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Refined stratified-worm-burden models ® e
that incorporate specific biological features

of human and snail hosts provide better
estimates of Schistosoma diagnosis,

transmission, and control

David Gurarie'? Charles H. King®*", Nara Yoon' and Emily Li?

Background: Schistosoma parasites sustain a complex transmission process that cycles between a definitive human
host, two free-swimming larval stages, and an intermediate snail host. Multiple factors modify their transmission
and affect their control, including heterogeneity in host populations and environment, the aggregated distribution
of human worm burdens, and features of parasite reproduction and host snail biology. Because these factors serve
to enhance local transmission, their inclusion is important in attempting accurate quantitative prediction of the outcomes
of schistosomiasis control programs. However, their inclusion raises many mathematical and computational challenges.
To address these, we have recently developed a tractable stratified worm burden (SWB) model that occupies an
intermediate place between simpler deterministic mean worm burden models and the very computationally-intensive,
autonomous agent models.

Methods: To refine the accuracy of model predictions, we modified an earlier version of the SWB by incorporating
factors representing essential in-host biology (parasite mating, aggregation, density-dependent fecundity, and random
egg-release) into demographically structured host communities. We also revised the snail component of the transmission
model to reflect a saturable form of human-to-snail transmission. The new model allowed us to realistically simulate
overdispersed egg-test results observed in individual-level field data. We further developed a Bayesian-type calibration
methodology that accounted for model and data uncertainties.

Results: The new model methodology was applied to multi-year, individual-level field data on S. haematobium infections
in coastal Kenya. We successfully derived age-specific estimates of worm burden distributions and worm fecundity and
crowding functions for children and adults. Estimates from the new SWB model were compared with those from the
older, simpler SWB with some substantial differences noted. We validated our new SWB estimates in prediction of drug
treatment-based control outcomes for a typical Kenyan community.

Conclusions: The new version of the SWB model provides a better tool to predict the outcomes of ongoing
schistosomiasis control programs. It reflects parasite features that augment and perpetuate transmission, while it
also readily incorporates differences in diagnostic testing and human sub-population differences in treatment
coverage. Once extended to other Schistosoma species and transmission environments, it will provide a useful
and efficient tool for planning control and elimination strategies.
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Background

Parasitic Schistosoma species pose a significant health
burden in many developing countries [1]. Broad-based
regional schistosomiasis control and local elimination of
parasite transmission have been prioritized in the 2012
London Declaration for Neglected Tropical Diseases
(http://unitingtocombatntds.org/resource/london-declar-
ation) and the recent World Health Organization 2020
Roadmap on Neglected Tropical Diseases (NTDs) [2].

The parasite has a complex ecology in which it cycles
between human and snail hosts through intermediate lar-
val stages, in a manner that strongly embeds transmission
within at-risk sub-tropical and tropical ecosystems [3]. A
key feature of Schistosoma infections (similar to other
metazoan macro-parasites) is the highly uneven (heteroge-
neous) distribution of infection burden among its verte-
brate host populations, as evident in both experimental
and field data [4—6]. Other heterogeneous factors that play
important roles in perpetuation of schistosomiasis include
variations in local human demographics and exposure
frequencies, patchy transmission habitats, and the season-
ality of rainfall and temperature factors that affect snail
abundance [7].

Modeling of such systems is a challenging task, but
to provide more accurate estimates for current con-
trol programs, newer models should account for the
influential features of in-host biology, transmission en-
vironment, diagnostic uncertainties, and the potential effi-
ciency of different control interventions. Conventional
approaches based on mean worm burden (MWB) formula-
tions [4, 8-11] have had several shortcomings in this
respect. They have used ad-hoc assumptions about worm
load distributions and appear to have oversimplified some
components of the transmission system. As a result, infec-
tion rates in such systems and the modeled impacts of
treatment tend to be overestimated [12]. Individual-based
modeling approaches (e.g. [13]) could potentially address
some of these issues, but individual-based models have
significant limitations in terms of accessibility and pro-
gramming requirements, particularly for large populations.

The stratified worm burden (SWB) approach occupies an
intermediate place between MWB and individual-based
models, and offers many advantages [12, 14]. Among other
features, it provides a natural way to account for worm dis-
persion in demographically-structured host populations.
Our earlier work with SWB [14, 15] was limited in terms
of within-host parasite biology, as we had assumed perfect
mating and uniform egg-release by all worm male-female
pairs, independent of accumulated burden. Here, we refine
the earlier SWB model to account for influential
components of in-host biology including the aggregated
distribution of worm burden, worm mating probabil-
ities, density-dependent worm fecundity, and random fea-
tures of egg-release [12, 16]. These newly incorporated
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biological parameters allow us more realistic simulation of
diagnostic egg-tests and of environmental egg release and
its effect on the force of infection to intermediate host
snails. We have developed a new Bayesian calibration
procedure that recognizes many uncertainties of modeling
infection data based on standard egg-count tests [17-22].
The goal of this calibration approach was to identify the
most ‘likely’ model parameter choices consistent with the
collected field data. The posterior parameter ensembles
for a community could then be used for dynamic simula-
tions of control interventions, incorporating the uncer-
tainties about diagnosis and transmission reflected in the
input data. The model/data uncertainties thus yield more
robust statistical estimates, including credible ranges for
the projected treatment outcomes.

In the current paper, we explain how we have applied
the new model and calibration methodology to the field
data collected in survey and control studies of S. haemato-
bium in coastal Kenya [23-26]. These data provide a fairly
complete demographic coverage of several communities,
well-suited for our analysis. Because we had also used this
data set in our previous modelling using a simpler SWB
model (i.e. without in-host biology [14, 15]), we can
compare the two models to demonstrate how inclusion of
these biological factors can result in more accurate projec-
tions of post-treatment infection outcomes.

Methods

Description of stratified worm burden system with in-host
biology

In the SWB approach [12, 14], the dynamic variables in-
cluded in the modeling framework are host population
strata {/1(¢)}, (Table 1) which are defined by their actual
worm burden values. In our formulation, strata {/;} and
transition rates between them are determined by a fixed
worm count increment Aw - (Table 2). We think of Aw as
mating threshold, so that hosts carrying less than Aw
worms (stratum /1) are considered non-infective.

Table 1 System variables in the SWB model

System variable Symbols

{hk(f 1 k=0,1, }
=1
Demographically structured SWB:

Child hS(@)
Adult iG]

Population densities per unit habitat:

SWB prevalence strata:

kAw < w < (k+ 1)Aw with worm burden
increment Aw

Human H ()

Snail (susceptible, infected, patent)
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Table 2 SWB system
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Host population H= 3"} _ ohy is divided into burden strata {h,} by their worm load (w = # adult worms): k Aw < w < (k+ 1)Aw for h,. The partition is
determined by worm-step Aw 2 1, that serves as hypothetical mating threshold. So hy are infection-free (no mated couples), while for hy (k = 1) its

1% 15 15
mated count (expected number of couples) given by function (Eq. 1). The transitions among strata ho(t) F‘C‘ hy () F‘C . #é hn(t)
H H H

are determined by force of infection (FOI) A (= rate of worm accumulation/Aw), resolution rates y,=ky (y - mean worm mortality), and population
turnover rate u (mortality, maturation, migration, etc.). Source terms S, represent demographic inputs from related population groups, e.g. for
children Sy = by, (birth rate), with Sx= 1 =0 (as all newborns are infection-free); whereas adult sources come from maturing child strata. For the

interested reader, a version of the SWB model programmed in Mathematica software is provided as Additional file 1

Because low worm burden is very difficult to measure
in living humans, there are no accurate estimates of the
relevant minimal Aw. Theoretical arguments suggest
relatively low values, Aw =35 [9, 14]. Experimental data
from primate infections [27] predicts Aw =~ 40. Currently,
we use an intermediate value of Aw =10 in our numeric
implementation of the SWB system.

A single SWB system describes a homogeneous
population, determined by human FOI A (rate of worm ac-
cumulation), worm mortality y, and host turnover (demo-
graphic) rate, p. Dynamic variables {/3(f)} obey coupled
differential equations with matrix A(), 4, y) and sources
{Sk(®)}. The latter account for demographic changes to
SWB populations (birth, death, maturation, migration; for
details see Additional file 2 and [12, 14]). In some applica-
tions (e.g. model calibration), we ask for equilibrium solu-
tions for SWB systems to align with endemic infection
levels. For a single SWB system, equilibrium distribution
It = {h(My, uly)} depends on two dimensionless parame-
ters (My, uly) (Additional file 2). For =0 (no population
turnover), the sequence {1} becomes a Poisson distribution
with mean w = 1/y, which is equivalent to the equilibrium
worm burden (MWB) of a MacDonald-type system [8]. For
typical demographic turnover (small p/y <« 1), distribution
{h values are close to Poisson or negative binomial, with
high aggregation (see Fig. 1 and [12]).

Random egg-release by hosts and SWB communities:
simulation of egg-test data

In the updated SWB, two factors determine egg-
accumulation by human hosts: the number of fertilized
females (mated worm pair count), ¢, and the worm fe-
cundity factor, p. Both depend on worm burden w, and
can be estimated as functions of w, or for SWB models,
the stratum number, k. The mated worm count depends
on worm mating patterns and worm accumulation in
hosts [12, 28]. Some commonly used assumptions about
mating, i.e. random worm acquisition and monogamous
mating, yield a binomially-distributed sex ratio in each
w-stratum (w adult worms), hence the mated count,

P(w) =

(ST

[1-2-W(W V/“ 2)} or ¢ = plkAw) (1)

for the hy-stratum. Worm fecundity p(w) (or py) is
expected to drop with increased burden due to density-
dependent crowding effects. Following Anderson &
Medley’s approach [29, 30], we have used the exponen-
tial decay function

p(w) = poe™!™; or p, = plk Aw) = pye0  (2)
with maximal value p,, and threshold burden, wy, or
ko = 3% (for hi) to simulate this phenomenon. Equa-
tions (1) and (2) predict mean egg-release by each
host carrying w worms

E(w) =p(w)p(w); or Ex = p, ¢, for hy (3)

Observed egg-counts, e.g. diagnostic test data, are typ-
ically over-dispersed (Fig. 2) and can be highly variable
from day to day. A negative binomial (NB) distribution
of daily egg output per worm has been proposed [16],
and we adopt this premise at the level of individual egg
output per host (Fig. 3). Specifically each fertilized
female in /i-stratum is assumed to provide a random
(NB) daily egg-count in the stool with mean p; and
aggregation r. Then egg-release by a given /-host
(carrying ¢y fertilized worms) is also negative binomial,
with mean E;=pi¢ and aggregation r;=r¢;. For the
overall SWB community with strata {/1;}, egg-test results
are random samples drawn from the mixed NB distribu-
tion (Table 3).

Dy =), Ju NB(Edr ¢) (4)

In our SWB model development, simulated (random)
community egg-tests were used extensively for model
calibration and later for prediction and analysis of
control intervention outcomes.

Unlike the results of individual diagnostic tests,
which influence estimates of human infection preva-
lence, environmental egg-release by SWB community
was considered a deterministic process that accumulates
the random contributions of multiple hosts. Hence, in
determining human-to-snail FOI, random egg-release
(Eq. 4) is replaced by its mean value
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Fig. 1 Comparison of equilibrium worm burden distributions. The
SWRB distribution {h,} of Schistosoma worm burden can be viewed

as probability distribution function (PDF) representing an ensemble
of stochastic agents (human hosts) having a prescribed mean rate
of worm accumulation AAw and worm resolution (death) rate y,
yielding an equilibrium level of infection over time. In Panel a, we
used stochastic individual-agent simulation to repeatedly follow an
ensemble of 200 hosts with prescribed mean Ay, to determine their
progression from no infection to an equilibrium endemic state. The
graph shows the multiple ensemble histories and their mean (thick
line) which closely follows relaxation dynamics of earlier deterministic
models [8], i.e. £ = A—yw, approaching equilibrium w* =M/y. In Panel
b, the PDF of stochastic simulation equilibrium values (blue line) is
compared to a fitted negative binomial curve, NB(k, w*¥) (gray line) and
to an ensemble of equilibrium SWB model predictions {h,(\y)} (red
line). We observe close proximity of the three curves, justifying the view
that SWB approximates a stochastic agent model in terms of ensemble
PDF, given identical Ay. The resulting worm distribution patterns
are highly aggregated (k=231 for fitted NB) and close to a Poisson
distribution, in contrast to the highly overdispersed patterns seen
for patient egg-count data [16]

E= Zzzlpkfﬁkhk = Zzzlfkhk (5)

and function E represents average host infectivity of
SWB community {/].

Details of the local snail population model

The snail dynamics modeling combines snail population
biology and infection processes (Table 4). We assume
the snail population obeys a logistic growth with
maximal reproduction rate, S, and carrying capacity, K,
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following models that are commonly used in population
biology to account for growth in resource-limited envi-
ronments. For modeling Schistosoma transmission
within snail populations, three compartments (suscep-
tible-exposed-infected (SEI)) are used, labeled as: x, sus-
ceptible; y, pre-patent infected; and z, patent/shedding
infected, with total population N=x+y+z. It is as-
sumed that shedding snails do not reproduce [31].

Here a successful miracidial invasion (Table 4) is
followed by the prepatent stage lasting 1/r days, after
which a fraction ¢ of prepatent snails convert to the
patent/shedding stage (z), while the remaining fraction
(1 - ¢) may resolve infection to return to the susceptible
(x) stage. Snail FOI A is determined by human infectivity
(E), the human population size, and human-snail contact
rate, w.

Human-to-snail force of infection in coupled SWB systems
Human-snail transmission is mediated by two larval
stages, cercaria (C) and miracidium (M), which deter-
mine snail-to-human FOI (1) and human-to snail FOI
(A), respectively. It is convenient to measure all popula-
tions (human H, snail N, M, and C) by their densities
per unit habitat.

Human and snail FOI are determined by larval equilib-
ria (Eq. (6) of Table 4), but their functional forms require
more detailed analysis. For human FOI (rate of worm
accumulation) we expect a linear dependence on C,
proportional to patent snail prevalence. Hence

A=aw Nz (7)

for exposure rate w, patent snail density N z, and
(snail-to-human) transmission coefficient « that accounts
for intermediate cercaria stage, and the probability of
worm establishment in a human host. For snail FOI, many
conventional modeling approaches have adopted a similar
linear relation A = bwH E with (human-to-snail) transmis-
sion coefficient b, but this relation is questionable. Snail
infection is accounted by prevalence variables (, z), and
the functional relation between miracidial density (M) and
FOI A requires a more careful analysis. We propose,
instead, that the link is a nonlinear function that takes into
account two processes: (i) multiple possible M-invasions
[32] and (ii) sporocyst establishment in susceptible snails
[32]. The invasion process likely depends on the average
number of miracidia per snail, M/N, and a snail innate
resistance level, p = the probability of ejecting an invading
miracidium. Multiple biological and environmental factors
could contribute to a successful miracidial invasion, and p
serves as a crude proxy for their cumulative (mean) effect
in the susceptible snail population. Having fixed M/N, we
estimate the fraction of successfully invaded snails by 1
- p™N_ The resulting snail FOI is the product of A, - the
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Fig. 2 Uneven distribution of infection levels by village and by age groups. a Age distribution of mean intensity (egg count) for S. haematobium
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rate of sporocyst development in snails (minimum 1-2
weeks [31, 32]), and the invaded snail fraction:

A= Ag(1-pMNy (8)

It is convenient to replace snail resistance p=e~ " by
susceptibility parameter, « = 1n(1/p), and using miracidia
equilibrium M* = $y,0H E (Eq. 6) to write A as function
of human infectivity E.

A=A <1 ~exp [m%}) (9)

The key inputs in A are sporocyst establishment rate
Ao and the transmission coefficient b = af,; (product
of “miracidium coefficient” §,, times “snail susceptibil-
ity” a). At low transmission intensity (HE « 1) func-
tion (Eq. 9) is approximately linear (A~Agbw HTE) - the
conventional form of snail FOI. But unlike a “linear” A
function, Eq. (9) would saturate at a maximum level
= Ay for large H E. This has important implications for
transmission dynamics and model calibration. In gen-
eral, one could expect higher values of estimated coef-
ficient b, compared to the linear model case. In dynamic
simulations, this would yield higher persistence of
transmission and a more rapid rate of human

reinfection after mass drug administration (MDA) to
the human population.

Thus, the basic inputs needed for running a coupled
SWB model system are: (i) the biological SWB parameters
of worm fecundity p(w) and egg-release E, (ii) human and
snail population densities H, N, along with their demo-
graphic (birth, death, migration) parameters; and (iii) the
human exposure/ water contact rate , and the resulting
operative transmission parameters (a, b).

Calibrating the human SWB system

The first input for calibration is a human egg-test data set
(~500 cases) from a given community, or a population
subgroup (e.g. age group). The goal of this human-side
SWB calibration is to find most likely values of biological
(fecundity) parameters pg = {po, Wo, 1} and transmission A
(= “rate of worm accumulation”/”worm mortality”) that
are consistent with test data. Parameter \ is proportional
to the mean worm burden of the SWB community in its
equilibrium (endemic) state, w = AAw.

For each choice (A, pp), we simulate an ensemble of
random egg-tests outputs to compare with the observed
data. Each simulated egg-test involves two random steps:
(1) the random selection of subjects from a population
sub-group to be tested and (2) the random egg-release
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0 200

by each tested host in each stratum. These two steps are
combined via a random sampling of a mixed NB distri-
bution (Eq. 4) with prescribed parameters {A, pg = (po, ko,
1)} (see Table 3). By this approach, we generate an SWB
equilibrium {/1;(1)} from A and then compute the mean
egg-release E;=pi¢r and aggregation ry=r¢y for each
stratum /1;, using the determined biological parameters
pPp le pp = poe‘k/ ko (fecundity) and @ (mating (Eq. 1)).
Three inputs {/, Ex, 1z} give rise to the mixed NB-
distribution D,; (A, pp) of (Eq. 4). The simulated commu-
nity egg-test output is thus a random sample of H subjects
(the surveyed pool) drawn from distribution Dy, Er
= {e1;...,;en} (e - egg-count of i-th test sample).

For further parameter fitting (calibration), individual
counts are binned into egg-count distributions Es = {cy, ¢,

Table 3 Random egg-release
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...} determined by prescribed sequence of E-partition bins:
Ey=0<E; =1<Ey<...<E,

Range | E,- E | E - E, | ..

Count| C | G |

Here, ¢, counts negatives (uninfected pool), ¢; - includes
the range E; <e<E,, etc. Different binning choices E, <
E, <E;<... are possible depending on the range and dis-
tribution of test diagnostics. For S. haematobium, 10 ml
urine filtration [21] has typical counts 0<e <1000, and
egg count values are highly over-dispersed (Fig. 3). A suit-
able choice in such context is the log-scale Ej = 2k(k =1,2,

., 10), such that the egg-count range, ([0-1,000), would
split into 10 log-scale bins.

The log-bin counts of test data and of simulated tests
show a typical bimodal pattern, with maximal value cq
(uninfected) and another peak between 50 < E <500
(Fig. 4), depending on mean community burden. The
elevated negative egg count category, ¢y, could be an
overestimate due to low test sensitivity for light infec-
tions [20, 21], or it could mean low infection prevalence
among the tested subject pool.

Simulated egg distribution Eg(A, pg) (Eq. 10) de-
pends on model parameters, but each output Ejg
={co, c1, ...} is random. The same, we expect, should
hold for the real test data Ep={d;}, due to uncer-
tainties of sampling and diagnostics [17-22]. Our
goal is to compare two random samples (Eg; Ep) to
assess their “proximity” via a suitable distance-function,

Egg release by mated females and individual hosts depends on worm fecundity py, and mated-couple count ¢y (for hy -stratum). The former is given by
crowding function p, = p, e ™*/%, with maximal value p, and threshold k,. The latter @, can be estimated by assuming binomial sex-ratio distribution in
the “w-strata” (w adult worms), Eq. (1). The predicted egg-release by hy-hosts, £, = ok @, gives its mean (expected) value used as measure of host infectivity.
The actual release should be random (NB) with mean £, and aggregation r,=r @.

hy 0-E,
h1 EJ'Ez
h, E,—E;

Individual egg-counts-counts by all SWB hosts (strata {hy}) generate a mixed NB-distribution (4), illustrated in the schematic plot above. Each simulated
egg-test of SWB community is then a random sample of size H (sampled pool) drawn from distribution P,
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Table 4 Snail population-transmission dynamics
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Dynamic variables for the snail model are population densities (per unit habitat)

x: susceptible; y: prepatent; z: patent; N =x + y + z- total.
B =/ cr
_>Xl<_“*f)’yl—> Zl

vV v v

Basic processes and parameters include

i) snail reproduction (logistic growth) 8= Bo(x + y)(1 — N/K), with maximal reproduction rate 8, and carrying capacity K;

(
(i) snail mortality v;

(iii) snail FOI A(determined by human host egg outputs) ;
(iv) recovery rate r (prepatency period 1/r)

(v) patency conversion fraction c.

I

n population growth term B, only susceptible and prepatent snails (x+y) reproduce. Combined growth-SEI dynamics consists of 3 differential equations

dx

? = p-Ax—vx+r(l-c)y
y

2 Ax—

Jt x—(r+v)y

d_ cry-vz

a7

Parameter values and ranges for the snail system are given in Table 5.

Short-lived larval stages (M, C) equilibrate rapidly at levels proportion to human/snail (H, N) multiplied by their respective infectivity. Specifically,

Ct=acNz M*=BuwHE (6)

where ac = %;— ("C-production /patent snail” over “C-mortality”). For miracidia the relevant inputs include environmental egg-release by host
population w H E, w = human-snail contact rate, H - population size, £ - mean host infectivity - egg release (Eq. 5), coefficient 8, = 2£ (“survival fraction of

eggs” over “M - mortality”)

Ym

d(Es; Ep). The task is confounded by randomness of
both samples, particularly of simulated Es. To account
for this, we assess the “proximity” between the simu-
lated test ensemble E = E (), py) = {Es}, and observed
data, Ep, instead of comparing individual test samples
{Es}. Such a procedure is cast in a Bayesian framework by
asking how likely it is to observe a given data set Ej, for a
particular (parameter choice) ensemble (E = E(1,p;)). In

other words, we ask what is the probability of observing
Ep conditioned on E?.

A natural answer can be given via the mean and
covariance structure of ensemble E(A,pg), {E(A, pg), o(A,
pp)}. Specifically, we define the distance (error) function
between E and Ej, as:

d(E, Ep) = (E-Ep)o* (E-Ep). (11)

0.3

0.2

Egg-count PDF

0.1

T T T T T T T T T T T T T T T T T T T T
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Fig. 4 Simulated egg-test ensemble distributions vs egg-count data for a high risk village. A logarithmic bin scale (E,=2k=0,1,...,11)
was used to plot aggregated patient data (blue dots) for comparison to results from multiple, data-generating, random SWB test
simulations. Here a simulated egg-test ensemble (200 random realizations) was created based on a fixed choice of model parameters
(A=18, po=27, wo=100, r=.11). Simulation results are represented by a box and whisker plot that shows median and 25-75 % quartiles,
and the 95 % range of the simulations, plotted by egg-count bin number (logarithmic scale)

5 6 7
Logarithmic bin number

8 9 10 11
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Definition (Eq. 11) gives a family of likelihood weights
on parameter space (), pp)

-d(E.Ep)

W= W(,py) = e (12)

with larger W corresponding to more likely parameter
choices, consistent with the data E;, (see Additional file 3
for technical details).

Calibration proceeds by randomly scanning the param-
eter space (A, pp) (“uninformed” prior) and generating a
mean-covariance structure for uniformly sampled 4D
hypercube in the parameter space: 1'<A<A"po'<po
<po ko' <ko<ko"sr'<r<r".

Once such a mean-covariance test-bed ({E(A,pp),
a(A, pp)}) is computed, any specific test data (Ep) will
generate a family of likelihood weights (Eq. 12) on
the (A, pp) -space and give the empirical posterior
distribution D = D(A, pg) consistent with Ep.

Figure 4 illustrates the range of likely egg output simu-
lation runs using a fixed, random parameter choice that
makes the Eg, Ep distribution fairly close.

The above calibration procedure is applied to the youn-
gest age group (children). The adult calibration requires
an additional input, namely a SWB - source term coming
from maturing children (see Additional file 2). Thus, the
adult parameter space has an additional calibrated param-
eter - pre-adult A, along with adult 1, and biological
adult pg = (po, ko, r). To estimate its likelihood weights, we
proceed as above by scanning the extended parameter
space (Ac,Aa,pp) and generating the adult test-bed
{EAc, A, pi), 0(hey Aa, pi)}-

Once the mean-covariance test-bed is computed, cali-
bration of any specific data set proceeds straightforwardly.
Binned egg-data is substituted into the error function
(Eq. 11) to get a family of likelihood weights (Eq. 12),
resulting in an (empirical) posterior distribution consistent
with the data.

Given a community (village) test data, we can gen-
erate two (child and adult) posterior distributions on
their respective parameter spaces in 2 steps. First, the
child group is calibrated to get its posterior and the
resulting marginal distribution of child FOI (weights
{W (Ac)}). Then the adult posterior is computed using
source terms derived from the child SWB strata
{h'(Ao)} evaluated at properly weighted FOI A, ie.
the distribution W (1) estimated earlier. The result-
ing adult likelihood weights in the extended param-
eter space are conditioned on the likely child values

W (A¢), as

W(ACWAAapB) - W(AC).efd(EED)
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Calibrating the coupled human-snail system'’s transmis-
sion coefficients

Having calibrated the human side of SWB dynamics, our
next task is to combine human and snail infection data
to estimate transmission coefficients (a,b) of coupled
human-snail systems. In earlier work [14], we developed
such a scheme for simplified SWB - snail systems. The
current SWB modelling approach required significant
modification, as outlined below.

First we demonstrate calibration for a single human
SWB - single snail site, then proceed to more complex,
coupled child-adult systems. Equilibrium solutions of the
snail system (Additional file 4) allow us to relate observed
snail infection data to model parameters. Typical data in-
clude snail prevalences (prepatent - y, patent - z, total - N)
expressed through basic inputs: growth rate /35, mortality
v, carrying capacity K, as well as snail FOI A (which needs
to be estimated during calibration). Some unknown (un-
certain) parameters, such as the local snail carrying cap-
acity K (assumed here to be stationary), the human-snail
contact rate w, and snail susceptibility &, can be combined
into single transmission coefficient. Specifically,

A/Aw

i) A= aw === - snail-to-human transmission
ii) c =22 - patency conversion fraction (estimated from
snail prevalences)
ili)A = VE:ff‘f;y - snail FOI, estimated from snail

prevalence data, known v, r and estimated ¢
iv) B = bw A) 1n Ao - human-to-snail transmis-
sion in snall FOI (Eq. 9J.

Here N' (A) is total equilibrium snail density (see
Additional file 4), and A, is rate of sporocyst estab-
lishment in snails (Table 5).
them to transmission coefficients A, B via equatlons (i-iv).
Calibration of a mixed SWB-system, made of several
groups (i=1,2,...), requires additional assumptions on
relative transmission rates B; /A; Namely, B;/A;=bla
should be identical for all population groups i=1,2,....
To compute bla we use estimated transmission coeffi-
cients A; = ' ~ and replace human infectivity factor H E in
equation (1v) by combined infectivity of all population
groups YH,E;. Then

b N*(A) 1 ( Ao )
2= n
@« > aHE \Ao—A
and human-to snail transmission by each group is given
by Bl‘ = éAl‘.
o

Adding MDA-based control to the SWB system
The effect of drug treatment on stratified (SWB) popula-
tion is to move a treated fraction of stratum /,, (f) to a



Gurarie et al. Parasites & Vectors (2016) 9:428

Table 5 Demographic and biological parameters for SWB

systems
Parameters Name Value
Host turnover rates:
Child Uc=T+6¢ 0.05 + 0.003/year
(maturation + mortality)
Adult Ua (mortality) 0.02 - 0.03/year

Demographic sources:

Child ¢ =1{b,0,0,...}; be=0.032/year
per capita birth rate [37]
Adult St =1lhG, hS, ..
Mean daily urine release
[34]:
Child Uc=1100 ml
Adult Us=1300 ml

Worm turnover rate:
Worm mortality y 0.2/year [50]
Snail parameters:
Snail mortality Vs 2.6/ year
Recovery/conversion r % weeks
rate
Patency conversion c 0.05-0.20
fraction
Rate of sporocyst No % weeks

establishment

lower-level stratum /,,, (), where m ~ ¢ n is determined by
the estimated efficacy of drug e = fraction of adult worms
surviving each drug treatment (see [14, 33]). In particular,
all strata in the lowest range {/,,:0 <m < 1/¢} shift to &,
(effective clearing), the next interval {/,,:1/e<m<2/g}
would go to /3, etc. In numeric code, each drug treatment
is simulated as an instantaneous event, due to the short
duration of drug action (days) compared to the slow time-
scale of transmission dynamics (months to years). Compu-
tationally, terminal values of SWB variables at the

Table 6 Calibration results for the children’s age group: demographic
for 12 Msambweni villages
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treatment time ¢, are reinitialized to new (post-treatment)
values, depending on MDA inputs, the treatment coverage
fraction (0<f<1), the drug efficacy, ¢, etc. Each MDA-
“event” would then reshuffle variables {#,,(t)} according to

holy = (1Yo +£ Y (ko)

Osm<1/e
My =A~f)m+f Y hulto)
1/esm<2/e
halyy = (A~f)a+f Y hlto)
2/esm<3/e

The reinitialized system is solved over the prescribed
time-range (between two “events”) and the process
continues.For more detail, see Fig. 4 of reference [33].

Results

Model calibration

We applied our calibration scheme to infection data
collected in the Msambweni region of Coastal Kenya
[23-26], where repeated cross-sectional surveys were
conducted in 12 villages using standard filtration diagnos-
tics (10 ml urine sample test [20, 21]) along with surveys
of water contact [26] and local snail infection data [24].
The first rows of Table 6 (children) and Table 7 (adults)
summarize basic demographics and epidemiological
results of those surveys. For convenience, we ordered
villages by their infection prevalence from highest risk
(V1) to lowest risk (V1,) based on initially observed child-
hood prevalence values.

For data analysis and model calibration, the total
population of each village was split into children (0-20
years) and adults (20+); this choice was partly motivated
by distinctive drop of infection about age 20 (Fig. 2).
Additional inputs specific for Kenya are listed in Table 5.
Two sets of calibrated parameters (Table 8) include age-
specific fecundity (p, wo, r) and human FOI A. The final
result of calibration was 24 posterior distributions, i.e.

and infection data with calibrated model parameters (mean =+ SD)

Villages V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12
Population 602 286 189 281 353 638 557 921 944 720 815 803
Prevalence (%) 71 67 52 51 50 49 43 32 27 25 24 23
Mean Intensity 126 170 113 116 126 91 77 78 46 48 49 46
Human FOI? 59+13 56+14 45+16 32+12 41+15 42+16 2309 21+13 18+£11 19413 23+£15 1410
Maximum fecundity 25+8 43+11 36+13 44+13 45+13 33+13 36412 48415 40415 45+15 45+15 46+14
variable, pg
Crowding threshold 1M6+47 127+42 118443 123+43 123442 118+43 123+43 128+43 125+45 130+£45 130+44 129+46
variable, wg
Aggregation 003+ 0.04 + 003+ 005+ 003+ 003+ 0.06 + 005+ 0.05+ 0.04 + 003+ 005+
0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 003 0.02 0.02 0.03

“The mean rate of worm accumulation per year



Table 7 Calibration results for adults: demographic and infection data with calibrated model parameters (mean + SD) for 12 Msambweni villages

Villages Vi V2 V3 V4 V5 V6 V7 V8 V9 V10 VI V12
Population 508 264 189 247 259 530 472 653 738 456 512 746
Prevalence (%) 33 24 31 23 27 19 14 13 14 7 13 12

Mean Intensity 19 " 30 M 25 6 8 10 7 2 10 6

Human FOI* 16+06 1206 16+06 1206 1406 1.0+06 09+0.7 0.7+06 08£06 0506 07£07 07£06
Maximum fecundity variable, po ~ 11£5 4+£3 11+6 6+4 10+6 5+4 11+6 12+6 8+6 11+7 13+6 11+6
Crowding threshold variable, wo 122 +44 122+43 125+43 125+ 44 124 +43 123 +44 120+ 44 120+ 44 119+ 44 126 +44 122+ 44 120+ 44
Aggregation 003+£002 005+003 004+002 004+002 004+002 004+£003 003+£002 004+003 004+003 003+002 003+002 0.04£0.02
Pre-adult FOI 37423 37+23 40+24 37+23 38+24 37+22 37423 38+23 38+23 33+22 39+23 38+23

*The mean rate of worm accumulation per year

8746 (9107) SI013/\ 9 SAUSDIDG D 12 dLIeIND

61 Jo 0l obeq
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Table 8 Parameters and their expected ranges based on

calibration

Parameter Symbol [units] Value range

Force of infection (FOI) A [worm/year] Child: (0, 8)
Adult: (0, 3)

Maximum egg release 0o legg/female] Child: (10, 70)
Adult: (1, 25)

Crowding threshold Wo [worm] (50, 200)

Egg aggregation®” r 0,0.1)

Child FOI for adult calibration Ac [worm/year] 0, 8)

“Dimensionless parameter
PAggregation factor for daily egg counts when modelled as a negative
binomial distribution

the 12 Msambweni villages, with two modeled age
groups for each village (Tables 6 and 7).

Posterior distributions and their likelihood weights
(Eq. 12) play important roles in our analysis and the con-
trol simulations reported below. All statistical outputs
(means, correlations, quantiles, etc.) were computed rela-
tive to ensemble D. Thus for MDA simulations, we ran
multiple treatment histories using a suite of likely
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parameter choices (for a given community) based on D,
and assigned each output its respective likelihood weight.

A brief summary of calibration results for the 12
villages (ensemble mean and standard deviation, SD) is
given in Table 6 (for children), Table 7 (for adults), and
the accompanying Fig. 5 (showing ensemble-mean bio-
logical parameters). Figure 6 shows the distributions of
calibrated parameter for child and adult groups in high
and low transmission villages.

Not unexpectedly, fecundity parameters exhibited fairly
consistent values across the region with nearly horizontal
linear fits for these parameter values across villages (Fig. 5).
This suggested that hosts carrying comparable worm bur-
den release similar egg-counts regardless of residing in high
vs. low transmission areas. The only significant difference
in parameter estimates comes between age groups, with
children showing much higher, per-worm fecundity than
adults (pc> p,). Consistent values of biological parameters
across the region allow us to combine the 12 local village
distributions of (pg, Wy, ) into a single posterior ensemble,
Dj. This “biological ensemble” Dy is then used in the sub-
sequent analysis and simulation of coupled human-snail
systems. Calibrated child and adult FOIs (Ac ; As) show
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Fig. 5 Estimated ensemble mean biological parameters for twelve Msambweni villages, plotted against observed egg-count prevalence data. The
left column (a) has maximal egg release (o), crowding (wg), and aggregation (r) mean parameter values for children (0 to 20 years old)
graphed together for every village; the right column (b) has values for adults. Dashed lines are linear regressions for the twelve village
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Fig. 6 Box plot comparison of the median and range of calibrated model parameters. Summary ranges of estimated values for maximal egg release
(o), crowding (W), and aggregation (r) parameters, presented for children and adults in high transmission villages (a upper panel) and low
transmission villages (b lower panel)
J

consistently higher values for children than for adults
across the region (see Fig. 6).

Estimates for the density-dependent crowding effect

Our calibration results also provide estimates of the
worm fecundity ‘crowding’ function p (w) of Eq. (2).
The data on worm fecundity in human hosts are
sparse and difficult to measure in vivo; however, our
results give indirect estimates of pg = (po, Wy, r) as part
of biological ensemble Djp. Ensemble envelopes of
fecundity function (based on 1,000 random choices
from biological posterior Dg) are shown in Fig. 7. For
these estimates, diagnostic test results (eggs per
10 ml urine) were adjusted for average daily urine
release: Uc-~700 ml (for children) and U, =~ 1300 (for
adults) [34]. The estimated crowding effect was pro-
nounced for both human age groups, with children’s
subgroup worm-fecundity dropping from a high of >
1,000 eggs/worm/day at very low burden (in children)
to fewer than 100 eggs/worm/day at heavy burden.

For adults, the estimates were 1,200 eggs/worm/day
at low intensity, declining with half-value every~ 120
worms of burden. Overall patterns were consistent
with known data (see, e.g. reference [9], chapter 15,
and [29]). An alternative approach to modeling
fecundity effects was included in our earlier work
using a simpler SWB without in-host biology [14].
There, fecundity was assumed uniform across all
strata and the resulting calibrated p-values were
broadly distributed in the range [0,po]. The two
models, simple SWB and the current refined version,
differ in their predictions as described below.

Predicting prevalence and intensity curves

The SWB model predicts specific relations between
prevalence and intensity based on its simulated egg-
test results. Namely, for each parameter choice (A, po,
ko,7), we can take the corresponding SWB equilib-
rium {#; (1)} and compute its mating/fecundity fac-
tors pi, ¢ (Eqs.l and 2) in terms of biological
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Fig. 7 Density-dependent worm fecundity estimates [eggs/worm/day] for children (left panel) and adult (right panel) groups. Ensemble gray-scale
envelopes shown here include median (blue), min/max (light grey), and 25-75 % quartile (dark grey) estimates of worm fecundity at different levels of
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parameters pp = (po, ko, 7). Then, from mixed-NB as-
sumption (Eq. 4) on egg-release, we get formulae for
prevalence Pr and infection intensity My as functions
of parameters (A, pp):

Z<r +Pk>r¢k Kd)
X:Pk‘ﬁkhk()L

E(A, pp)
(13)

Mg, pp) =

Each biological choice Py gives a particular (paramet-
ric) prevalence-intensity curve (Eq.13), by continuously
varying A. Whereas equations (Eq. 13) define an increas-
ing function Mg =f(Pg), there is no simple analytic for-
mula for it. Such curves can be computed and
manipulated numerically, however. Fig. 8a compares the
envelope of theoretical curves (Eq. 13) based on the bio-
logical posterior ensemble calibrated with Kenyan survey
data [26]. Most data points for children lie within the
95 % quantile envelope, though we observe some depart-
ure (over-prediction) at higher prevalence values.

Model validation

First, we generated an ensemble of virtual communities
drawn from two calibrated posteriors. Then each group
was randomly tested and its binned egg-counts recorded.
The resulting ensemble of bin-counts were compared
to the test data of each group, (see Fig. 9 for children
and adult subgroups), which produced reasonable
agreement with the data overall. Model prevalence
estimates were close to the observed data points (i.e.
within the 95 % uncertainty envelopes) for both child
and adult groups.

Another validation test involved a functional rela-
tion between egg-test prevalence Pz, FOI 1 or its
inverse function A(Pg), and predicted mean infection
intensity (= mean egg-count). Model equations
(Eq. 13) gives both Pg(d,pp) and Mg, pp) as

functions of A and biological parameters pg = (po, Wo,
r). To test consistency of such relations with village
data across the region, we took a random selection of
parameters {pz} drawn from the biological posterior
Dz and for each choice computed Mg(A, pg) and Pg(),
pp) -curves and their envelopes, shown in Fig. 8a, b.
We found the data points lying well within the mar-
gins of the predicted mean and prevalence-functions.
[N.B. These functional relations (Eq. 13) illustrated in
Fig. 8b are useful for estimating an unknown SWB
parameter A in situations where the available data are
incomplete, e.g. when only aggregated, community-
level egg prevalence data are available instead of
individual-level egg test data].

Projecting the impact of MDA-based control

For this step, we applied our calibrated model to project
MDA -control effects and post-treatment prevalence in
one of the twelve Msambweni villages, Milalani, which
was more intensively studied for the impact of MDA.
The all-ages data used for analysis were collected in
three village-wide surveys from 2000 (pretreatment base-
line), 2003 (2 years post-treatment) and 2009 (six years
post-treatment). The community-wide MDA in 2000
had a 79 % treatment coverage whereas the 2003 treat-
ment coverage was only 41 %. The baseline (pretreat-
ment) data served to calibrate the system, while the two
post-treatment data sets were used to test model predic-
tions. The coupled human-snail model consisted of two
SWB groups (children, adults) linked to a single hypo-
thetical snail site with a snail infection level approximat-
ing the average of five known Msambweni snail sites;
SEI snail prevalence values in this experiment were
taken as {x*,y*, z*} = {.63,.35,.02} based on field observa-
tions of bulinid snail PCR positivity for S. haematobium
DNA [35] used to determine the number of ‘exposed’
snails and the observed annual frequencies of shedding
snails [24, 36] for ‘infectious’ snails.
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Fig. 8 Prevalence-intensity and prevalence-FOI curves for observed data compared to SWB ensemble estimates. In panel a, intensity-prevalence
curves (Pe(A), Me(d) over a range of A values for posterior biological ensemble {pg} are plotted against the twelve Msambweni village data points:
SWB ensemble median values (blue curve), their 25-75 % quantiles (dark gray), and 5-95 % quantiles (light gray) are shown. In panel b, FOI-prevalence
curves are shown for A(Pg) (ensemble envelope) along with derived Msambweni data points; these dots show the estimated “ensemble mean” for
individual village A-values vs observed prevalence data for these 12 communities. The red curve shows the associated estimates for function A, using
the older, simpler SWB without correction for host-worm biological factors. An important implication of this discrepancy is that estimates of human
FOI and transmission coefficients will be significantly underestimated if the model does not account for in-host biology

For our long term MDA prediction, we also scaled in
overall population growth based on Kenyan demograph-
ics [37] and inter-seasonal variations of snail density
over the 9-year study period. An ensemble of 150 likely
calibrated parameter choices was drawn from the Mila-
lani posterior and their 9-year histories computed. At
each time, ¢, we took dynamic solutions and used equa-
tions (Eq. 13) to estimate the corresponding community
egg-test results (prevalence and intensity) for child and
adult age groups. We also ran this simulation for several
values of the snail FOI -parameter rate, Ay (sporocyst
establishment rate), ranging from 0.5 to 2 weeks.

The results shown in Fig. 10 correspond to 1/Aq = 1.5 week.
We plotted the ensemble envelope along with predicted mean
and compared to the three observed data points for preva-
lence and intensity, respectively. The data for 2000—2003 fell
well within predicted margins. In modeling treatment out-
comes after MDA in this test village, our prevalence and in-
tensity estimates proved to be somewhat low by the last study
year (Fig. 10). Infection intensity (measured by mean egg test)
by year 9 is under-predicted for children and over-predicted
for adults. This could be attributed to demographic and/or en-
vironmental changes that happened over 6-year intervening
period, which were not accounted for in the model.
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Fig. 9 Validation of SWB model calibration for child and adult groups in a high transmission community. For each group (panel a, children; panel
b, adults), we used its calibrated biological parameter ensemble and associated FOI A estimates to generate a likely range of community realizations
based on 200 different parameter choices, then simulating a likely egg-test distribution for each choice. These were then binned to indicate probable
egg-count distributions. The bar-whisker chart of these binned counts is compared to the observed data (blue dots) for each group. The y-axis in panel
b is truncated, having two different sections with two different scales
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Comparison between simple and advanced SWB models:
parameter estimation and control predictions

The key for analysis and calibration of coupled human-snail
systems are two forces of infection: snail-to-human 1 and
human-to-snail A. Both depend on snail/ human infectivity
and the population densities of host and vector. For simple
SI (susceptible-infected) snail system, A is proportional to in-
fected (patent) snail prevalence A «a y with transmission co-
efficient a = “mean rate of worm accumulation in host” and
infected (patent) snail prevalence y.

In the simple SWB system, snail FOI is taken propor-
tional to mean human ‘infectivity’ = mean egg-release E
by human hosts into the environment, A =5bE, with
transmission coefficient b. Transmission coefficients a, b
combine multiple factors and processes (population
densities, human-snail contact rates, intermediate larval
stages, etc.). Human infectivity function E depends on
details of on worm aggregation and in-host biology.

For the earlier, simpler SWB, the calibration procedure
[14, 15] employed algebraic relations between test data
(prevalence Pp and mean intensity Ep), model functions

Pyw(l)=1-ho(), and MWB  w(l) =4Aw> (1)

expressed through dimensionless human FOI A = 7.
No distinction was made between worm and egg-test
prevalence (Py = Pr) as egg-release was assumed to be
proportional to MWB (E = pw) with fixed (uniform) fe-
cundity/worm factor p to be estimated. That calibration

proceeded in 2 steps: from prevalence equation Pyw/(1) =
Pp, we computed equilibrium A~ then derived MWB w’
and the fecundity factor p
A E
SO, ED (14)
P(w)
with mating function ¢(w)=w/2. The transmission

coefficients were estimated as
Ay Aw vy
a =

yo 7 Ep(l-y)

*

wr—:
y+u

(15)

This procedure could be extended to demographically
and/or geographically linked SWB systems (see [14, 15]).
No uncertainties entered the simple SWB (or its calibra-
tion), but explicit algebraic formulae allowed one to
relate data noise to parameter estimation.

In comparing the predicted FOI curves (Px(A, pp) and
Py/A)) for the two SWB systems (old and new), only the
latter, Py, exists for the simple SWB, as no distinction was
made there between worm-based and egg-test-based
prevalence. For the new SWB, Fig. 8b shows quantile en-
velopes of Pr curves sampled over a range of biological
parameters pp (biological posterior). In general, we expect
Pg(1) < PyA)), as worm-carrying strata could contribute to
zero egg count. For the simpler SWB, the red curve in
Fig. 8b shows its significant departure from the median
(and surrounding quantile envelopes) of the new SWB
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that incorporated host-worm biological interactions. We
conclude that the old SWB significantly underestimated
FOI 1" and transmission rate a (Eq. 15), while overesti-
mating fecundity factor p (Eq. 14).

To explore possible effect of such discrepancies on
MDA control prediction, we took the above 9-year study
for Milalani and compared simple SWB (dashed red
line) with new calibrated envelope prediction in Fig. 10.
Predicted prevalence of both models is reasonably close
(within uncertainty envelopes), but the predicted infec-
tion intensity for children is underestimated using the
simpler SWB (the dashed red line outside the newly
calibrated envelope of likely values).

Discussion

The newer calibrated SWB modeling approach appears
well suited for simulating the effects of control inter-
ventions, particularly the effects of mass drug therapy.
Other data inputs and other control strategies could
easily be implemented within our setup, such as target-
ing treatment to specific populations, and modeling the
efficiency of different post-treatment surveillance strat-
egies. In the present analysis, we examined one case of
long-term MDA outcomes in a Kenyan study site
(population ~2,000) to validate our model in a dynamic
setting and assess its predictive accuracy. Predicted
relaxation patterns (means, envelopes, and quantiles)
were found in good agreement with the observed data.
Additional evidence comes from recent work [33]
where our model and methodology was applied to pro-
gram data from the Schistosomiasis Consortium for
Operational Research and Evaluation (SCORE) on S.
haematobium control from Mozambique. While this
Mozambique data covered a wide spectrum of commu-
nities and control strategies, it was limited in terms of
the number and age range of persons tested. To fill in
some of the missing data gaps, we utilized certain
parameter estimates from the Kenyan data studied
here, assuming that similar population groups in both
countries share comparable ‘biological’ infection pa-
rameters in terms of worm fecundity and density de-
pendence. These calibrated inputs allowed us to build
coupled SWB-snail systems for Mozambique communi-
ties and accurately simulate the MDA outcomes of the
SCORE project.

Typical diagnostic tests for Schistosoma infection
(based on egg counting in stool or urine) exhibit highly
uneven distributions in host populations. These hetero-
geneities exist not only for broader communities, but for
specific demographic groups that are assumed to be
nearly the same in terms of risk. We conclude that several
factors contribute to overdispersion of test results, among
them uneven worm load due to varying exposure and/or
host susceptibility [6], and irregular (clustered) egg release
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into human excreta [16]. Conventional population-based
approaches to modeling (mean worm burden (MWB)
models [8]) either ignore uneven burden (taking its popu-
lation mean) or impose ad-hoc assumptions on worm dis-
tribution (e.g. the negative binomial [12]). Either approach
has severe limitations (see [12]) that can reduce the utility
of the model and the accuracy and robustness of its
predictions. While autonomous agent, individual-based
model simulations can allow for multiple heterogeneities
[15], this alternative type of model has limited capacity in
term of population size and program implementation on
desktop/laptop platforms.

The SWB approach bridges the gap between these two
types of models. It gives a consistent, assumption-free ac-
count of uneven worm load and naturally accommodates
essential in-host biology, including worm mating probabil-
ity and density-dependent reduction in fecundity. While
the resulting SWB systems have more variables (depending
on stratification), there are only a few model parameters
per stratum that need to be calibrated, similar to the
requirements for a low-dimensional MWB model. We
note that promiscuous mating by female worms would
enhance the continuation of transmission following MDA
if, as generally seen, only partial elimination of worms is
achieved with treatment. We have discussed the issue of
mating patterns in some depth in our previous paper [12].

To better mimic the dynamics of human-to-snail-to-hu-
man parasite transmission, we have revisited and revised
conventional approaches to modeling snail population
and infection in our coupled SWB modeling systems. Typ-
ically, in MWB and related models, the parasite’s short-
lived larval stages are not modeled but rather incorporated
into an effective ‘force of infection” (FOI) term, A, for
snail-to-human transmission, and A, for human-to-snail
transmission. The latter, A, is often taken be proportional
to human-to-snail infectivity in terms of cumulative Schis-
tosoma egg release by the local human community, with a
fraction of these eggs converting to miracidia to invade
susceptible snails (see e.g. [9]). A new, closer look at the
miracidium snail invasion process reveals a more likely
nonlinear (saturated) form of snail FOI and sporocyst es-
tablishment [32]. The resulting estimates of human-to-
snail transmission could provide an explanation for mark-
edly different re-infection rates in some post-MDA com-
munities [38] and the leveraged impact of human in-
migration on persistence of transmission [39-41].

To better project future control program outcomes in
terms of present-day data, we have developed a Bayesian
calibration procedure for our model based on simulating
the recognized imperfections of diagnosing infection
based on egg-count data [17-22]. Other factors believed
to be critical in accurate forecasting of Schistosoma preva-
lence include human age-group differences in exposure
and susceptibility to infection [42-44], density-dependent
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(crowding) effects on egg production per worm [30, 45],
limitations on mating success among adult schistosomes
[4, 46], and the development of anti-fecundity immunity
among older patients [47]. In our current SWB model,
which included these factors [12], we found better calibra-
tion for the model in terms of projecting treatment and
reinfection outcomes. The result of our calibration pro-
cedure is a posterior ensemble of likely SWB community
values consistent with a given data set. The posterior dis-
tribution of parameter values for a given SWB commu-
nity/group can be used to generate multiple community
actualizations (based on (A,pp) - choices) in order to
simulate the range of likely outcomes. Each outcome is
assigned a significance level determined by its likelihood
weight. Thus any data/model uncertainties are propagated
into “prediction uncertainty”. In most dynamic simula-
tions, e.g. MDA control, these uncertainties can then be
shown as prediction envelopes of possible outcomes.

We have applied the above calibration scheme to a spe-
cific data set for communities in coastal Kenya, where only
S. haematobium is endemic. While the Kenyan communities
differed markedly in terms of their risk and infection levels,
we found their age-specific biological parameters pp con-
fined within the same close range, regardless of transmission
intensity. This result supported our hypothesis on the con-
stancy of in-host worm biology (mating, fecundity) and its
parameterization. It was notable that the estimated crowding
function (density-dependent fecundity) was different for
child and adult groups, which appears to be in accordance
with recent findings about the acquisition of anti-fecundity
immunity in primates and humans [47]. Of note, our cali-
brated aggregation parameter r (Table 6) is also consistent
with estimates of Hubbard et al. [16] for Schistosoma japoni-
cum infection. A limitation of the present paper is its focus
on S. haematobium (and its transmission features) in cali-
bration of model predictions. However, work is in progress
to repeat calibration and testing for S. mansoni-control pro-
jects in Kenya and Uganda, which should allow comparison
of the estimated biological parameters for each species and
help to determine if model recalibration is necessary for dif-
ferent species and for different ecological settings.

Conclusions

The SWB provides an efficient, flexible, and viable
approach for modeling Schistosoma transmission and
control among stratified populations in simple and com-
plex environments. SWB allows for inclusion of in-host
biological factors and limitations of diagnostics, and is
applicable to a broad range of treatment strategies. Most
helpful to program managers, these new features allow
us to predict diagnostic egg-test results for modeled
SWB population subgroups and for communities at-
large. Where only partial diagnostic data are available,
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the curves in Fig. 8 can serve to estimate parameters of
transmission for program outcomes predictions.

This work is being extended to treatment projections for
large-scale treatment trials currently implemented in both
S. mansoni- and S. haematobium-endemic areas. For the
near future, as part of the ongoing NTD Modelling
Consortium project [48], our refined SWB model will be
further validated against a new data and directly compared
to the more traditional deterministic model of our
consortium partners [49]. Fitted model predictions will be
compared for likelihood and precision using two large data
sets from recent control programs in sub-Saharan Africa:
(i) the 2003-2006S. mansoni data from the Ugandan
National Schistosomiasis Control Programme in the
African Great Lakes region, and (ii) 2010-2015 data from
the SCORE/SCI multi-village operational research trial on
S. haematobium control in Mozambique, evaluated in our
previous paper [33]. Overall, we expect that the method-
ology developed in the current paper has a broad scope of
applications for different Schistosoma species and more
generally, for helminth/macroparasites infections where
in-host biology plays an important role.

Additional files

Additional file 1: SWB codes15.nb [an example of the SWB model
implemented using Mathematica v10.2 software (Wolfram Research,
Champaign IL. USA)] (NB 35 kb)

Additional file 2: Mixed SWB systems and equilibria (DOCX 90 kb)

Additional file 3: Likelihood estimates for simulated egg test results
(DOCX 204 kb)

Additional file 4: Snail equilibria and calibration (DOCX 64 kb)

Additional file 5: Infection data from Milalani village cross-sectional
surveys (XLSX 55 kb)

Abbreviations

FOI, force of infection; MDA, mass drug administration; MWB, mean worm
burden model; NB, negative binomial distribution; NTD, neglected tropical
diseases; PDF, probability density function; SD, standard deviation of the
mean; SWB, stratified worm burden model

Acknowledgements
We thank our colleagues R. Alsallag, A. Galvani, D. Durham, M. Ndeffo Mbah,
and E. Gurarie for useful inputs and stimulating discussion.

Funding

This work was funded by the Schistosomiasis Consortium for Operational
Research and Evaluation (SCORE), based at the University of Georgia, USA,
and by the Children’s Investment Fund Foundation (UK) (“CIFF") through a
grant to the Neglected Tropical Diseases Modelling Consortium at Warwick
University, UK. The views, opinions, assumptions or any other information set
out in this study are solely those of the authors and should not be
attributed to CIFF or any person connected with CIFF. The funders had no
role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Availability of data and materials
The data used in this study for model calibration and validation are included
as Additional file 5.


dx.doi.org/10.1186/s13071-016-1681-4
dx.doi.org/10.1186/s13071-016-1681-4
dx.doi.org/10.1186/s13071-016-1681-4
dx.doi.org/10.1186/s13071-016-1681-4
dx.doi.org/10.1186/s13071-016-1681-4

Gurarie et al. Parasites & Vectors (2016) 9:428

Authors’ contributions

DG, CHK, NY, EL conceived of the study, and participated in its design,
performance, and coordination and helped to draft the manuscript. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate

This project re-used anonymized human data from published research surveys
[23, 25]. Those surveys were performed with written informed consent of the
participants under supervision of the University Hospitals-Case Medical Center
IRB (protocol 11-07-42), Cleveland, Ohio, and the Kenya Medical Research Institute
Ethical Review Committee (protocol non-SSC #087), Nairobi. Kenya.

Author details

'Department of Mathematics, Applied Mathematics and Statistics, Case
Western Reserve University, Cleveland, USA. Center for Global Health and
Diseases, School of Medicine, Case Western Reserve University, 10900 Euclid
Avenue, Cleveland, Ohio, USA. 3Schistosomiasis Consortium for Operational
Research and Evaluation, University of Georgia, Athens, Georgia, USA.

Received: 5 February 2016 Accepted: 5 July 2016
Published online: 04 August 2016

References

1.

10.
1.

Hotez PJ, Alvarado M, Basanez MG, Bolliger |, Bourne R, Boussinesq M, et al.
The global burden of disease study 2010: interpretation and implications for
the neglected tropical diseases. PLoS Negl Trop Dis. 2014,8(7), 2865. doi:10.
1371/journal.pntd.0002865.

Savioli L, Daumiere D. Accelerating work to overcome the global impact of
neglected tropical diseases: A roadmap for implementation. Geneva: World
Health Organization; 2012.

Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet.
2014;383:2253-64. doi:10.1016/50140-6736(13)61949-2.

May RM. Togetherness among schistosomes: Its effects on the dynamics of
infection. Math Biosci. 1977;35:301-43.

Nasell I, Hirsch WM. The transmission dynamics of schistosomiasis. Commun
Pure Appl Math. 1973;26(4):395-453.

Shaw DJ, Grenfell BT, Dobson AP. Patterns of macroparasite aggregation in
wildlife host populations. Parasitology. 1998;117(Pt 6):597-610.

Bavia ME, Hale LF, Malone JB, Braud DH, Shane SM. Geographic information
systems and the environmental risk of schistosomiasis in Bahia, Brazil. Am J
Trop Med Hyg. 1999,60(4):566-72.

MacDonald G. The dynamics of helminth infections, with special reference
to schistosomes. Trans R Soc Trop Med Hyg. 1965;59(5):489-506.

Anderson RM, May RM. Infectious diseases of humans. Dynamics and
control. New York: Oxford University Press; 1991.

Crofton HD. A quantitative approach to parasitism. Parasitology. 1971,62:179-93.
Bradley DJ. Regulation of parasite populations. A general theory of the
epidemiology and control of parasitic infections. Trans R Soc Trop Med Hyg.
1972,66(5):697-708.

Gurarie D, King CH. Population biology of Schistosoma mating, aggregation,
and transmission breakpoints: More reliable model analysis for the end-
game in communities at risk. PLoS One. 2014;9(12), e115875. doi:10.1371/
journal.pone.0115875.

Cornell SJ. Modelling stochastic transmission processes in helminth
infections. In: Michael E, Spear RC, editors. Modelling parasite transmission
and control. New York: Springer; 2010. p. 66-78.

Gurarie D, King CH, Wang X. A new approach to modelling schistosomiasis
transmission based on stratified worm burden. Parasitology. 2010;137(13):1951-65.
Wang X, Gurarie D, Mungai PL, Muchiri EM, Kitron U, King CH. Projecting the
long-term impact of school- or community-based mass-treatment
interventions for control of Schistosoma infection. PLoS Negl Trop Dis. 2012;
6(11), €1903. doi:10.1371/journal.pntd.0001903.

Hubbard A, Liang S, Maszle D, Qiu D, Gu X, Spear RC. Estimating the
distribution of worm burden and egg excretion of Schistosoma japonicum by
risk group in Sichuan Province, China. Parasitology. 2002;125(Pt 3):221-31.

20.

21,

22.

23.

24.

25.

26.

27.

28.
29.

30.

32.

33.

34.

35.

36.

37.
38.

39.

Page 18 of 19

Carabin H, Budke CM, Cowan LD, Willingham 3rd AL, Torgerson PR.
Methods for assessing the burden of parasitic zoonoses: echinococcosis and
cysticercosis. Trends Parasitol. 2005;21(7):327-33.

de Vlas SJ, Engels D, Rabello AL, Oostburg BF, Van Lieshout L, Polderman
AM, et al. Validation of a chart to estimate true Schistosoma mansoni
prevalences from simple egg counts. Parasitology. 1997;114(Pt 2):113-21.
de Vlas SJ, Gryseels B. Underestimation of Schistosoma mansoni prevalences.
Parasitol Today. 1992,8(8):274-7.

Savioli L, Hatz C, Dixon H, Kisumku UM, Mott KE. Control of morbidity due
to Schistosoma haematobium on Pemba Island: egg excretion and
hematuria as indicators of infection. Am J Trop Med Hyg. 1990;43:289-95.
Warren KS, Arap Siongok TK, Hauser HB, Ouma JH, Peters PAS.
Quantification of infection with Schistosoma haematobium in relation to
epidemiology and selective population chemotherapy. I. Minimal number
of daily egg counts in urine necessary to establish intensity of infection. J
Infect Dis. 1978;138:849-55.

Mwinzi PN, Kittur N, Ochola E, Cooper PJ, Campbell Jr CH, King CH, et al.
Additional evaluation of the Point-of-Contact Circulating Cathodic Antigen
assay for Schistosoma mansoni infection. Front Public Health. 2015;3:48. doi:
10.3389/fpubh.2015.00048.

Clennon JA, Mungai PL, Muchiri EM, King CH, Kitron U. Spatial and temporal
variations in local transmission of Schistosoma haematobium in Msambweni,
Kenya. Am J Trop Med Hyg. 2006;75(6):1034-41.

Kariuki HC, Clennon JA, Brady MS, Kitron U, Sturrock RF, Ouma JH, et al.
Distribution patterns and cercarial shedding of Bulinus nasutus and other
snails in the Msambweni area, Coast Province, Kenya. Am J Trop Med Hyg.
2004;70(4):449-56.

King CH, Blanton RE, Muchiri EM, Ouma JH, Kariuki HC, Mungai P, et al. Low
heritable component of risk for infection intensity and infection-associated
disease in urinary schistosomiasis among Wadigo village populations in
Coast Province, Kenya. Am J Trop Med Hyg. 2004;70(1):57-62.

Muchiri EM, Ouma JH, King CH. Dynamics and control of Schistosoma
haematobium transmission in Kenya: an overview of the Msambweni
Project. Am J Trop Med Hyg. 1996,55(5 Suppl):127-34.

Wilson RA, van Dam GJ, Kariuki TM, Farah 10, Deelder AM, Coulson PS. The
detection limits for estimates of infection intensity in schistosomiasis
mansoni established by a study in non-human primates. Int J Parasitol.
2006;36(12):1241-4.

Nasell I. Mating for schistosomes. J Math Biol. 1978;6(1):21-35.

Anderson RM, Medley GF. Community control of helminth infections of man
by mass and selective chemotherapy. Parasitology. 1985,90(Pt 4):629-60.
Medley G, Anderson RM. Density-dependent fecundity in Schistosoma
mansoni infections in man. Trans R Soc Trop Med Hyg. 1985;79(4):532-4.
Crews AE, Yoshino TP. Schistosoma mansoni: effect of infection on
reproduction and gonadal growth in Biomphalaria glabrata. Exp Parasitol.
1989,68(3):326-34.

Thiele EA, Minchella DJ. Molecular assessment of trematode co-infection
and intraspecific competition in molluscan intermediate hosts. Mol Biochem
Parasitol. 2013;187(1):52-9. doi:10.1016/j.molbiopara.2012.12.003.

Gurarie D, Yoon N, Li E, Ndeffo-Mbah M, Durham D, Phillips AE, et al.
Modelling control of Schistosoma haematobium infection: predictions of the
long-term impact of mass drug administration in Africa. Parasit Vectors.
2015;8(1):529. doi:10.1186/513071-015-1144-3.

Hesse A, Classen A, Knoll M, Timmermann F, Vahlensieck W. Dependence of
urine composition on the age and sex of healthy subjects. Clin Chim Acta.
1986;160(2):79-86.

Hamburger J, Hoffman O, Kariuki HC, Muchiri EM, Ouma JH, Koech DK et al.
Large-scale, polymerase chain reaction-based surveillance of Schistosoma
haematobium DNA in snails from transmission sites in coastal Kenya: A new tool
for studying the dynamics of snail infection. Am J Trop Med Hyg. 2004;71:765-73.
Sturrock RF, Kinyanjui H, Thiongo FW, Tosha S, Ouma JH, King CH, et al.
Chemotherapy-based control of schistosomiasis haematobia. 3. Snail studies
monitoring the effect of chemotherapy on transmission in the Msambweni
area, Kenya. Trans R Soc Trop Med Hyg. 1990;84(2):257-61.

The World Bank. World development indicators. 2015.

Kahama Al, Vennervald BJ, Kombe Y, Kihara RW, Ndzovu M, Mungai P, et al.
Parameters associated with Schistosoma haematobium infection before and
after chemotherapy in school children from two villages in the coast
province of Kenya. Trop Med Int Health. 1999;4(5):335-40.

Fenwick A, Jorgensen TA. The effect of a control programme against
Schistosoma mansoni on the prevalence and intensity of infection on an


http://dx.doi.org/10.1371/journal.pntd.0002865
http://dx.doi.org/10.1371/journal.pntd.0002865
http://dx.doi.org/10.1016/S0140-6736(13)61949-2
http://dx.doi.org/10.1371/journal.pone.0115875
http://dx.doi.org/10.1371/journal.pone.0115875
http://dx.doi.org/10.1371/journal.pntd.0001903
http://dx.doi.org/10.3389/fpubh.2015.00048
http://dx.doi.org/10.1016/j.molbiopara.2012.12.003
http://dx.doi.org/10.1186/s13071-015-1144-3

Gurarie et al. Parasites & Vectors (2016) 9:428

40.

41,

42.

43.

44,

45,

46.

47.

48.

49.

50.

irrigated sugar estate in northern Tanzania. Bull World Health Organ. 1972;
47(5):579-86.

Macdonald F, Clarke Vde V, Gaddie P, Atkinson G. Report on a large-scale
attempt at control of bilharziasis by combined mass treatment and
intensive snail control. Cent Afr J Med. 1973;19:22-32.

Gautret P, Mockenhaupt FP, von Sonnenburg F, Rothe C, Libman M, Van De
Winkel K, et al. Local and international implications of schistosomiasis
acquired in Corsica, France. Emerg Infect Dis. 2015;21(10):1865-8. doi:10.
3201/eid2110.150881.

Abel L, Demenais F, Prata A, Souza AE, Dessein A. Evidence for the
segregation of a major gene in human susceptibility/resistance to infection
by Schistosoma mansoni. Am J Hum Genet. 1991,48:959-70.

Barbour AD. The importance of age and water contact patterns in relation
to Schistosoma haematobium infection. Trans R Soc Med. 1985;79:151-3.
Chandiwana SK, Woolhouse ME. Heterogeneities in water contact patterns
and the epidemiology of Schistosoma haematobium. Parasitology. 1991;
103(Pt 3):363-70.

Polman K, De Vlas SJ, Van Lieshout L, Deelder AM, Gryseels B. Evaluation of
density-dependent fecundity in human Schistosoma mansoni infections by
relating egg counts to circulating antigens through Deming regression.
Parasitology. 2001;122(Pt 2):161-7.

May RM, Woolhouse ME. Biased sex ratios and parasite mating probabilities.
Parasitology. 1993;107(Pt 3):287-95.

Wilson S, Jones FM, van Dam GJ, Corstjens PL, Riveau G, Fitzsimmons CM,
et al. Human Schistosoma haematobium antifecundity immunity is
dependent on transmission intensity and associated with immunoglobulin
G1 to worm-derived antigens. J Infect Dis. 2014;210(12):2009-16. doi:10.
1093/infdis/jiu374.

Hollingsworth TD, Adams ER, Anderson RM, Atkins K, Bartsch S, Basanez MG,
et al. Quantitative analyses and modelling to support achievement of the
2020 goals for nine neglected tropical diseases. Parasit Vectors. 2015;8:630.
doi:10.1186/513071-015-1235-1.

Anderson RM, Turner HC, Farrell SH, Yang J, Truscott JE. What is required in
terms of mass drug administration to interrupt the transmission of
schistosome parasites in regions of endemic infection? Parasit Vectors. 2015;
8:553. doi:10.1186/513071-015-1157-y.

Anderson RM, May RM. Herd immunity to helminth infection and
implications for parasite control. Nature. 1985;315(6019):493-6.

Page 19 of 19

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central



http://dx.doi.org/10.3201/eid2110.150881
http://dx.doi.org/10.3201/eid2110.150881
http://dx.doi.org/10.1093/infdis/jiu374
http://dx.doi.org/10.1093/infdis/jiu374
http://dx.doi.org/10.1186/s13071-015-1235-1
http://dx.doi.org/10.1186/s13071-015-1157-y

	Outline placeholder
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Description of stratified worm burden system with in-host biology
	Random egg-release by hosts and SWB communities: simulation of egg-test data
	Details of the local snail population model
	Human-to-snail force of infection in coupled SWB systems
	Calibrating the human SWB system
	Calibrating the coupled human-snail system’s transmission coefficients
	Adding MDA-based control to the SWB system

	Results
	Model calibration
	Estimates for the density-dependent crowding effect
	Predicting prevalence and intensity curves
	Model validation
	Projecting the impact of MDA-based control
	Comparison between simple and advanced SWB models: parameter estimation and control predictions

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

