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Abstract

Background: Transmission-blocking vaccine (TBV) is a promising strategy for interrupting the malaria transmission
cycle. Current TBV candidates include both pre- and post-fertilization antigens expressed during sexual
development of the malaria parasites.

Methods: We tested whether a TBV design combining two sexual-stage antigens has better transmission-blocking
activity. Using the rodent malaria model Plasmodium yoelii, we pursued a DNA vaccination strategy with genes
encoding the gametocyte antigen Pys48/45 and the major ookinete surface protein Pys25.

Results: Immunization of mice with DNA constructs expression either Pys48/45 or Pys25 elicited strong antibody
responses, which specifically recognized a ~45 and ~25 kDa protein from gametocyte and ookinete lysates,
respectively. Immune sera from mice immunized with DNA constructs expressing Pys48/45 and Pys25 individually
and in combination displayed evident transmission-blocking activity in in vitro ookinete culture and direct
mosquito feeding experiments. With both assays, the Pys25 sera had higher transmission-blocking activity than the
Pys48/45 sera. Intriguingly, compared with the immunization with the individual DNA vaccines, immunization with
both DNA constructs produced lower antibody responses against individual antigens. The resultant immune sera
from the composite vaccination had significantly lower transmission-blocking activity than those from Pys25 DNA
immunization group, albeit the activity was substantially higher than that from the Pys48 DNA vaccination group.

Conclusions: This result suggested that vaccination with the two DNA constructs did not achieve a synergistic
effect, but rather caused interference in inducing antigen-specific antibody responses. This result has important
implications for future design of composite vaccines targeting different sexual antigens.
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Background 438,000 deaths (range: 236,000-635,000) [1]. Current

Malaria is a devastating disease caused by malaria para-
sites in the genus Plasmodium. In nature, human mal-
aria transmission requires Anopheles mosquitoes as
obligate vectors. According to a recent WHO report, in
2015 it was estimated that there were 214 million cases
of malaria globally (range: 149-303 million), leading to
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tools for combating malaria include vector control with
insecticides and artemisinin-based combination therap-
ies [2, 3]. The emergence and spread of drug-resistant
parasites over the last four decades, especially with the
recent detection of resistance against the front-line treat-
ment artemisinins, highlight the necessity for new con-
trol strategies. In this regard, the development of a safe
and effective antimalarial vaccine is expected to play an
important role in integrated malaria control [4, 5].
Vaccine development efforts have focused on candidate
antigens present in the pre-erythrocytic, erythrocytic and
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sexual stages of the parasites. Sexual stages of the malaria
parasites are critical for transmission from humans to
mosquitoes. During sexual development, male and female
gametocytes in the peripheral blood rapidly differentiate
into gametes upon uptake by an Anopheles vector. Follow-
ing fertilization of the male and female gametes, zygotes
are formed and develop into motile ookinetes. Ookinetes
traverse the peritrophic matrix and midgut epithelium,
lodge under the basal lamina of the midgut, and develop
into oocysts [6]. A transmission-blocking vaccine (TBV)
specifically targets the sexual development of the parasite
in the mosquito vector and elicits immunity that effect-
ively blocks transmission of the parasite from humans to
mosquitoes [7].

To date, a number of TBV candidates have been inves-
tigated and only a handful of antigens show clear evi-
dence of transmission-blocking (TB) activity, including
P230, P48/45 and P25 and P28. Pfs48/45 is a pre-
fertilization antigen and plays an essential role in para-
site fertilization. Targeted disruption of the gene affects
the male gamete’s capacity to bind to female gametes
[8], and antibodies targeting conformational epitopes of
Pfs48/45 prevent fertilization [9, 10]. Furthermore, anti-
Pfs48/45 antibodies can be found in human sera from
endemic areas, and correlate with TB activity [11-14].
Since pre-fertilization antigens are targets of the natural
immune responses, immunity based on such antigens
will have the added benefit of natural boosting. The two
post-fertilization antigens Pfs25 and Pfs28 are lead tar-
gets for the development of TBVs, and are secreted onto
the surface of ookinetes. Pfs25 plays vital roles in ooki-
nete survival in the midgut and penetration of the gut
epithelium [15]. Mouse antiserum against native [16,
17], or heterologously expressed P25 inhibits parasite
development in mosquitoes [18, 19]. Currently, phase I
human clinical trials using recombinant Pfs25 and Pvs25
have demonstrated the production of antibodies that sig-
nificantly inhibit transmission of the parasites, further
highlighting their potential for TBV development [20,
21]. Recombinant Pvs25 expressed in yeast induces anti-
bodies that block transmission by up to 80 % in terms of
mean oocyst intensity, and by 20-30 % in reduction of
prevalence of infection [20].

One important problem associated with TBV is that
most recombinant candidate antigens such as Pfs230
and Pfs48/45 require proper conformational folding of
target epitopes to elicit functional antibodies [22]. DNA
vaccine may overcome the need for such requirements
associated with conventional protein immunization and
has been shown to induce protective immune responses
against several pathogens by eliciting both humoral and
cellular immune responses [23-28]. DNA vaccines for
Pfs25 have been shown to induce effective TB activity in
mice and rhesus monkey [29-31]. Another problem is
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that most TBVs could not induce sterile TB activity to
completely block the development of oocysts in mosqui-
toes. Thus, it is possible that combining two different
TBV candidates that target both pre- and post-
fertilization antigens may improve TB activity. To test
this hypothesis, we used the rodent malaria parasite
Plasmodium yoelii as a model system and evaluated the
immunogenicity and protective efficacy of DNA vaccines
for Pys48/45 and Pys25. We show that these DNA vac-
cines can induce strong antibody response in mice, and
the antibodies are functional in inhibiting zygote and
ookinete formation in vitro and blocking oocyst forma-
tion in mosquitoes. However, simultaneous DNA
immunization against both Pys48 and Pys25 did not
achieve an additive effect in the induction of functional
TB antibodies.

Methods

Mice and parasites

Female BALB/c mice aged from 6 to 8 weeks were used
for vaccination and infection with the P. yoelii lethal
strain 17XL (Pyl17XL). Infections with the Py17XL blood
stages were initiated by intraperitoneal injection of 1 x
10° parasitized erythrocytes per mouse. Parasitemia was
determined by microscopic examination of Giemsa-
stained thin smears from the tail blood. Mortality of in-
fected mice was recorded daily. All experiments were
performed in compliance with the regulations of China
Medical University Animal Ethics Committee.

DNA constructs for immunization

Genomic DNA from Pyl7XL was used for amplification of
the Pys48/45 and Pys25 gene. The Pys48/45 open reading
frame (ORF) was amplified using primers 5'-AAG CTT
ATG CTC TCC TTT TTT GGG-3' (HindIII site under-
lined) and 5'-GAT ATC TTA TAG CCA CAT AAA AA
A TAA GGG AAT-3" (EcoRV site underlined). The
Pys25 ORF was PCR amplified with the primers 5'-
GGA TCC ATG AAT ACT TAT TAC AGT GT-3'
(BamHI  site underlined) and 5'-CTC GAG
TTA AAT GAT ATT TGA GAA TAA TAG-3" (Xhol
site underlined). The PCR products were cloned into
the DNA vaccine vector pcDNA3.1+ and the resultant
plasmids were designated as Pys48/45-pcDNA3.1+
and Pys25-pcDNA3.1+, respectively. After verification
of the inserts by sequencing, the plasmids were puri-
fied using the EndoFree Plasmid Maxi kit (Qiagen,
Germany).

Immunization scheme

For DNA vaccine, plasmid DNA in 100 pl of phosphate-
buffered saline (PBS) was administered into the right
and left tibialis cranialis muscles of the mouse by intra-
muscular immunizations. Mice were divided into five
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groups. Group 1 received 100 pl of PBS as the negative
control. Group 2, 3 and 4 received a dose of 50 pg of
empty vector pcDNA3.1+, Pys48/45-pcDNA3.1+ and
Pys25-pcDNA3.1+, respectively. Group 5 received 50 pg
each of Pys48/45-pcDNA3.1+ and Pys25-pcDNA3.1+ in
separate sites, which were not mixed in the same
syringe. The injections were administered three times at
a four-week interval. Four weeks after the first and each
of the two subsequent booster immunizations, pooled sera
were collected from all the mice for analysis by enzyme-
linked immunosorbent assay (ELISA). For each
immunization scheme, five BALB/c mice were immunized.

Preparation of gametocytes and ookinete culture

The P. yoelii-infected blood was diluted in PBS to a
hematocrit of 10 % and layered onto a 45 % (v/v) Percoll
(Pharmacia GE) PBS cushion. After centrifugation at
350x g for 20 min at room temperature (RT), the
gametocyte-enriched layer was collected at the interface
and washed three times with PBS. Part of the purified
gametocytes was then diluted 1:10 with RPMI 1640
medium supplemented with 50 pg/ml of hypoxanthine,
25 mM HEPES, 20 % heat-inactivated fetal calf serum,
24 mM NaHCOs, 5 U/ml penicillin, and 5 pg/ml
streptomycin (pH 8.4) and cultured at 24 °C for 24 h.
The purified gametocyte and the cultured ookinete pel-
lets were lysed by 2 % SDS in PBS at RT, then centri-
fuged at 12,000 rpm for 10 min at 4 °C. The protein
extracts were stored at -80 °C for ELISA and Western
blotting.

ELISA

Serum samples obtained from immunized and control
mice were tested for antibodies against Pys48 and Pys25
using ELISA as previously described [19]. Briefly, 96-well
microtiter plates were pre-coated (100 ul/well) with
10 pg of purified gametocyte or cultured ookinete anti-
gens in bicarbonate buffer at 4 °C overnight. For estimat-
ing endpoint titer of each immunized group, sera from
all mice in each immunization group were pooled and
diluted from 1:200 to 1:25600 in 1 % bovine serum albu-
min (BSA) in PBS containing 0.05 % Tween 20 (PBS-T).
Plates were incubated for 2 h, washed three times with
PBS-T, and incubated with horseradish peroxidase
(HRP)-conjugated goat anti-mouse IgG (1:5000) for 1 h,
followed by six washes with PBS-T. Finally, the optical
density values were measured at 492 nm 20 min after
the addition of the substrate.

Western blot analysis

Protein lysates from purified gametocytes or cultured
ookinete pellets of Pyl7XL were separated by electro-
phoresis in a 10 % SDS-polyacrylamide gel. Proteins
were transferred to a 045 pm PVDF membrane
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(Millipore, USA). The membrane was blocked with 5 %
skimmed milk in Tris-buffered saline (TBS), and then
incubated for 24 h at 4 °C with pooled mouse antisera at
1:100 in TBS containing 0.1 % Tween 20 (TBST). After
three washes with TBST, the membrane was incubated
for 1 h with HRP-conjugated goat anti-mouse IgG (Pro-
teintech™, USA) diluted 1:10,000 in TBST. After three
washes with TBST, the proteins were visualized with
ECL Western Blotting Substrate (Thermo Pierce, USA)
and detected using the Biolmaging System (Tanon,
China). The relative molecular masses of proteins were
estimated with PageRuler™ Prestained Protein Ladder
(10-170 kDa) (Fermentas, USA).

Indirect immunofluorescence assay (IFA)

Purified gametocyte or cultured ookinetes were spotted
onto multi-well slides, air-dried, and fixed with ice-cold
acetone for IFA. Slides were first blocked with PBS con-
taining 5 % skimmed milk for 30 min at 37 °C and then
incubated with anti-Pys48 or anti-Pys25 mouse sera
(1:50) for 1 h at 37 °C. After rinsing with PBS, the slides
were incubated with fluorescein isothiocyanate (FITC)-
conjugated goat anti-mouse IgG antibodies (Tago,
Camarillo, CA) and the nuclear stain 4',6-diamidino-2-
phenylindole (DAPI) for 30 min at 37 °C. After rinsing
with PBS, the slides were mounted under a coverslip in
bicarbonate-buffered glycerin, and observed under a
fluorescence microscope.

In vitro zygote and ookinete development assay

To examine whether immune sera possessed TB activity,
in vitro zygote and ookinete conversion assay was per-
formed [32]. Ten pl of P. yoelii-infected blood was taken
from mouse tails on day 3 post-infection and mixed with
90 pl of complete ookinete culture medium containing
20 ul of control or immune sera (1:4). The cultures were
incubated at 24 °C for 24 h. Parasites were harvested by
centrifugation (500xg, 5 min) and the pellet re-
suspended in 40 pl of PBS. One pl of the suspension was
placed on a slide for fluorescent microscopy and blocked
with 5 % fat-free milk for 1 h at 37 °C. After rinsing with
PBS, the slides were incubated with Pys25 monoclonal
antibodies (mAbs) at 1:200 for 1 h, followed by FITC-
conjugated goat anti-mouse IgG for 1 h. The total num-
bers of zygotes and ookinetes formed per microlitre of
the aliquots were counted.

Mosquito feeding experiment

Four weeks after the last immunization, mice from each
of the five groups were inoculated with 1 x 10° Py17XL-
parasitized erythrocytes/mouse. Three days after infec-
tion, three mice from each group were used for
mosquito feeding experiments. Four-day-old female
Anopheles stephensi mosquitoes were starved overnight
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and then allowed to feed on Pyl17XL-infected mice (50
mosquitoes/mouse) for 30 min. The engorged mosqui-
toes were separated and maintained at 24 °C on 1.5 %
fructose and 1.5 % sucrose. Nine days after feeding, mos-
quitoes were dissected to count infected mosquitoes
(prevalence of infection) and oocyst density (number of
oocysts/infected midgut) by microscopy. Oocyst density
was derived from the dissection of 20-30 mosquitoes
per mouse.

Statistical analysis

Statistical analysis of ELISA data and in vitro TB activity
of the immune sera was performed by the GraphPad
Prism software. For the ELISA data, one-way ANOVA
was used to compare all the immunized groups. The for-
mation of P. yoelii zygotes and ookinetes was analyzed
by the Mann-Whitney U-Test. Considering the over-
dispersion nature of the oocyst density and prevalence
distribution, these data were analyzed by using a zero-
inflated Generalized Linear Mixed-Model statistical
model (GLMM) [33]. A value of P < 0.05 was considered
significant.

Results

Antibody responses to DNA vaccines

Current TBV designs target pre-fertilization antigens
such as P48/45 or post-fertilization antigens such as the
major ookinete surface antigen P25. To test whether a
combination vaccine targeting both pre- and post-
fertilization antigens would perform better, we tested the
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combination of Pys48/45 and Pys25 using the rodent
malaria parasite P. yoelii as a model. DNA vaccine con-
structs were used in order to circumvent difficulties as-
sociated with producing correctly folded recombinant
proteins of the two Cys-motif proteins Pys48/45 and
Pys25 in prokaryotic expression systems. Groups of five
mice were immunized with DNA vaccines against either
individual antigens (Pys48/45 or Pys25) or combination
antigens (both Pys48/45 and Pys25). Antibody responses
were measured by ELISA with whole cell lysates of puri-
fied gametocytes or cultured ookinetes. Compared with
mice in the control group, immunization of mice with
the empty pcDNA3.1+ vector did not produce any no-
ticeable antibody response against parasite sexual stage
antigens. Consistent with the abundant expression of
Pys48/45 in gametocytes and Pys25 in ookinetes,
immunization with Pys48/45-pcDNA3.1+ individually
and in combination with Pys25-pcDNA3.1+ produced
significantly higher antibody titers to the gametocyte lys-
ate than the empty vector, whereas immunization with
Pys25-pcDNA3.1+ individually and in combination with
Pys48/45-pcDNA3.1+ produced significant higher anti-
body responses to the ookinete lysate than the empty
vector (Fig. la, b). The antibody production showed a
significant increase in each immunized mouse after the
first and second boost (Fig. la, b). These results sug-
gested that mice immunized with both DNA vaccine
constructs produced specific antibodies against either
gametocyte or ookinete antigen(s). Intriguingly, vaccin-
ation with both constructs simultaneously resulted in
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Fig. 1 The levels of specific IgGs in serum samples from BALB/c mice immunized with Pys48/45 and Pys25. The coating antigens used were
lysate of purified gametocytes (a) and of cultured ookinetes (b). Results are expressed as geometric means of five in each group. Statistical
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lower antibody titers than those immunized with the
two constructs individually (Fig. 1).

Reactivity of the immune sera with Pys48/45 and Pys25
proteins

In order to confirm that the specific antibodies produced
against gametocyte and ookinete lysates were indeed
specific for Pys48/45 and Pys25, respectively, we per-
formed Western blot and IFA analyses. Western blots
showed that the immune sera from Pys48/45-pcDNA3.1
+ vaccinated mice detected an approximately 45 kDa
protein in the gametocyte lysate, whereas the immune
sera from Pys25-pcDNA3.1+ vaccinated mice detected a
~25 kDa protein in the ookinete lysate (Fig. 2), indicat-
ing that these antisera specifically recognized Pys48/45
and Pys25, respectively. Sera from combination antigens
(both Pys48/45 and Pys25) immunized group detected
both the 45 kDa protein and the 25 kDa protein, indicat-
ing that the antisera recognized both Pys48/45 and
Pys25 (Fig. 2). Although there were minor cross-reacting
bands in the Western blot with the gametocyte lysates,
the dominant bands were consistent with the predicted
molecular weight of the Pys48/45. Furthermore, IFA
demonstrated that these immune sera reacted predomin-
antly with the surface of Py17XL gametocytes and ooki-
netes, respectively (Fig. 3).

In vitro TB activity of the immune sera

To assess TB activity of the immune sera from the DNA
vaccines, in vitro zygote and ookinete inhibition assay
was performed using these immune sera at 1:4 dilution.
Zygote and ookinete formation was quantified using [FA
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to detect the major ookinete surface antigen Pys25.
Compared with the control sera, sera from the vector
control group did not have any inhibitory activity on
zygote and ookinete formation (Table 1). In contrast, the
three immunization groups all exhibited significantly
higher inhibitory activity on zygote formation than the
control group (ANOVA: F(3 1) =194.6, P <0.0001). The
numbers of zygotes formed with sera from the three
immunization groups were reduced by at least 7-fold
compared with the control groups (Table 1). Similarly,
incubation with sera from the immunization groups re-
sulted in at least 23-fold reduction in the number of
ookinetes (Table 1). The best inhibitory activity was from
the Pys25-pcDNA3.1+ vaccination group, where zygote
formation was reduced by ~17-fold and ookinete devel-
opment was completely blocked (ANOVA: F3 13 =
74.67, P<0.0001). Consistent with the observed lower
parasite-specific antibody titers induced with the com-
bination immunization, sera from mice immunized with
Pys48/45-pcDNA3.1+ and Pys25-pcDNA3.1+ together
did not show higher inhibitory activity on zygote and
ookinete formation than sera immunized with these con-
structs individually (Table 1).

TB activity in mosquito feeding experiments

To compare the TB activity of different immunization
schemes, An. stephensi mosquitoes were used to feed on
mice in the different immunization groups on day 3 after
Py17XL infection. Mosquitoes were dissected on day 9
after feeding to determine the mosquito infection rate
and oocyst density. In the control group, 100 % mosqui-
toes were infected with median oocyst density exceeding
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Fig. 2 Western blot analysis of Pys48/45 and Pys25 expression in P. yoelii gametocytes and ookinetes. Lysates from gametocyte- (a) and ookinete-
enriched (b) preparations were probed with immune sera from the Pys48/45, Pys25 and Pys48/45 + Pys25 DNA immunization groups, respectively
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Nuclei were counter-stained with DAPI. Scale-bars: 5 pm
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Fig. 3 Indirect immunofluorescence assays showing the reactivity of the immune sera with P. yoelii sexual stage parasites. IFAs were performed
on gametocytes (a) and ookinetes (b) with immune sera from the Pys48/45, Pys25 and Pys48/45 + Pys25 DNA immunization groups, respectively.
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200 oocysts per midgut. In comparison, mice receiving the
DNA vaccines Pys48/45-pcDNA3.1+ and Pys25-pcDNA3.1
+ either individually or in combination significantly reduced
the prevalence of infected mosquitoes and oocyst density
(P<0.001, Fig. 4). Compared with 100 % infectivity in the
control group, immunization with Pys25-pcDNA3.14,

Table 1 Inhibitory activity of immune sera from the DNA
vaccines on the in vitro formation of P. yoelii zygotes and
ookinetes

Group Median no. of parasites/well (range) % inhibition
Zygotes Ookinetes of cokinetes

Naive mice 450 (39-51) 135 (8-17)

Vector control 420 (37-47) 11.5 (9-14) 14.8

Pys25 2.5 (1-4)° 00 (0-1)° 100

Pys48 45 (3-6)° 0.5 (0-1)° 96.3

Pys25 + Pys48 6.0 (4-8)° 0.5 (0-1)° 96.3

2Significant difference compared with the Naive mice group at P < 0.05 by the
Mann-Whitney U-Test

Pys48/45-pcDNA3.1+ and their combination led to 40.7,
286, and 14.3 % reduction in the prevalence of infected
mosquitoes, respectively. In addition, the average number of
oocysts per midgut was reduced to 3, 23.5 and 18.5 oocysts/
midgut in these immunization groups, respectively (Table 2).
Again, immunization with Pys25-pcDNA3.1+ produced the
best TB activity. Further, the combination immunization
group, although appeared slightly better than the Pys48/45-
pcDNA3.1+ immunization group, showed lower TB activity
than Pys25-pcDNA3.1+ single immunization in both the
prevalence of infection and oocyst density.

Discussion

Due to the complex nature of the malaria parasite’s life
cycle, the development of multi-stage vaccines targeting
the major stages (pre-erythrocytic, asexual blood and
sexual stages) is a more effective vaccination strategy. In
addition, mosquito midgut proteins are alternative TBV
candidates [34]. Immune responses to individual immu-
nogens in vaccine cocktails have been observed [35, 36],
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Fig. 4 Transmission-blocking effect of immunization with Pys25,
Pys48/45 and Pys48/45 + Pys25 plasmids in direct mosquito feeding
assay. Data points represent the number of oocysts in individual
mosquitoes, horizontal bars indicate the mean number of oocysts per
midgut and error bars indicate SEM within individual treatments.
Three independent experiments were performed. Asterisk (**) indicates
significance at P < 0.01 as compared with the Vector control

and vaccines targeting more antigens or epitopes may
provide better protection than those for single antigens
or epitopes in animal models [37-39]. Vaccines targeting
antigens of the same stage are expected to have a syner-
gistic effect, however, this may not always be the case.
For example, antibodies to Pfs25 and Pfs28 were found
to have synergistic TB activity [40], whereas antibodies
to the orthologous Pvs25 and Pvs28 did not show obvi-
ous synergism [41]. Given that blocking individual stages
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requires different stage-specific antibody titers, combin-
ation of antigens in cocktail vaccines may need to be
evaluated on a case-by-case basis [42].

DNA-based vaccines have been shown to generate
both cellular and humoral immune responses in diverse
animal models. In this study, we evaluated the TB effect
of combination DNA vaccines against two sexual-stage
antigens in a rodent malaria model. The two antigens
tested, P25 and P48/45, are both leading TBV candi-
dates. Since the immunogenicity of a vaccine depends
on the formation of natural conformational epitopes,
and it is especially important for P48 which contains a
unique arrangement of six cysteine-containing domains
[43], we expect that DNA vaccine would circumvent the
difficulties in obtaining conformationally correct P48
[44] as shown for the Pvs48/45 [45]. Consistent with
DNA vaccine results for the Pfs25 [29] as well as the
Pvs48/45 [45], DNA vaccines with the Pys25 and Pys48/
45 individually and in combination produced evident,
specific antibody responses, and the antibodies recog-
nized the respective native proteins in parasites and
possessed significant TB activity. In both in vitro ooki-
nete conversion and direct mosquito feeding assays,
immunization with the Pys25 plasmid produced much
better TB activity than with the Pys48/45 construct,
which agrees with P25 being one of the best TBV candi-
dates in numerous experiments [22, 46]. As in a vaccin-
ation study with recombinant Pfs25-Pfs230, immune
responses are strongly biased towards Pfs25 [47]. This
could be due to a difference in the distribution and im-
munogenicity of the B epitopes, which may be inherent
characteristics of individual proteins. More surprisingly,
immunization with both DNA constructs produced de-
creased humoral responses to each of the two antigens
as compared with immunization with individual DNA
constructs, suggesting of interference between the two
DNA vaccine constructs. This phenomenon is consistent
with an earlier report showing a similar interference ef-
fect of DNA vaccination with Pfs25 and the gametocyte

Table 2 Transmission-blocking effect anti-Pys25 and Pys48/45 sera in direct mosquito feeding assay

Vector control Pys25 Pys48 Pys25 + Pys48

N 26 27 28 28

# not infected 0 1 8 4

Prevalence (%)® 100.0 593 714 85.7

Median 2210 30 235 185

Mean 2246 36 264 249

Range 420 14 75 71

Reduction in Oocyst (9%)° na 98.6 894 916
Reduction in Prevalence (%)“ na 40.7 286 143

“The prevalence of infection was calculated by number of mosquitoes with oocysts/total mosquitoes dissected in each group
b9 reduction in oocyst was calculated as (mediancontro—medianycpnaz.t + plasmid)/Mediancontrol X 100
% reduction in prevalence was calculated as (% prevalence oniroi-% prevalencepcpnas.i+ plasmia)/ % prevalenceconior X 100
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antigen Pfg27, which showed lower TB activity in the
combination vaccination group [29]. Alternatively, the
reduced antibody responses to individual antigens pro-
duced in the mixed vaccination scheme could be a dos-
age effect, as the doubled amount of DNA used for
combination immunization may interfere with antigen
presentation.

Conclusion

The data described here indicate that both Pys25 and
Pys48/45 DNA vaccines showed remarkable immunoge-
nicity and induced functional TB activity. Though both
antigens are considered leading TBV candidates targeting
pre- and post-fertilization antigens respectively, their com-
bination in immunization produced an interfering effect
in eliciting immune responses to either protein. It remains
to be tested whether this is a phenomenon restricted to
DNA vaccine only. Nonetheless, these results could have
important implications in the design of future multicom-
ponent DNA vaccines.
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