsky, Vianna & Boeger, 2007, the
type-species of the genus, that was originally described
from the loricarid host Kronichthys lacerta [5].

In the current study we present the first mitochondrial
genome of an oviparous gyrodactylid. The molecular char-
acteristics of the mitochondrial genome of A. forficulatus
are compared with those of other previously described
monogenoidean mitochondrial genomes, and the phylo-
genetic position of oviparous gyrodactylids is addressed.

Methods

The oviparous A. forficulatus was collected from its
type-host, the catfish Kronichthys lacerta Nichols, 1919,
from Rio Morato, basin of the Garaquecaba, Parang,
Brazil (25°12'48"S, 48°17'52"W) on 30 October 2013.

About 200 individual parasites were pooled for
DNA extraction with the E.Z.N.A. Tissue DNA kit
(Omega Bio-Tek) following the Tissue DNA-Spin
Protocol provided with the kit. For high-throughput
next-generation sequencing (NGS) of the genomic
DNA paired-end libraries were prepared, tagged, and ana-
lyzed (29,107,020 paired 300 bp reads) on an illumina
MiSeq (outsourced to GENterprise GENOMICS, Mainz,
Germany).

The mitochondrial genome of A. forficulatus was recon-
structed by assembling the NGS reads using MITObim 1.8
[6] using essentially the default settings of the program,
and, in addition, the program’s quality trimming option.
The COII sequence of A. ctenistus (GenBank accession
number KF751723; [7]) was used as seed sequence for the
assembly.

Annotation of the mitochondrial genes was done
using MITOS [8] and DOGMA [9]. In addition, tRNA
genes were also identified using tRNAscan-SE 1.21 [10].
For most protein coding genes (PCGs) only the con-
served domains were identified by the two annotation
programs. Phylogenetic comparisons with already pub-
lished monogenoidean mitochondrial genomes (Table 1)
were, therefore, used to manually complete these genes’
annotation, which was assisted by blast searches of
GenBank. Codon usage was analyzed using the Sequence
Manipulation Suite v2 [11]. The dot-plot approach of
YASS [12] was used to identify and visualize the repeat
regions. The mitochondrial gene map was drawn using
SnapGene 3.0.
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Table 1 The mitochondrial genomes of 11 monogenoidean
and two cestode species included in this study for comparative
analyses

Species GenBank accession Length References

number (bp)

Monogenoidea: Gyrodactylidea

Aglaiogyrodactylus forficulatus  KU679421 14,371 this study

Paragyrodactylus variegatus ~ KM067269 14517 [13]

Gyrodactylus salaris® NC008815 14,790 [14]

Gyrodactylus thymalli® NC009682 14,788 [15]

Gyrodactylus derjavinoides NC010976 14,741 [16]
Monogenoidea: Capsalidea

Benedenia seriolae HM222526 13498 [17]

Benedenia hoshinai EF055880 13,554 [18]

Neobenedenia melleni JQ038228 13,270 [19]
Monogenoidea: Dactylogyridea

Tetrancistrum nebulosi NC018031 13,392  [20]
Monogenoidea: Mazocraeidea

Polylabris halichoeres NC016057 15,527  [21]

Microcotyle sebastis NC009055 14,407 [22]

Pseudochauhanea macrorchis  NC016950 15031  [23]
Cestoda

Hymenolepis diminuta AF314223 13,900 [24]

Echinococcus oligarthrus NC009461 13,791 [25]

recently synonymized by [35]

The assembled mitochondrial genome of A. forficula-
tus was compared to previously published mitochondrial
genomes of other monogenoidean species [13-25] that
are listed in Table 1. The mitochondrial genomes of the
cestodes Echinococcus oligarthrus [24] and Hymenolepis
diminuta [25] served as outgroups. All genes were
aligned individually using the online version of MAFFT
Alignment v7.245 [26]. Subsequently the individual
tRNA, rRNA, and PCG alignments were concatenated
into one extended alignment, which did not include the
non-coding regions of the mitochondrial genes. GBlock
v0.91b [27] and GUIDANCE2 [28] were applied to re-
move ambiguous and unreliable sections from the
concatenated MAFFT alignments.

PartitionFinder v.1.1.1_Mac [29] was used to select the
best-fit model of molecular evolution for the concatenated
alignments using as recommended the program’s “raxml”
search option and the Bayesian Information Criterion (BIC)
for model selection. Maximum Likelihood analyses were
carried out in PHYML 3.0 [30] applying the GTR+1+ G
model and 1,000 bootstrap replicates for all analyses except
those for the Cytb and ND3 genes that were performed
applying the GTR + G model.

Comparisons of gene orders of the mitochondrial ge-
nomes of A. forficulatus and the other monogenoidean
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species included in this study were conducted in CREx
[31], a program that infers most parsimonious gene
rearrangements based on common intervals.

Ethics approval

All sampling of parasites (on fish) was done under license
number 10007 (Instituto Chico Mendes de Conservagio
da Biodiversidade - ICMBio, Brazil).

Results and discussion

Next-generation sequencing of the genomic DNA of A. for-
ficulatus delivered 29,107,020 million paired 300 bp reads.
The initial assembly with the COII sequence of A. ctenistus
as seed sequence as well as subsequent control assemblies
using various A. forficulatus seeds delivered identical mito-
chondrial DNA (mtDNA) consensus sequences. During the
assembly of the mtDNA of A. forficulatus particular atten-
tion was paid to the two repetitive repeat regions (see
below) in order to avoid erroneous base-calling due to mis-
assembled short reads; the final sequence was determined
only from those reads that also in part covered the
respective flanking regions.

The mtDNA of A. forficulatus is 14,371 bp long, and
was assembled from 43,334 quality-trimmed reads with
an average coverage of 765 x. The overall A + T content
was 75.1 % and the nucleotide composition was A
(30.2 %) C (9.7 %), G (15.1 %), and T (44.9 %). The base
composition of the tRNA and rRNA genes, PCGs, and
repeat regions are listed in Additional file 1. The nucleo-
tide sequence of the assembled mtDNA of A. forficulatus
was deposited in GenBank with the accession number
KU679421.

All genes usually described for the mitochondrial ge-
nomes of other Monogenoidea (12 protein coding
genes, two rRNAs, and 22 tRNAs) were also identified
for A. forficulatus (Fig. 1, Table 2). Accordingly, ATP8
lacks also in A. forficulatus. All genes are coded on the
same strand.

Protein coding genes (PCGs) For most PCGs the ap-
plied annotation programs only detected the conserved
domains. This worked best for the COI and Cytb genes,
whereas ND2 was not detected at all. Thus, most PCGs
were annotated manually through phylogenetic compari-
sons with reference to other previously published platy-
helminth mitochondrial genomes (Table 1). Translation
into amino acid sequences was straightforward using the
flatworm mitochondrial code [32]. All PCG except for
ND2 and ND4 use ATG as start codon. For ND2 and
ND4, however, it proved difficult to identify the begin-
ning of the gene, as there was no canonical start codon
of flatworm mitochondria (reviewed in [33]) in frame in
the respective region. As a working hypothesis, we sug-
gest that both ND2 and ND4 start with ATT, which was
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reported earlier as a rarely used alternative start codon
in other flatworm mitochondria (e.g. [13, 34]). All
PCGs terminate with one of the canonical flatworm
stop codons TAG or TAA (Table 2). As reported for
other monogenoidean mitochondrial genomes, A. forfi-
culatus shows a strong codon bias for PCGs. The most
commonly used codons for a particular amino acid in
A. forficulatus were, however, in all cases the same as
for P. variegatus (Additional file 2).

rRNA genes The 12S and 16S rRNA genes were identified
of being 729 bp and 928 bp long, respectively. The A + T —
content was 77.4 % for the 12S gene and for the 75.6 %
16S rRNA gene, and thus very similar to the average of the
whole mitochondrial genome.

tRNA genes All 22 tRNA genes were identified by
MITOS [8] and DOGMA [9] that, however, failed to de-
tect tRNA P for prolin. tRNAscan-SE [10] confirmed
eight tRNAs but could not predict the remaining ones
(Table 2). The secondary cloverleaf structures of the pre-
dicted tRNAs are compiled in Additional file 3. The
tRNAs C, S1, and S2 lack the DHU arm.

Genetic diversity and phylogenetic analyses

Based on the concatenated MAFFT alignments (15,261
positions), the mitochondrial genome of the egg laying
A. forficulatus was found in a sister-group relationship
to the mitochondrial genomes of the other viviparous
Gyrodactylidea, ie. G. salaris, G. thymalli, G. derjavi-
noides, and P. variegatus (Fig. 2) with high statistical
support. However, it has to be taken into account that
the depicted ML tree does not provide a comprehensive
phylogenetic hypothesis for the Monogenoidea since it is
only based on the limited number of available mitochon-
drial genomes. All included Capsalidea, Mazocraeidea,
respectively, also clustered together with high statistical
support. Despite the limitations of the analyses the
observed phylogenetic affinity of A. forficulatus to the
included viviparous Gyrodactylidea species makes sense,
as the grouping is congruent with the results of earlier
morphological analyses [3].

Similar tree topologies with respect to the Gyrodactylidea
clade were also obtained when analyzing the concatenated
tRNA (bootstrap support 50) genes as well as the COI
(100), COII (86), COIII (65), Cytb (77), ND1 (100), ND3
(66), ND4L (93), ND4 (99), and ND5 (100) genes individu-
ally. When analyzing the rRNA genes as well as the ATP6,
ND2, and ND6 genes individually somewhat different tree
topologies with affinities of A. forficulatus to other species
or clades were obtained. Similar tree topologies were also
obtained when using the concatenated GBlock and GUID-
ANCE2 alignments, respectively (Additional file 4). With
the unreliable parts of the original MAFFT alignment
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_

Aglaiogyrodactylus forficulatus

14,371 bp

Fig. 1 Map of the mitochondrial genome of Aglaiogyrodactylus forficulatus. The 12 protein coding, 22 tRNA, and two rRNA genes are depicted as
well as the non-coding regions (NCR) I and Il and the respective repeat regions (RR) | and Il

removed, the clade consisting of species of Gyrodactylidae
received a bootstrap support of 100.

The clustering of the mitochondrial genome of A. for-
ficulatus with the remaining Gyrodactylidae species is
nevertheless not strongly reflected in a matrix of pair-
wise genetic distances. Although the genetic distance
between A. forficulatus and the closest relative P. varie-
gatus was lowest (0.402; p-distances), the obtained values
for all other pairwise comparisons were only slightly
higher ranging from 0.409 with N. melleni to 0.477 with
M. sebastis (Additional file 5). The respective values for

the GBlock alignment were 0.396 for the comparison
with P. variegatus and a range from 0.402 with N
melleni to 0.471 with M. sebastis (Additional file 5).

Non-coding regions (NCRs) including repeat regions
I and II Two extended non-coding regions of 486 bp and
733 bp, respectively, were detected in the mitochondrial
genome of A. forficulatus. They are located relatively close
to each other, separated only by the tRNA V and tRNA D
genes, i.e. 123 bp, within a cluster of five tRNA genes that
represents in comparison to other previously published
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Table 2 The mitochondrial genome of Aglaiogyrodactylus forficulatus; gene organization and gene order as determined by MITOS

[8] and DOGMA [9]

Gene Position Length (bp) Start/Stop codon of PCGs Best-fit model®
Cytb 1-1101 1101 ATG/TAG GTR+G
ND4L 1109-1363 255 ATG/TAA GIR+1+G
ND4 1306-2508 1203 ATT/TAG

tRNA Q 2504-2566 63 GTIR+1+G
tRNA M? 2568-2632 65 GTIR+1+G
tRNA F® 2651-2713 63 GIR+1+G
ATP6 2735-3250 516 ATG/TAA GTR+1+G
ND2 3280-4104 825 ATT/TAG GTR+1+G
tRNA S1 4193-4251 59 GIR+1+G
tRNA W 4252-4314 63 GIR+1+G
Ccol 4312-5841 1530 ATG/TAG GIR+1+G
tRNA T° 5842-5906 65 GTR+1+G
165 5907-6834 928 GTR+1+G
tRNA C 6843-6901 59 GIR+1+G
125 6887-7615 729 GTR+1+G
call 7613-8188 576 ATG/TAG GIR+1+G
tRNA E 8205-8270 66 GIR+1+G
ND6 8272-8742 471 ATG/TAA GTR+1+G
tRNA'Y 8746-8808 63 GTR+1+G
tRNA S2 8817-8873 57 GIR+1+G
Non-coding region | 8874-9358 485

Repeat region | 9017-9277 261

tRNA V 9359-9420 62 GTIR+1+G
tRNA D* 9421-9482 62 GIR+1+G
Non-coding region |l 9483-10216 733

Repeat region |l 9539-10212 675

tRNA A® 10217-10277 61 GIR+1+G
ND1 10282-11175 894 ATG/TAG

tRNA N? 11175-11237 63 GTIR+1+G
tRNA PP 11238-11301 64 GTR+1+G
tRNA | 11300-11362 63 GTR+1+G
tRNA K? 11363-11423 61 GIR+1+G
ND3 11438-11800 363 ATG/TAG GTR+G
tRNA L1° 11801-11865 65 GIR+1+G
tRNA R 11866-11931 66 GIR+1+G
tRNA L2 11932-11995 64 GTR+1+G
ND5 12038-13597 1560 ATG/TAA GTR+1+G
tRNA G 13597-13658 62 GIR+1+G
coll 13659-14304 645 ATG/TAA GIR+1+G
tRNA H 14308-14369 63 GIR+1+G

?genes confirmed by tRNAscan-SE [10]; tRNA P was only identified by MITOS [8]; “using PartitionFinder v.1.1.1_Mac [29] with the program’s “raxml|” search option
and the Bayesian Information Criterion (BIC), all tRNAs were concatenated into one partition
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Fig. 2 Maximum Likelihood tree based on the concatenated MAFFT alignments of mitochondrial genes of A. forficulatus and 11 further Monogenoidea
species. The cestode species H. diminuta and E. oligarthrus served as outgroup. Bootstrap support values are indicated

monogenoidean mitochondrial genomes a substantially
rearranged part of the mtDNA (Additional file 6). Both
non-coding regions include a repetitive region consisting
of three repeats. In repeat region I the repeats are 88 bp
long while they span 233 bp in repeat region II. For both
repetitive sequence motifs blast searches revealed no sig-
nificant sequence similarity to other GenBank entries. The
average sequence similarity between the repeats was
81.1 % in repeat region I and 96.5 % in repeat region II,
with somewhat higher sequence divergence in the begin-
ning and the end of the repeated arrays (Additional file 7).
The AT-content of repeat region I is 75.48 %, and repeat
region II is particularly AT rich (83.38 %) and may contain
important functional domains for replication and tran-
scription. However, such functional domains have not
been described yet in monogenoidean flatworms in more
detail than e.g. “Poly T stretch” or “A + T — rich segment”
[13], and similar domains can be certainly found in the re-
peat region of A. forficulatus as well. Nevertheless, without
a comprehensive functional analysis the identification of
such functional domains would remain highly speculative.

The structure of the non-coding regions of A. forficu-
latus is strikingly similar to that of P. variegatus [13]
although there is only one non-coding region in the
latter species. The non-coding region in P. variegatus
also consists essentially of two repetitive regions, one
consisting of two 394 bp repeats (termed part I and

II), and one consisting of three 81 bp repeats (termed
part III). In contrast, the two non-coding regions ob-
served in the mitochondrial genomes of the other included
Gyroadactylidae species G. salaris [14], G. thymalli [15],
and G. derjavinoides [16] do not consist of internal repeats.
However, in these species the sequences of the two repeat
regions are highly similar to each other indicating on the
one hand that they originated from a duplication and on
the other hand that they bear some functional domains.

Gene order

As proposed by the CREx program [30] P. variegatus
and T. nebulosi (both species share identical mitochon-
drial gene orders except for the repetitive non-coding
region in P. variegatus) have the highest similarity
values in gene order based on inferred common intervals
(Additional file 8). The program suggested a recombin-
ation scenario consisting of three transpositions and one
complex tandem-duplication-random-loss (tdrl) event.
The proposed transpositions (inversions; green boxes in
Fig. 3) affect (a) tRNA-F and tRNA-M, (b) tRNA-A and
tRNA-D, and (c) tRNA-R and tRNA-L2, and the proposed
tdrl affect two larger gene blocks (red and blue boxes in
Fig. 3). However, the proposed tdrl event can alternatively
also be interpreted as a series of transpositions. Four
larger gene blocks are conserved over all Gyrodactylidae
species included in this comparison (Additional file 6).
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Fig. 3 Recombination scenario proposed by CREx [31] to explain mitochondrial gene order changes between A. forficulatus and P. variegatus. This
includes three transpositions (green boxes) and one complex tandem-duplication-random-loss (tdrl) event (red and blue boxes)

Rearrangements of gene order have already been de-
scribed for several mitochondrial genomes of Neodermata
species (e.g. [13]). The four rearrangements in gene order
of A. forficulatus in comparison to P. variegatus are thus
not very surprising. As reported for other Monogenoidea
mitochondrial gene order rearrangements mainly affect
the specific position of some tRNA genes and non-coding
regions. Also in A. forficulatus individual protein coding
genes are not rearranged. For the mitochondrial genomes
of the Gyrodactylidea species included in this study there
are essentially four conserved regions; these are (i) ND5,
tRNA G, COIIL tRNA H, Cytb, ND4L, ND4, (ii) ATP6,
ND2, (iii) tRNA S1, tRNA W, COL tRNA T, 16S, tRNA C,
12S, COIL tRNA E, ND6, tRNA Y, and (iv) ND1, tRNA N,
tRNA P, tRNA [, tRNA K, ND3 (Additional file 6).

Conclusions

The mitochondrial genome of A. forficulatus shows a hith-
erto unique gene order within the monogenoiden Gyro-
dactylidea with four rearrangements in comparison to P.
variegatus. The previously proposed sister group relation-
ship of the oviparous and viviparous Gyrodactylidae is
corroborated. However, more comprehensive sampling is
required to further test the proposed phylogenetic hypoth-
esis. All Gyrodactylidea mitochondrial genomes sequenced
so far include repetitive regions, although the structure of
two regions consisting of short tandemly arranged repeats
that was found in the basal Gyrodactylidea lineages repre-
sented by A. forficulatus and P. variegatus differs substan-
tially from the structure of two longer dispersed repeats in
Gyrodactylus spp. The biological function of these repeti-
tive regions is yet unknown but the sequencing of mito-
chondrial genomes of further Gyrodactylidae species may
shed some light on the evolution of these regions.
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