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Abstract

(msp2).

human population movements (HPM).

Background: Genotyping malaria parasites to assess their diversity in different geographic settings have become
necessary for the selection of antigenic epitopes for vaccine development and for antimalarial drug efficacy or resistance
investigations. This study describes the genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria
cases over a ten year period (2003-2013) in Ghana using the polymorphic antigenic marker, merozoite surface protein 2

Methods: Archived filter paper blood blots from children aged nine years and below with uncomplicated malaria
collected from nine sites in Ghana were typed for the presence of the markers. A total of 880 samples were genotyped
for msp2 for the two major allelic families, FC27 and 3D7, using nested polymerase chain reaction (PCR). The allele
frequencies and the multiplicity of infection were determined for the nine sites for five time points over a period of ten
years, 2003-2004, 2005-2006, 2007-2008, 2010 and 2012-2013 malaria transmission seasons.

Results: The number of different alleles detected for the msp2 gene by resolving PCR products on agarose gels was 14.
Both of the major allelic families, 3D7 and FC27 were common in all population samples. The highest multiplicity of
infection (MOI) was observed in isolates from Begoro (forest zone, rural site): 3.31 for the time point 2007-2008. A
significant variation was observed among the sites in the MOIs detected per infection (Fisher's exact test, P < 0.001) for
the 2007 isolates and also at each of the three sites with data for three different years, Hohoe, P = 0.03; Navrongo, P < 0.
001; Cape Coast, P < 0.001. Overall, there was no significant difference between the MOlIs of the three ecological zones
over the years (P=0.37) and between the time points when data from all sites were pooled (P = 0.40).

Conclusions: The diversity and variation between isolates detected using the msp2 gene in Ghanaian isolates
were observed to be profound; however, there was homogeneity throughout the three ecological zones
studied. This is indicative of gene flow between the parasite populations across the country probably due to
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Background

Malaria parasite genetic diversity creates a great hin-
drance to vaccine development efforts and enhances
antimalarial drug resistance. Genetic diversity occurs as
a result of genetic recombinations from numerous allelic
polymorphisms exhibited at various genetic loci and also
through diversifying selection by immunity [1, 2]. It has
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been shown to be comparatively high in hyper-endemic
areas than in low endemic areas [1, 2]. The level of anti-
genic diversity resulting in the multiplicity of infections
varies from one malaria endemic region to another and
even between countries. Such that the variant forms of
the parasite exist at different frequencies in different
geographic areas presenting different complexities of in-
fection [3]. Parasite genetic diversity has been implicated
in evolutionary fitness and consequently populations
with high diversity have the ability to survive against
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ongoing interventions in malaria endemic areas thereby
frustrating control efforts [4, 5].

The merozoite surface proteins 2 (msp2) is a poly-
morphic antigenic marker that has been used extensively
to describe the diversity of parasite populations in many
malaria endemic countries. Msp2 gene has two major al-
lelic families, FC27 and ICI/3D7 based on the variable
non-repeat sequences as well as the varying sizes of the
tandem repeats in the central region [6, 7]. This parasite
surface antigen plays a role in parasite invasion of the
erythrocytes and due to the high polymorphism they ex-
hibit, the parasite gains the ability to evade immune re-
sponses [8, 9]. Of the three marker genes, mspl, msp2
and glutamine-rich protein (g/urp), which have been en-
dorsed by the WHO for use in distinguishing between
recrudescence and new infection in recurrent infections
during antimalarial drug efficacy investigations, the
msp2 marker is the most polymorphic and therefore the
highest discriminatory and informative marker [9-13].

Ghana is a malaria endemic country with three different
ecological zones with either perennial or seasonal trans-
mission of malaria. The northern part of the country has
Guinea savannah ecology, middle belt has forest ecology
and the southern part has coastal savannah ecology. Sea-
sonal transmission is observed in the northern part whilst
the forest and the coastal savannah experiences perennial
transmission. The vectors of transmission vary per the eco-
logical zones such that Anopheles gambiae (sensu stricto)
transmits the parasite in all 3 ecological zones, A. melas
transmit in the coastal savannah zone, A. arabiensis and A.
funestus (s.s.) transmits mostly in the Guinea savannah
zone of the country. Transmission intensities are high with
peaks observed during the wet season. Malaria accounted
for 44 % of all outpatient clinic visits in 2013 and 22.3 % of
all under-five deaths in Ghana [14]. The main control strat-
egy is active case detection and treatment using
artemisinin-based combination therapy (ACT). Other in-
terventions include intermittent preventive treatment
among pregnant women (IPTp), seasonal malaria chemo-
prevention (SMC), long lasting insecticide-treated nets
(LLINs), and indoor residual spraying (IRS) [15].

Information on the diversity of malaria parasites in
Ghana is scanty and in the search for an effective vac-
cine for the African malaria endemic region it is crucial
to describe genetically, the parasite population structure
over the years. This study therefore determined the gen-
etic diversity of parasites in the country by detecting the
presence of msp2 alleles in P. falciparum isolates from
uncomplicated malaria cases collected over ten years
(2003-2013) from nine sentinel sites for monitoring
antimalarial drug efficacy/resistance in Ghana. Findings
from this study will serve as baseline data for future
studies on parasite population structure and antimalarial
drug resistance surveillance in the country.

Page 2 of 8

Methods

Study sites

The archived samples used for this study were collected in
2003-2013 from nine out of the ten sentinel sites set up
by the Noguchi Memorial Institute for Medical Research
(NMIMR) and the National Malaria Control Programme
(NMCP) for monitoring antimalarial drug resistance in
the country. The description of these sites has already
been published [16-22]. These sites were categorised
into three ecological zones and urbanicity: Navrongo
(rural; 10.9840°N, 1.0921°W), Wa (rural; 10.0601°N,
2.5099°W) and Yendi (rural; 9.4450°N, 0.0093°W) in
the guinea savanna with seasonal malaria transmis-
sion; Begoro (rural; 6.3916°N, 0.3795°W), Bekwai
(rural; 6.4532°N, 1.5838°W), Hohoe (urban; 7.1519°N,
0.4738°E), Sunyani (urban; 7.3349°N, 2.3123°W) and
Tarkwa (urban; 5.3018°N, 1.9930°W) in the tropical
forest with perennial malaria transmission; Cape-
Coast (urban; 5.1315°N, 1.2795°W) in the coastal sa-
vanna with perennial malaria transmission. A map of
Ghana indicating the sites is shown in Fig. 1.

Study samples

Archived filter paper blood blots collected from children
aged nine years and below with uncomplicated malaria
from antimalarial drug resistance surveillance studies
conducted in 2003 to 2013 and stored at room
temperature were used [16—22]. These samples were col-
lected after the parents or guardians of these children
gave informed consent for their participation in the
studies. Ethical approval for the study was given by the
NMIMR IRB.

Detection of Plasmodium species and msp2 alleles by PCR
Parasite DNA from 880 filter paper blood blot samples
was extracted using Qiagen DNA Blood Minikit (Qiagen,
California USA). Parasite species detection using nested
PCR was done following published protocols with min-
imal changes [23, 24]. Nested PCR was used for the de-
tection of msp2 alleles following recommended
standardised protocols from the Worldwide Antimicro-
bial Resistance Network (WWARN) and World Health
Organization (WHO) for the identification of parasite
populations [10-12]. The primers for both primary and
nested PCRs for the detection of the alleles of the msp2
gene are from previously published protocols [10-12]
(Additional file 1: Table S1).

Data analysis

Sensitivity of PCR was determined from the number of
PCR positives over the total number of samples ana-
lysed. Frequencies of alleles of the genes were deter-
mined for each sample by individual counts of PCR
positivity. Multiplicity of infection (MOI) defined as the
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Fig. 1 A map of Ghana showing the ten sentinel sites for monitoring antimalarial drug efficacy/resistance in the country. These sites are located
in the three ecological zones of Ghana and were set up by a joint collaboration between Noguchi Memorail Institute fo Medical Research
(NMIMR) and the National Malaria Control Programme (NMCP). Abbreviations: R, rural setting; U, urban setting

mean number of genotypes per infection was deter-
mined as the quotient of the total number of alleles per
locus over the total number of PCR positive samples per
locus. Differences in the MOI between time points and
the ecological zones were determined by analysis of vari-
ance (ANOVA) whilst a difference in MOIs between the
sites per time point was determined using Chi-square
test and Fisher’s exact test.

Results

A total of 880 samples from nine sites were typed for msp2
alleles, FC27 and 3D7 for five different time points. Of the
880 samples analysed, 52 (6 %) were from 2003 to 2004,
209 (24 %) from 2005 to 2006, 372 (42 %) from 2007 to

2008, 89 (10 %) from 2010 to 158 (18 %) from 2012 to
2013. The contribution from each site to the total number
of samples is shown in Table 1. The sensitivity of the PCR
method for the typing of the alleles of msp2 ranged from
46 to 100 %. It was observed that sensitivity was compara-
tively higher in the most recently collected samples 2007—
2013. Therefore, data analysis was conducted with 711
PCR positive samples, 37 from 2003 to 2004, 136 from
2005 to 2006, 332 from 2007 to 2008, 73 from 2010 to 133
from 2012 to 2013 (Additional file 2: Table S2).

Allele frequencies for msp2
Fourteen different alleles were detected for msp2 gene
by analysis of PCR products on agarose gels. The most
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Table 1 The number of samples from each site and the time

point
Sites No. of samples Time points
(overall %)

Begoro 90 (10) 3 (2005-2006, 2007-2008, 2010)

Bekwai 82 (9 3 (2005-2006, 2007-2008, 2010)

Cape-Coast 156 (18) 4 (2005-2006, 2007-2008, 2010,
2012-2013)

Hohoe 95 (11) 3 (2003-2004,2007-2008, 2012-2013)

Navrongo 187 (21) 5 (2003-2004,2005-2006, 2007-2008,
2010, 2012-2013)

Sunyani 79 (9) 2 (2005-2006, 2007-2008)

Tarkwa 18 (2) 1 (2007-2008)

Wa 84 (10) 3 (2005-2006, 2007-2008, 2010)

Yendi 89 (10) 3 (2005-2006, 2007-2008, 2010)

frequent allele sizes which persisted in all the three eco-
logical zones within the periods were FC27-400 and
3D7-600. All the genotypes in each isolate are shown in
full in Additional file 3: Tables S3-S7). There was no sig-
nificant difference between the allele frequencies of
FC27 and 3D7 over the years and the trend analysis of
allele frequencies was also not significant (y* = 2.484, df
=1, P=0.115).

Multiplicity of infection (MOI)

The MOI defined as the mean number of genotypes per
infection (Table 2) for each locus per time point was de-
termined for every site, and geometric mean MOIs were
computed for the different ecological zones and for the
country (Table 2). The highest MOI was 3.31 in Begoro
(forest zone) in 2007-2008 (Table 2). The geometric
mean MOIs for all the ecological zones per time point
are shown in Table 3. The MOIs ranged between 1.07-
2.82, 1.40-3.31 and 1.13-2.03, respectively for Guinea
savannah, forest and coastal savannah zones for all the

Table 2 Multiplicity of infection (mean MOI) for all the time
points at the sites

Mean MOIs at time points

Sites 2003-2004 2005-2006 2007-2008 2010 2012-2013
Begoro - 1.65 331 164 -
Bekwai - 1.72 211 140 -
Cape-Coast - 203 144 131 113
Hohoe 1.50 - 218 - 1.59
Navrongo  2.00 1.75 2.54 1.75 191
Sunyani - 1.62 1.68 - -
Tarkwa - - 1.61 - -
Wa - 1.22 282 141 -
Yendi - 1.07 1.78 146 -

-, no data
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time points. No significant difference was observed be-
tween the geometric mean MOIs of the ecological zones
(Fisher’s exact test P =0.370) and between the five time
points when the data was pooled (Fisher’s exact test P =
0.405). Except for the isolates from 2007 which showed
a significant variation among the sites in the distribu-
tions of numbers of alleles of msp2 detected per infec-
tion (Fisher’s exact test, P<0.001) (Fig. 2). There was
also significant variation in the MOI across the years for
three sites with data for three years using Fisher’s exact
test; Hohoe, P =0.03; Navrongo, P < 0.001; Cape Coast,
P<0.001 (Fig. 3).

Discussion

The parasite population structure of P. falciparum iso-
lates from Ghana was determined using the diversity in
the msp2 gene over a decade. This genetic marker is rec-
ommended for genotyping parasites in antimalarial drug
efficacy trials and parasite population structure analysis
by the WHO [10-12]. The samples used in this investi-
gation were collected from all the regions of Ghana
which also represent the three distinct ecological zones
in the country. The findings from this study revealed a
high level of genetic diversity within the msp2 gene,
however there was lack of major differences in parasite
variants across the country which may be as a result of a
high level of gene flow due to human population move-
ments (HPM) over the years. A recent genome-wide se-
quences analysis of isolates from two ecologically
distinct areas in Ghana also showed the genetic struc-
ture of parasite populations as very similar [25]. The
number of genotypes was 14 and 3D7 was the predom-
inant allele from 2005 to 2010. Generally, the deter-
mined MOIs between ecological zones at the different
time points and overall was not significant except for
the 2007 isolates where a significant difference was ob-
served among the nine sites.

Msp2 block 3 is known to have a higher poly-
morphism and therefore provides very useful informa-
tion in describing the diversity of parasites in a
population compared to mspl and glurp [9, 13]. The
study showed high polymorphism msp2 gene and the
predominant allelic genotypes detected had low to
high frequencies which fluctuated at the different
time points. This observation of predominant alleles
is due to genetic recombinations that result in para-
sites with particular alleles having high frequencies
and consequently a high level of biological fitness
[26]. These findings are similar to observations made
in Myanmar on the genetic diversity at the same
locus and the observed fluctuations in allele frequen-
cies of these predominant alleles over the years were
attributed to selection by the hosts’ immune re-
sponses [27]. These immune responses are known to
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Table 3 Multiplicity of infection (mean MOI) for all the time points at the different ecological zones

Ecological zones 2003-2004 2005-2006 2007-2008 2010 2012-2013

Guinea savannah 2.00 132+036 234+£0.54 153£0.18 191

Forest 1.50 1.66 £ 0.05 210068 1.52+0.17 1.59

Coastal savannah (1 site) - 203 144 131 113

Ghana (pooled) 1.73£0.35 155+032 2.08 £0.62 149+0.16 1.51+039
(1.50-2.00) (1.07-2.03) (1.44-3.31) (1.31-1.75) (1.13-1.91)

-, no data

be strain-specific against recurrent parasites with same al-
lelic antigens resulting in the differences in the prevalence
of specific genotypes over time [27]. Of the two allelic
families of the msp2 gene, 3D7 was the predominant allele
and this observation has also been made in several African
and Southeast Asian countries [4, 9, 28—38]. Another re-
port from Agyeman-Budu and colleagues who investi-
gated parasite diversity in asymptomatic infections in the
forest belt area of Ghana (Kintampo), showed a predomin-
ance of 3D7 over FC27 at a ratio of 4:1 in the dry season

[39]. It is evident the 3D7 allelic family is the predominant

msp?2 allele in high disease transmission areas.

There was generally no significant difference in the
MOIs between the different ecological zones and also
between time points when data were pooled; however,
for the isolates from nine sites in 2007 showed variability
in the MOIs. Although the population frequencies of the
two msp2 alleles (FC27 and 3D7) did not vary signifi-
cantly among the nine populations in 2007 as a result of
each local population having similarly wide spectrum of
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Fig. 3 The msp2 mean MOIs for three sites located in three ecological zones over three time points. There were significant differences in the
MOls between the years for each site. The pie charts depict the number of genotypes per infection ranging from 1 to 4 genotypes
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genotypes variation within each of these major types, the
observed variation in MOIs estimates could not be due
to differences in msp2 allelic diversity locally (D]
Conway, personal communication). Whole genome se-
quence analyses show that parasite populations in differ-
ent parts of West Africa have very similar genetic
diversity [26, 40], and a comparison of different areas in
Ghana has also shown that allele frequency distributions
are very similar throughout the genome [25]. As these
populations are well connected geographically, there is
unlikely to be significant local divergence in allele fre-
quencies of any parasite gene unless there have been sig-
nificant differences in selection operating locally, as may
be the case for drug resistance genes [17, 18]. It is
known that the lack of differences between allele fre-
quencies over time in a population is indicative of fre-
quency equilibrium due to absence of selection which is
controlled by frequency-dependent immune selection
[41, 42]. This lack of significant variation in allele fre-
quencies of msp2 alleles as observed in our study over
time has also been observed in parasite populations from
the Gambia and Brazil [41, 43, 44].

The observation of lack of differences in parasite vari-
ants in all three ecological zones may be due to HPM
across the country. For people living in the Guinea
savannah ecological zone with seasonal transmission,
during the dry season which could last for about 6
months, they become migrant workers who move to
perennial transmission areas for economic reasons and
return to farm their lands before the rains begin. As
such they are carriers of parasites from their ecological
zone to other zones and also carry parasites of the other
zones back to their areas. HPM between rural and urban
areas is the norm in the country for trading purposes
and for visiting extended families which is an important
cultural practice. Therefore, HPM greatly enhances the
movement of parasite variants from one place to another
which results in variants with minor differences in alleles
of the msp2 gene investigated across the country. The
implication of the observed level of genetic diversity in
parasite populations in high transmission areas as a re-
sult of genetic recombination poses a threat to the iden-
tification of antigenic epitopes for malaria vaccine
design. Although extensive genetic diversity is a
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hindrance to vaccine development efforts, for people liv-
ing in endemic areas, such diversity enhances the en-
counter with diverse parasite clones which in turn, help
with the natural acquisition of immune responses
against the multiple clones of the parasite and subse-
quent protection against disease symptoms.

Sequencing the polymorphic regions and microsatellite
typing of the genetic locus investigated could provide
deeper insight into the variations in gene sequences as
detected by other studies [27, 29, 45], and therefore fur-
ther analyses are ongoing which involves sequencing and
microsatellite typing to reveal the genetic complexity of
circulating parasites in Ghana.

Conclusion

There was an immense genetic diversity in the parasite
population in Ghana upon investigating the msp2 gene.
However, there was minimal variation or homogeneity
in parasite populations across the country which may be
due to gene flow from the effect of human population
movements.
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