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A proteomics approach reveals molecular
manipulators of distinct cellular processes
in the salivary glands of Glossina m.
morsitans in response to Trypanosoma
b. brucei infections
Henry M. Kariithi1,5*, Sjef Boeren2, Edwin K. Murungi3, Just M. Vlak4 and Adly M. M. Abd-Alla5*

Abstract

Background: Glossina m. morsitans is the primary vector of the Trypanosoma brucei group, one of the causative
agents of African trypanosomoses. The parasites undergo metacyclogenesis, i.e. transformation into the
mammalian-infective metacyclic trypomastigote (MT) parasites, in the salivary glands (SGs) of the tsetse vector.
Since the MT-parasites are largely uncultivable in vitro, information on the molecular processes that facilitate
metacyclogenesis is scanty.

Methods: To bridge this knowledge gap, we employed tandem mass spectrometry to investigate protein
expression modulations in parasitized (T. b. brucei-infected) and unparasitized SGs of G. m. morsitans. We
annotated the identified proteins into gene ontologies and mapped the up- and downregulated proteins
within protein-protein interaction (PPI) networks.

Results: We identified 361 host proteins, of which 76.6 % (n = 276) and 22.3 % (n = 81) were up- and
downregulated, respectively, in parasitized SGs compared to unparasitized SGs. Whilst 32 proteins were
significantly upregulated (> 10-fold), only salivary secreted adenosine was significantly downregulated.
Amongst the significantly upregulated proteins, there were proteins associated with blood feeding,
immunity, cellular proliferation, homeostasis, cytoskeletal traffic and regulation of protein turnover. The
significantly upregulated proteins formed major hubs in the PPI network including key regulators of the
Ras/MAPK and Ca2+/cAMP signaling pathways, ubiquitin-proteasome system and mitochondrial respiratory
chain. Moreover, we identified 158 trypanosome-specific proteins, notable of which were proteins in the
families of the GPI-anchored surface glycoproteins, kinetoplastid calpains, peroxiredoxins, retrotransposon
host spot multigene and molecular chaperones. Whilst immune-related trypanosome proteins were
over-represented, membrane transporters and proteins involved in translation repression
(e.g. ribosomal proteins) were under-represented, potentially reminiscent of the growth-arrested
MT-parasites.
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Conclusions: Our data implicate the significantly upregulated proteins as manipulators of diverse cellular
processes in response to T. b. brucei infection, potentially to prepare the MT-parasites for invasion and
evasion of the mammalian host immune defences. We discuss potential strategies to exploit our findings
in enhancement of trypanosome refractoriness or reduce the vector competence of the tsetse vector.

Keywords: LC-MS/MS, Protein-protein interaction, Metacyclic trypomastigotes, Metacyclogenesis, Vector
competence, Trypanosome refractoriness

Background
Trypanosoma brucei group causes African trypanoso-
moses, a group of neglected zoonotic tropical diseases
endemic in 37 sub-Saharan African countries [1], against
which there are no effective vaccines or drugs [2, 3].
Amongst the medically and agriculturally important tsetse
fly species, Glossina morsitans morsitans is highly signifi-
cant in the savannah woodlands and is the primary vector
of the species of T. brucei group [4].
In order to complete their complex developmental

cycles in the tsetse vector, trypanosomes face two critical
replicative stage barriers: colonization of the midguts and
establishment in the salivary glands (SGs). The pathway
followed by the parasites between these two independent
multi-replicative stages is time-dependent, irreversibly
transient and eventually influences metacyclogenesis in
the SGs (differentiation into the mammalian-infective
metacyclic trypomastigote (MT) parasites) [5–9]. Critical
replicative events occur ~3 days post-infective blood meal
when only a small proportion (≤ 10 %) of the parasites is
able to pass through the midgut barrier [8]. Upon esta-
blishment of infection, parasite numbers per fly gut
remain remarkably constant [6, 8]. However, since the SG-
derived MT-parasites are uncultivable in vitro, molecular
mechanisms that promote metacyclogenesis remain to be
investigated.
Whilst the SGs determine success of metacyclogenesis,

there is limited knowledge on how trypanosomes adapt
to and evade the host defence responses in the SGs [10].
It is however generally known that trypanosomes modu-
late SGs microenvironment [11], and that factors such
as parasite genotypes, midgut antioxidant status, lectins
and environmental stimuli influence parasite maturation
[12, 13]. Most trypanosome research has focussed on the
bloodstream and/or in vitro cultured procyclic forms, thus
creating a knowledge gap with regard to metacyclogenesis.
The availability of complete genomes of G. morsitans [14]
and T. brucei [15] makes it possible to identify proteins
involved in the mechanisms that facilitate metacyclo-
genesis. Such proteins are ideal candidates to develop
improved strategies for tsetse and trypanosomosis control,
especially via the sterile insect technique (SIT) programs
[16], which have so far been employed in areas without
active disease transmission [2].

Vector competence is one of the key pillars in the SIT
programs, which involves mass release of sterile males
into wild populations of the target species. More impor-
tantly, the sexually sterilized males are still competent
trypanosome vectors, thus increasing risks of disease
transmission when millions of sterile males are released
into trypanosome-infested areas. Attempts have been
previously made to make the sterile males vector incom-
petent via drug-supplemented blood meals, an approach
now known to be inefficient [17]. Thus, alternative and/
or complementary approaches are necessary, especially
with the risk of trypanosomes developing resistance to
the trypanocidal drug supplements. In this regard, meta-
cyclogenesis and transmission of the mammalian-infective
MT-parasites potentially represent vulnerable and attrac-
tive intervention points to enhance the natural trypano-
some refractoriness or reduce the vectorial competence of
the sterile males used in the SIT campaigns.
We hypothesized that T. b. bruceimanipulates expression

of proteins involved in pathways that specifically prepare
the MT-parasites for successful transmission to and infec-
tion of susceptible mammalian hosts. To test this hypoth-
esis, we employed tandem mass spectrometry (LC-MS/MS)
to determine T. b. brucei-induced protein expression mod-
ulations in parasitized SGs of G. m. morsitans compared to
unparasitized SGs. We also aimed at highlighting major
metacyclic T. b. brucei-specific proteins, which are poten-
tially critical for parasite survival in the SGs and transmis-
sion to susceptible mammalian hosts. We discuss our
findings from the perspective of potential approaches to en-
hance trypanosome refractoriness in tsetse as an anti-
vector strategy against African trypanosomosis.

Methods
Tsetse flies and parasites infections
Male G. m. morsitans were obtained from the Institute of
Tropical Medicine (Antwerp, Belgium) and infected with
a highly transmissible T. b. brucei strain (EATRO 1125
AnTaR 1) [11]. Male flies were used because they mature
significantly more midgut infections than females [5]. For
the infections, teneral flies (24–48 h post-adult eclosion)
received their first blood meals supplemented with ~12 μg
of parasites/fly [11]. Fully-engorged flies were selected,
reared for 28 days post-infection (dpi) in controlled
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insectaria (65 % relative humidity; 26 °C) and subsequently
fed on clean (trypanosome-free) defibrinated horse blood
(in vitro; 2–3 times/week) [18]. Control flies were prepared
from males of the same batch, age and feeding history as
the parasitized flies. The control flies were maintained on
clean blood meals and handled as described for their
parasitized counterparts. All assays consisted of biological
triplicates (20 flies per group) in small holding cells
(3.5 cm in diameter × 6 cm height).

Parasite scoring and SG dissections
Forty-eight h after the last blood meal, the flies were
scored for the presence of the MT-parasites in the SGs
using phase-contrast microscopy (×400) as previously
described [11]. Briefly, the SGs were considered parasi-
tized if stuffed with trypanosomes (i.e. the fly’s spit full
of the parasites). Fly’s spit (from the control group)
completely devoid of trypanosomes were considered
unparasitized. For mass spectrometry, 10 intact pairs of
SGs were selected from each of the replicated fly groups
and immediately preserved at -20 °C in 150 μl sterile
saline supplemented with complete protease inhibitor
cocktail (Roche Diagnostics, Mannheim, Germany).

SG extracts preparation and SDS-PAGE
SGs were individually homogenized using a glass/Teflon
homogenizer and ultra-sonicated (Sonifier cell disruptor,
Branson Instruments Co., Stanford, Connecticut, USA).
Homogenates were freeze-thawed and clarified three
times by centrifugation (7500× g; 10 min; 4 °C) to com-
pletely remove cell debris. Supernatants were pooled
and proteins quantified using the standard BCA method
(Bio-Rad, Hercules, California, USA). Equal protein quan-
tities (600 ng) were resolved in 12 % SDS-PAGE gels and
stained (CBB stain; NuPAGE Novex; Invitrogen Life
Technologies, Carlsbad, California, USA). The middle
sections of entire gel lanes were longitudinally excised
(from top to bottom), divided into five equal fractions
(covering the entire gel lanes) and cut into small pieces
(~1 mm3) as previously described [19].

LC-MS/MS measurements and protein identification
Tryptic peptides for subsequent LC-MS/MS measure-
ments were prepared as previously described [19]. Briefly,
the gel pieces were washed with 50 mM ammonium
bicarbonate (ABC) buffer and ABC buffer/50 % acetonitrile
(ACN) and proteins reduced and alkylated using dithio-
threitol and iodoacetamide. Gels were washed with ABC/
ABC-ACN buffer, followed by in-gel trypsin digestions and
LC-MS/MS measurements [20]. Proteins were identified
by searching the MS/MS spectra (using MaxQuant/An-
dromeda [21, 22]) against G. m. morsitans and T. brucei
databases (downloaded from UniProt), a decoy database
(constructed by reversing all the protein sequences) and a

database of common contaminants (available from Max-
Quant). MaxQuant search parameters included fixed car-
bamidomethylation (C), oxidation (M), acetylation and
deamidation (N and Q). Two peptides (at least one
unique and unmodified) matching the same protein were
required for protein identification at a maximum false dis-
covery rate (FDR) of ≤ 0.01. The unique identifiers of the
proteins downloaded from the UniProt databases were
used to identify and classify the LC-MS/MS peptides as
specific to the host (G. m. morsitans) and the parasite (T.
b. brucei). LC-MS/MS peptide hits to the decoy database
and hits with modified peptides only were deleted from
the final list of protein groups.

Protein quantification and normalization
Unique and ‘razor’ (non-unique) peptides were used for
peptide assignments and protein quantification [21, 23].
For each of the above-described five gel fractions, peptides
were matched across different MS/MS runs based on
mass and retention time (‘match between runs’ of 2 min).
Label-free quantification (LFQ) was enabled. To minimize
technical variations and to easily compare abundances of
the same proteins (parasitized vs unparasitized), Log10
normalized LFQ was used across the biological triplicates.
To compare levels of different proteins from the same
samples (parasitized and unparasitized), Log10 iBAQ
(intensity-based absolute quantitation) was used [24]. To
determine up- and downregulated proteins (parasitized vs
unparasitized SGs), t-tests were performed on Log10 LFQ
using the MaxQuant’s Perseus module. Proteins were
considered to be up- or downregulated when their Log10
iBAQ ratios (parasitized vs unparasitized) were larger or
smaller than zero, respectively, and significantly upregu-
lated when the FDR was ≤ 0.05.

Gene ontology (GO) annotations and PPI network
analyses of upregulated SG proteins
Blast2GO v. 3.2 [25] was used to classify the identified
proteins along three biological aspects, i.e. biological
process (BP), molecular function (MF) and cellular com-
ponent (CC) Gene Ontology (GO) terms. It should be
noted that the GO terms are descriptions of the different
protein functional classes and how they relate to each
other. To provide a broader overview of the ontologies,
the GO classes were grouped into GO-slim terms using
CateGOrizer [26]. To correctly place the significantly up-
regulated proteins within signaling pathways and net-
works, computational predictions of protein-protein
interactions (PPIs) were inferred using interolog mapping
[27]. For this, human orthologs to the identified G. m.
morsitans proteins were obtained from Ensembl [28] and
used to generate an exhaustive list of possible interacting
protein combinations using custom in-house Python
scripts. Putative interactions for these combinations were
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then determined using FpClass [29] (probability ≥ 0.2) and
mapped back onto the SG protein datasets obtained from
the above-mentioned LC-MS/MS measurements. The
resulting significant interactome was rendered in Cytos-
cape v3.30 [30].

Results
Parasitized SG proteome of G. m. morsitans
Analysis of the LC-MS/MS data resulted in 5469 and
4366 total and unique peptides, respectively. These pep-
tides mapped to 874 protein groups. Removal of the
common contaminants, applying extra filter steps such
as removing single peptide hits (thereby decreasing FDR
to below 0.01) and hits to the decoy database resulted in
523 non-redundant (nr) protein groups (Additional file
1: Table S1). Of these, 363 protein groups had specific
peptide hits to the tsetse vector (G. m. morsitans) proteins
(Additional file 1: Table S2) and 158 protein groups had
specific peptide hits to the parasite (T. b. brucei) proteins
(Additional file 1: Table S3). We also obtained peptide hits
to four proteins specific to the bacterial endosymbionts
Wigglesworthia glossinidia (n = 3) and Sodalis glossinidius
(n = 1) (Additional file 1: Table S4). These symbiont

proteins have been reported in the genome of G. m.
morsitans [14]. It should be noted that there were no host
and/or parasite and/or symbiont proteins that grouped
together in one protein group. Figure 1 shows the abun-
dance distribution of the proteins identified in parasitized
SGs compared to unparasitized SGs.
Table 1 presents the topmost abundant 25 proteins,

amongst which were the following blood feeding-associated
proteins: tsetse salivary gland proteins-1 & 2 (Tsal1/2),
tsetse salivary growth factors-1 & 2 (TSGF-1/2), salivary
antigen-5-protein (TAg5), 5′-nucleotidase-related saliva
protein (5′Nuc), adenine deaminase (ADA) and 5′-nucleo-
tidase-related SG protein-3 (Sgp3). Also abundant were
proteins related to cellular proliferation/differentiation
(adenosine deaminase-related growth factors, muscle LIM
protein at 84B), cytoskeletal proteins of the actin and
myosin families, lectins, molecular chaperones (e.g. 14-
3-3 protein zeta family chaperones) and enzymes (e.g.
trehalose-6-phosphate synthase, isovaleryl-CoA dehydro-
genase, and aspartate aminotransferase).
Amongst the least abundant proteins that we identi-

fied included dihydrolipoamide transacylase α-ketoacid
dehydrogenase (DBT) complex proteins (for amino acid

Fig. 1 Distribution of proteins in parasitized G. m. morsitans SG proteome. Scatter plot distribution of the protein expression measurements for
the identified G. m. morsitans proteins (red; n = 361), Trypanosoma proteins (green; n = 158) and bacterial endosymbiont proteins (purple; n = 4).
Selections of the most notable proteins are named in the figure. See text for abbreviations
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Table 1 Annotations of the most abundant host proteins detected in Glossina m. morsitans SGs. Proteins are listed from the most
abundant in descending order

UniProt
ID

Protein name Mol. weight
(kDa)

Sequence
coverage (%)

Peptides Log10 iBAQ -Log t-test
(P-value)

t-test ratios (infected
vs unparasitized)

Description/functional
roles in insects

D3TMW5 Tsetse salivary gland
protein 2

43.955 87.9 50 [2] 9.48 2.67 -0.53 (↓) Blood-feeding; immunogenic

D3TLK6 Tsetse salivary gland
growth factor-1

56.59 78.9 66 [5] 9.46 3.60 -0.49 (↓) Blood-feeding and
anti-haemostasis

D3TQL1 Salivary antigen 5
variant

28.925 78.4 32 [18] 9.36 3.18 -0.69 (↓) Blood-feeding and other
extensive physiological roles

Q9NBA5 Tsetse salivary
gland protein 1

45.613 87.0 45 [20] 9.21 2.16 -0.58 (↓) Blood-feeding; immunogenic

D3TRV7 5′-nucleotidase-related
(5′Nuc) saliva protein

62.064 67.2 37 [37] 8.80 3.06 -0.58 (↓) Blood-feeding; downregulated
in parasitized flies

D3TQW4 Adenosine
deaminase-related
growth factor C

62.2 65.6 39 [32] 8.73 1.96 -0.38 (↓) Cell proliferation;
non-immunogenic

Q9NBA4 Tsetse salivary gland
protein 2

44.001 84.5 48 [9] 8.71 1.88 -0.52 (↓) Involved in blood-feeding;
immunogenic

D3TPT6 Actin 87E 41.831 72.1 25 [1] 8.65 0.21 0.10 (↑) Overexpressed in
hytrosavirus-infected tsetse

D3TKU2 Adenine deaminase 24.14 46.7 20 [2] 8.48 3.01 -0.47 (↓) Blood-feeding; vector
competence; cellular proliferation

D3TKU0 5′nucleotidase 100.2 27.7 30 [30] 8.45 1.42 -0.44 (↓) Blood-feeding; downregulated
in parasite-infected flies

Q9U7C5 Tsetse salivary gland
growth factor-2

58.222 57.1 40 [40] 8.40 2.09 -0.54 (↓) Blood-feeding and
antihaemostasis;
non-immunogenic

D3TR78 Lectin 19.762 63.3 16 [16] 8.39 2.09 -0.36 (↓) Influence trypanosome
establishment and maturation

D3TPN5 Arginine kinase 40.029 65.4 26 [25] 8.04 1.05 0.19 (↑) Abundantly expressed in
silkworms; insect homeostasis

Q9U7C6 Tsetse salivary gland
growth factor-1

56.631 76.3 63 [2] 8.02 0.44 -0.24 (↓) Blood-feeding and
antihaemostasis;
non-immunogenic

D3TQC9 Muscle LIM protein
at 84B

10.077 61.3 6 [1] 7.90 1.46 0.32 (↑) Muscle/epithelia
differentiation in Drosophila

D3TQ00 Myosin heavy chain 87.317 67.1 68 [68] 7.79 0.09 0.08 (↑) Overexpressed in
hypertrophied tsetse SG

D3TRK1 Trehalose-6-phosphate
synthase

31.361 57.2 18 [18] 7.74 2.14 -0.29 (↓) Tsetse housekeeping gene
involved in trehalose synthesis

D3TLM8 Multifunctional
chaperone (14-3-3-ζ)

28.213 59.7 13 [11] 7.69 2.64 0.36 (↑) Intracellular adaptor in
diverse biological processes

D3TRW4 ATP synthase β 54.579 64.3 21 [20] 7.62 0.70 0.20 (↑) Ion transporter

D3TN30 Cytochrome c2 11.768 54.6 7 [7] 7.62 1.13 0.29 (↑) Essential mitochondrial
respiratory chain component

D3TR28 Calponin 20.152 81.5 15 [15] 7.60 0.05 0.01 (↑) Ca2+-binding protein; associated
with wound-healing

D3TLI1 Troponin I 24.523 36.1 9 [9] 7.52 0.28 0.12 (↑) An actin-binding protein

D3TQ27 Cofilin actin
depolymerizing
factor/Cofilin)

17.167 73.0 12 [12] 7.47 2.99 0.48 (↑) Control of actin assembly
in cells

D3TNV8 Elongation factor 1α 50.403 60.9 18 [13] 7.46 0.79 -0.15 (↓) Translation elongation

D3TQW6 Salivary secreted
adenosine

41.221 29.2 20 [2] 7.46 1.13 -1.96 (↓) Non-immunogenic ADGF
(also known as ADGF-3)

Except salivary secreted adenosine (significantly downregulated), all the other proteins shown in this table were insignificantly upregulated (n = 10) or
downregulated (n = 15) in parasitized SGs compared to the unparasitized GGs. Upregulated and downregulated proteins are indicated by upward (↑) and
downward (↓) arrows, respectively. The unique peptides for each of the proteins listed in the table are shown in square brackets in column 5
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metabolism), GTP-binding proteins, Ras-related protein
and clathrin adaptor complex proteins (for endocytotic
trafficking), 26S proteasome regulatory complex proteins
(for protein turnover), bifunctional ATP/sulfurylase-
adenosine 5′-phosphosulfate (APS) kinase (for uptake/
assimilation of inorganic sulphate) and translocon-
associated (TRAP) complex proteins (for endoplasmic
reticulum (ER)-targeting of nascent polypeptides) (see
Additional file 1: Table S2).
The parasitisation of G. m. morsitans SGs appears not

to have affected the expression of at least four host pro-
teins, including bifunctional methylene-tetrahydrofolate
dehydrogenase (MTHF-folD) (for thymidylate/methio-
nine/purine synthesis) and 25-/28-kDa glutathione S-
transferase 1 (GST1) proteins (for detoxification and lipo-
philic compound transport) (Additional file 1: Table S8).

Preferentially expressed proteins in parasitized SGs and T.
b. brucei-induced changes
Compared to the unparasitized SGs, 276G. m. morsitans
proteins were found to be upregulated in the parasitized
SGs (Table S5); of these 32 proteins were significantly
upregulated (Table 2). Topmost of the upregulated
proteins included Ca2+/calmodulin-dependent protein
kinase (CaMK), tetraspanin 42Ed (Tsp42Ed), β-integrin,
stress-associated ER protein-2 (Serp-2), small ubiquitin-
related modifier-3 (SUMO), a homolog to uracil-DNA
degrading factor-like (UDE) protein and various sub-
units of the vacuolar ATPases and chaperonin containing
t-complex polypeptide-1 (TcP-1). Others included amino
acid metabolism-related proteins such as methylglutaconyl-
CoA hydratase (AUH), glutamine synthetase (GS), δ-1-
pyrroline-5-carboxylate dehydrogenase (P5CDH), aspartate
aminotransferase (AspAT) and isovaleryl-CoA dehydro-
genase (IVD).
Several proteins associated with the ubiquitin-proteasome

system (UPS) were also upregulated (Additional file 1:
Tables S5 and S6), including ubiquitin C-terminal
hydrolase (uCHL), ubiquitin-40S ribosomal protein S27a
fusion protein (RpS27A), ubiquitin activating enzyme
(uBA1), ubiquitin-protein ligase (E3) and various subunits
of the proteasome regulatory complex proteins α-/β-types
(PSMA/PSMB). According to our protein identification
criteria, the repertoire of the downregulated proteins did
not have any UPS-associated proteins.
Nine proteins known to be involved in Glossina immu-

nity were upregulated. Among these were thioredoxin
peroxidases (TrxP), alkyl hydroperoxide reductase (AhpC),
Serp-2, cathepsin B-like cysteine proteinase (CatB), a
truncated nitric oxide synthase (NOS) and transferrin. Of
these, only Serp-2 and CatB were significantly upregulated
(Additional file 1: Tables S5 and S6). Other putative
immunity-related proteins included integrin-β, Tsp42Ed
and adaptor protein downstream of receptor kinase (Drk),

all of which were significantly upregulated. Top BLASTp
(bitscore >75; E-value ≤1.0E-4) of these immunity-related
proteins against the Insect Innate Immunity Database (IID)
v 2.2.26 [31] resulted in significant homologies to immu-
nity proteins that have been reported in the Acyrthosiphon
pisum (pea aphid), Drosophila melanogaster (common
fruit fly), Apis mellifera (western honeybee) and Anopheles
gambiae (malaria mosquito) (Table 3).

Gene ontology (GO) and PPI network analyses of
parasitized SGs during T. b. brucei infection
All of the significantly upregulated proteins were asso-
ciated with at least one GO term for a total of 9323 term
occurrences. Using the CateGOrizer, the GO terms were
trimmed down and grouped into 127 Go-Slim terms
associated with biological processes (BP; 55.1 %), mole-
cular functions (MF; 25.9 %) and cellular components
(CC; 19 %) ontologies (Fig. 2). Proteins involved in meta-
bolism and cell- or organelle reorganization were present
amongst the key BP ontologies (Additional file 1: Table
S9), while the majority of MF ontologies represented
proteins associated with catalytic, binding and hydrolase
activities (Additional file 1: Table S10). Topmost in the
CC ontology were proteins localized in the cellular,
intracellular and cytoplasmic compartments of the SGs
(Additional file 1: Table S11).
The predictions of protein-protein interaction network

of the upregulated host proteins resulted in 10,861 puta-
tive interacting protein pairs, of which 225 pairs had
significant interacting probabilities (Additional file 1:
Table S12). A single high-scoring network was obtained
consisting of 88 nodes, a clustering coefficient of 0.107
and an average number of neighbours of 5.0 (Fig. 3).
Eighteen of the significantly upregulated proteins formed
nine of the main PPI network hubs (Fig. 3). Seven of
these proteins formed network nodes with the most
edges including SUMO, TcP-1s, mitochondrial NADH-
ubiquinone oxidoreductase (nuo-24), V-ATPase-D, Drk
and GS.

Expression of abundant proteins is downregulated in
parasitized SGs
A total of 81 proteins were downregulated in parasitized
SGs. However, only salivary secreted adenosine (ADA;
previously annotated as adenosine deaminase-related
growth factor-3; ADGF-3) was significantly downregu-
lated (Additional file 1: Table S7). Despite their high
abundance, the expression patterns of TAg5, 5′-Nuc,
Tsal1/2, TSGF-1/2, ADA, ADGF-C, Spg3 and TRAP was
downregulated. Further, > 20 % (n = 18) of the downreg-
ulated proteins were ribosomal protein (RP) components
(Additional file 1: Table S7), including several proteins
of the 40S and 60S subunits, glycine/glutamate-rich pro-
tein (Sgp1), proline-rich protein (Sgp2), mu-clathrin
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Table 2 Annotation of 32 Glossina-specific proteins significantly upregulated in parasitized SG proteome of Glossina m. morsitans
compared to the unparasitized SG proteome

UniProt
ID

Protein name LC-MS/MS measurements/quantification Protein descriptions/functional
annotationMol. weight

(kDa)
Sequence
coverage (%)

Unique
peptides

-Log t-test
(P-value)

D3TQ33 Ca2+/calmodulin-dependent
protein kinase

24.064 58.1 11 5.14 Calcyphosin-like protein; regulation of ion
transport

D3TMA1 Tetraspanin 42Ed 25.291 13.5 3 3.98 Acts as scaffold/anchor to specific cell membranes

D3TQS8 Integrin beta-PS 27.471 24.5 5 5.64 IGF-like repeat protein; cell adhesion to
extracellular matrix proteins

H9TZT6 Stress-associated ER
protein-2

42.284 17.6 4 4.21 ER stress

D3TQD5 Small ubiquitin-related
modifier 3

10.328 35.2 3 1.49 Essential regulator of cellular processes
(e.g. survival of stressed cells).

D3TMM3 Vacuolar H+−ATPase v0
sector subunit D

39.805 19.1 4 3.60 Cation trans-epithelia transport (SGs, labial glands;
midguts; sensory sensilla)

D3TMK9 Chaperonin containing
t-complex polypeptide-1ζ

58.314 13.7 5 4.20 TcP-1 family members are involved in the
prevention of the aggregation of proteins
unfolded by stress, or newly synthesized proteins

D3TM06 Chaperonin containing
t-complex polypeptide-1θ

60.02 11.8 5 5.57

D3TLV7 Chaperonin containing
t-complex polypeptide-1ζ

59.292 10.9 4 5.46

D3TLP9 Chaperonin containing
t-complex polypeptide-1α

59.192 5.0 3 1.21

D3TMQ1 Mitochondrial
methylglutaconyl-CoA
hydratase

31.879 19.1 4 4.18 Metabolism of branched-chain amino acids
(e.g. leucine, isoleucine and valine)

D3TLC7 Isovaleryl-CoA
dehydrogenase

46.634 5.7 2 3.84

D3TNK0 Hypothetical conserved
protein

37.228 10.8 4 4.70 70 % homologous to D. melanogaster uracil-DNA
degrading factor-like protein (UDE); conformational
integrity of DNA-protein complex machinery

D3TPX7 α-carboxylesterase αE7 65.575 21.8 11 1.44 Lipid metabolism in insects

D3TMQ8 24-kDa mitochondrial
glutamine synthetase

44.028 4.2 2 2.03 Metabolism of glutamate (important product of
ammonia detoxification)

D3TLS2 Mitochondrial
NADH-ubiquinone
oxidoreductase

26.829 13.2 3 3.08 Mitochondrial electron transport/transfer

D3TRJ5 Cytochrome b-c1
complex-7

13.551 28.8 3 0.92

D3TPP1 Downstream of receptor
kinase

24.434 13.7 3 3.19 Essential roles in immune responses

D3TMW2 Proteasome subunit
beta type-4

30.601 7.7 2 4.76 Associates with polo-like kinase; increase 20S
proteasome to proteolytic activity

D3TPR8 Translin 28.855 14.4 3 3.66 Various biological roles (e.g. control and
distribution of nucleic acid metabolism)

D3TLJ6 Mitochondrial prohibitin-2 36.64 9.7 3 1.01 Conserved protein involved in biogenesis
and maintenance of mitochondria

D3TMK2 Ras-related small GTPase,
rho type

21.289 12.0 2 5.47 Molecular switches that govern various
important cellular functions

D3TRZ7 Aspartate aminotransferase 45.969 21.9 6 1.10 A key enzyme in amino acid metabolism

D3TRZ8 Gamma-glutamyl hydrolase 43.565 4.5 2 5.92 Folate metabolism

D3TPR2 Myosin essential light chain 16.572 27.2 3 0.93 A structural component of the actomyosin
cross-bridge

D3TRA4 Transaldolase 37.217 20.5 5 0.95 Provides a link between glycolytic and
pentose phosphate pathways
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adaptor complex proteins, subunits of the vesicle coat
complex II (COPII), ADGF-C and lectins.

Expression of metacyclic trypomastigote-specific proteins
Table 4 presents major clusters of trypanosome-specific
proteins identified in this study. Notable abundant pro-
teins included the glycosylphosphatidyl inositol (GPI)-
anchored proteins bloodstream stage alanine-rich pro-
teins (BARPs) and variant/invariant surface glycoproteins
(VSGs/ISGs), calpains/small kinetoplastid calpain-related
proteins (CALPs/SKCRPs), retrotransposon hot spot pro-
teins (RHS), kinetoplastid membrane protein-11 (KMP-
11), tryparedoxins (TXNs) and membrane transporters.
We also identified several trypanosome-specific RPs, with
an over-representation of the 40S RP compared to the
60S RP families (Table 4). Also identified were paraf-
lagellar rod proteins (PFRA and PFRC), flagellar attach-
ment zone protein 1 (FAZ1), flagellar calcium-binding
protein (Tb-44A) and C-terminal motor kinesin (Table 4).
Here, it is important to note that FAZ and C-terminal
motor kinesin are important in the adjustments of the
flagellar positions/sizes [32], depending on the parasite
life-cycle stages.
Twenty-five of the parasite protein groups were of un-

known functions (denoted as ‘uncharacterized proteins’
in Additional file 1: Table S3). Top-BLASTp analyses
(bitscore >100; E-value ≤ 1.0E-6) of these proteins against
the nr-NCBI protein database yielded eight hits to proteins
with known functions in flagellate protozoans (Table 5).
Six of these were hits to proteins reported in the recently
sequenced genome of the African crocodilian trypano-
some, T. grayi (vectored by G. palpalis), which is more
closely related to T. cruzi than T. brucei [33]. Other hom-
ologies included proteins associated with antigenic varia-
tions (Pro-Glu/polymorphic GC-rich repeat (PE-PGRS)
protein [34] and acyl-CoA-binding protein [35]), parasite
proliferation (auxin-induced in root cultures 9 (AIR9)-like

protein [36]) and the chemosensational intraflagellar trans-
port, osmotic avoidance abnormal protei3 (OSM3)-like
kinesin [37].

Discussion
A robust immune system in tsetse midguts makes the flies
naturally Trypanosoma-refractory [38]. Following an in-
fected blood meal, the absolute parasite numbers drastically
drop at the midgut barrier (days 1–3), then proliferates (day
4) and stably colonizes the midguts where the established
population reaches approximately 5 × 105 trypanosomes [8,
39]. Trypanosomes then migrate to the ectoperitrophic
space (day 5) [39], congregate within the proventriculus
(days 6–8) and subsequently colonize and complete meta-
cyclogenesis in the SGs (days 12–18) [8]. The MT-parasites
then detach from the SG epithelium into the lumen and
are uniquely adapted to infect and survive in susceptible
mammalian host [32]. The entire process takes appro-
ximately 3–5 weeks [40], implying that at the time of the
SG dissections (i.e. 28 dpi), MT-parasites were continuously
produced.

Trypanosoma b. brucei suppresses expression of abundant
host proteins to promote MT-parasite transmission
Previous transcriptomic analyses on G. m. morsitans
SGs reported seven protein families: (i) Tsal1/2; (ii) 5′
Nuc/apyrase; (iii) ADA; (iv) TAg5 family-related proteins;
(v) Glycine-glutamate (GE)-rich proteins; (vi) C-type
lectins; and (vii) housekeeping genes [13, 41]. We identi-
fied these protein families with similar abundance profiles
as reported across different tsetse species [11, 41–46].
Among these, the expression of tag5, tsal1/2, tsgf1/2,
5′-nuc and spg3 genes were previously reported to be
decreased in parasitized flies [11]; these previous results
agree with our results (see Table 1 and Additional file 1:
Table S7). We however did not detect the anticoagulant
tsetse thrombin inhibitor (TTI), echoing reports by

Table 2 Annotation of 32 Glossina-specific proteins significantly upregulated in parasitized SG proteome of Glossina m. morsitans
compared to the unparasitized SG proteome (Continued)

D3TLJ8 Dihydrolipoamide
S-acetyltransferase

55.469 8.2 3 1.14 Provides a link between glycolytic and TCA cycles

D3TNC5 Retrotransposon protein 28.099 17.4 3 2.87 Mobile element that transpose by reverse
transcription

D3TP54 Actin-related protein
2/3 complex-3

20.502 15.8 2 3.31 Induction of actin polymerization during
pathogen infection

D3TQ55 Hypothetical secreted
protein

24.355 38 2 2.60 Homologous (97 %) to salivary secreted mucin;
tsetse mouthpart lubricant

Q0QHK6 δ-1-pyrroline-5-carboxylate
dehydrogenase

58.318 26.3 10 2.61 Amino acid (glutamate and proline) metabolism

D3TRY4 Cathepsin B-like cysteine
proteinase

38.221 14.1 4 3.37 SG cell autophagic cell death
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Table 3 Top BLASTp scores of 18 immunity proteins detected in parasitized SGs of G. m. morsitans

UniProt ID Protein name Best Blast Match (description of homologies) Pathway Processes and roles in insect
immunityBest match

(species name)
% identity Accession No. Bits

score
E-value

Q8MX87 Transferrin Transferrin-1;
(D. melanogaster)

63 AAF48831.1 827 0.0 Cell cycle
regulation

Pathogen-induced; iron
metabolism; cellular
homeostasis (prevents hydroxyl
radical toxicity)

Q8IS37 Nitric oxide
synthase

Nitric oxide
synthase; (A. pisum)

48 XP_001946209.1 137 1e-34 IMD Response to production of NO;
inactivation of critical enzymes
in energy metabolism and
growth of parasites

H9TZT6b Stress-associated
ER protein-2

Serine protease
inhibitor-4;
(D. melanogaster)

43 NP_724511.2 310 3e-86 Toll Pathogen recognition and
apoptosis (activation of
Toll pathway). Serpins are
determinants for Plasmodium
susceptibility and transmission
in mosquitoes

Q2PQQ0 Serine protease
inhibitor-4

52 382 1e-107

Q694B0 Thioredoxin
peroxidase-3

Thioredoxin-dependent
peroxidase-1;
(An. gambiae)

73 XP_310704.3 295 6e-82 Humoral
response

Thioredoxin redox system
provides primary defence lines
in insects (oxidative stress);
increase in oxidative stress limits
parasite maturation; oxidative
stress plays important roles in
refractoriness of tsetse to
trypanosome infection

D3TN04 Alkyl hydroperoxide
reductase

74 298 1e-82

Q694A5 Thioredoxin
peroxidase-1

Thioredoxin-dependent
peroxidase-2;
(An. gambiae)

76 XP_308081.2 315 4e-88

Q694A6 Thioredoxin
peroxidase-2

Thioredoxin-dependent
peroxidase-3;
(An. gambiae)

73 XP_308336.4 341 1e-95

D3TRY4b Cathepsin B-like
cysteine protease

Cathepsin L;
(D. melanogaster)

24 AAF51924.1 59 2e-10 Cellular
response

Upregulated in immune-
stimulated Drosophila and G. m.
morsitans (phagocytosis-
mediated immunity)

D3TPP1a,b Downstream of
receptor kinase

Plenty of SH3-domain
protein (POSH);
(D. melanogaster)

31 NP_523776.1 89.7 7e-08 Toll; IMD;
signalling

DrKs are important downstream
regulator of tumour necrosis
factor/ c-Jun N-terminal kinase
(TNF/JNK) signaling. JNK
activation and Relish induction
are delayed and sustained in
POSH-deficient flies

D3TQS8a,b Integrin-β No hits found Cellular
response

Tetraspanins regulate integrin
activity; provides scaffold for
phagocytosis-mediated insect
immunity

D3TMA1a,b Tetraspanin 42Ed No hits found

D3TMK2b Ras-related small
GTPase rho type

Ras-related C3 botulinum
toxin substrate-1; (D. melanogaster)

70 NP_476950.1 271 9e-75 Cell cycle
regulation

Rac/Rab GTPases are required
for proper encapsulation
(phagocytosis-mediated
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Table 3 Top BLASTp scores of 18 immunity proteins detected in parasitized SGs of G. m. morsitans (Continued)

immunity); Rac1/2 GTPases
are necessary for immune
surveillance against pathogens
and parasites in Drosophila

D3TMD3 Rab protein-14
(Rab-14)

27 67.8 2e-13

D3TRT5 Rab protein-5
(Rab-5)

25 60.1 5e-11

D3TSA8 Rab protein-7
(Rab-7)

Ras-related C3
botulinum toxin
substrate-2;
(D. melanogaster)

27 NP_648121.1 66.2 7e-13

D3TP17 Ras-related
GTPase

Ras-related protein;
(A. mellifera)

25 XP_623951.1 66.6 5e-13

D3TQN6 Ubiquitin protein
ligase (also known as E3)

Bendless/ ubiquitin
conjugating enzyme
13; (D. melanogaster)

33 ACZ95287.1 100 3e-23 Toll; IMD;
signaling

Humoral immune response.
Bendless mutants have
inefficient IMD pathway
induction

Protein sequences were blasted against the Insect Innate Immunity Database (IIID). Sixteen of these proteins have been reported to be upregulated in the midguts, fat bodies and SGs of different trypanosome-infected tsetse
species. The remaining three proteins aare implicated in the immunity of other insects (see citations in the manuscript text). All the 18 proteins were upregulated in parasitized SGs compared to unparasitized SGs; six proteins
bwere significantly upregulated
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Capello et al. [47] and Telleria et al. [13], who noted
moderate down-regulation of TTI in parasitized SGs. It is
notable that the differentially modulated proteins are
involved in key processes such as blood feeding which,
despite their high abundance, were downregulated in the
parasitized SGs compared to unparasitized SGs (Table 1).
Reduction in the expression of these proteins could
reduce fly feeding performance, which in turn increases
tsetse biting frequencies to achieve full engorgement [11].
One could conclude that an increase in biting frequencies
promotes the competence of the tsetse vector in trypa-
nosome transmission.

Trypanosoma b. brucei induces upregulation of host
proteins essential for parasite differentiation and survival
Cellular proliferation and homeostasis are important con-
ditions for parasite survival. We identified several proteins,
whose upregulation may be advantageous to T. b. brucei
(see Table 2). For instance, CaMK is one of the most
important regulators of stage-specific morphological diffe-
rentiation of Trypanosoma, Leishmania and Plasmodium
parasites [48]. Upregulation of Serp-2 is also notable owing
to its central roles in ER stress, an important cue for
Plasmodium parasites to switch to transmissible sexual
stages in mosquitoes [49]. Further, one of the parasitic
survival tactics is to alter intra-cellular locations, binding
partners and/or functions of specific proteins and anta-
gonizing other protein modifications. One of the quickest

ways to achieve these changes is via sumoylation [50, 51], a
posttranslational modification mediated by protein SUMO.
Notable also is the upregulation of proteins in the family of
the ubiquitous and highly conserved V-ATPases; at least
eight different V-ATPase subunits were variously upregu-
lated in parasitized SGs (see Additional file 1: Table S5).
Mosquito cells over-expressing V-ATPases are reported to
be preferentially invaded by Plasmodium parasites [52];
perhaps trypanosomes has a similar invasion preference
for V-ATPase expression in SGs. Homeostasis-associated
proteins such as ArgK are also important for parasite
survival; dsRNA-mediated silencing of ArgK significantly
reduced Plasmodium parasite loads in Anopheles gambiae
[53]. In our study, ArgK was not only the most abundant
protein (Table 1), but also amongst the upregulated pro-
teins (see Additional file 1: Table S5).

Glossina m. morsitans overexpresses immunity-related
proteins in responses to SG parasitisation
Overcoming host immune responses is one of the most
challenging parts of trypanosome life-cycle because im-
munity counter-defence provides a nutritious and equable
environment. Lehane et al. [54] reported that out of the 68
putative immunity-related genes, 15 genes were actually
overexpressed in the midguts of T. b. brucei-infected G. m.
morsitans. Midgut expression of 12 of the 15 genes in T. b.
gambiense-infected G. p. gambiensis was recently quantified
by Hamidou et al. [55], who noted a time-dependent and

Fig. 2 GO-term associations of significantly upregulated proteins in parasitized G. m. morsitans SG proteome. The GO classes were grouped into 127
Go-Slim terms associated with biological processes (55.1 %), molecular functions (25.9 %) and cellular component (19 %) ontologies
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variable high expression of five out of the 12 genes. Eight of
these previously reported immune-related proteins were
upregulated in parasitized SGs (see Table 3), a result in
agreement with another transcriptome-based study on
parasitized SGs of G. m. morsitans [13]. The only exemp-
tion was that only Serp-2 and CatB were significantly
upregulated in parasitized SGs; CatB was not reported by
Hamidou et al., [55]. These differences potentially indicate
tissue-specific differential expression patterns of these pro-
teins, for instance in the midgut versus the SGs.
In addition to the above-mentioned previously reported

tsetse immunity genes, we also identified other proteins
implicated in the immunity of other insects (see Table 3).
These included Rac/Rab GTPases (for immune surveil-
lance against pathogens and parasites in Drosophila [56]),
ubiquitin protein ligase (for Drosophila humoral systemic
immune response [57]), a homolog to the Pro-Glu/poly-
morphic GC-rich repeat (PE-PGRS) protein (for antigenic
variations in intracellular parasites [34]), Tsp42Ed and
integrins (for activation of immune signaling Plasmodium-
infected mosquitoes [53, 58]) and Drk (implicated in Dros-
ophila hemocyte immunity [59]). Finally, loosely associated
to insect immunity is amino acid metabolism; some of the
upregulated proteins we identified are related to amino
acid metabolism (see Table 1). However, a link between

upregulation of proteins involved in amino acid metabo-
lism and parasite infection in the SGs is unclear. This not-
withstanding, it is rather obvious that following a blood
meal, increase in amino acid metabolism is important for
insect immune responses (via activation of proteolytic
immunity cascades such as prophenoloxidase) and deto-
xification (removal of amino acid metabolites). Although
likely to occur in the hemolymph, these processes are
reportedly present in the SGs of locusts, leafhoppers and
aphids [60]. Similar scenario cannot be totally ruled out in
the case of tsetse immune responses to trypanosome infec-
tions in the SGs.

Trypanosoma b. brucei controls the efficiency of protein
turnover in the SGs of T. b. brucei
It is notable that > 20 % of the downregulated host-
specific proteins in parasitized SGs were RPs. This modu-
lation of RP expression is in agreement with recent
transcriptome-based studies in the differential expression
of the RP genes in T. b. gambiense-infected G. p. gambien-
sis midguts [61]. Downregulation of RPs implicates
protein translational regulation to prepare mammalian-
infective MT-parasites, or reflects the fly’s adaptive re-
sponse to SG parasitisation. Notably, the downregulation
of RPs appears to be accompanied by upregulation of at

Fig. 3 The most significant PPI network model for the upregulated proteins in parasitized SG proteome of G. m. morsitans. Highlighted are the
main hubs formed by the proteins that were found to be significantly upregulated in the parasitized SGs. The PPI was visualized in Cytoscape.
The significantly upregulated proteins SUMO, TcP-1, nuo-24, V-ATPase-D, Drk and GS occupy central positions in the PPI network
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Table 4 Major clusters of T. brucei specific proteins identified in this study

Protein family UniProt
ID

Protein name Functional roles

Variant/invariant surface glycoproteins (VSG/ISG) Q26842 VSG VSGs/ISGs are activated in the SGs; involved in
immune evasion/resistance

M4TB38 VSG 1228

M4SU87 VSG 725

Q57VX7 75 kDa ISG

B2ZWC6 ISG

Retrotransposon hot spot protein (RHS) multigene
family

Q8T9M3 RHS1a RHSs are diverse and potentially rapidly evolving nuclear
and perinuclear proteins in T. brucei. RHSs are located in
the polymorphic subtelomic regions and may therefore
confer selective advantages for the evasion of host
immune responses through antigenic variations

Q8T9M7 RHS2a

Q8WPS8 H25N7.12
protein (RHS4)

Q8T9M4 RHS6a

D0A6L8 Putative RHS

D7SGA2 RHS4

Q584N8 Putative RHS

Q585G9 RHS5a

Kinetoplastid calpain/small kinetoplastid calpain-related
protein (CALP/SKCRP) protein family

Q4GZ11 CALP1.1 CALPs are well-conserved and ubiquitously expressed
in tissue-specific isoforms. They are involved in virulence
and various physiological (cytoskeleton rearrangement,
proliferation, cellular differentiation, interaction with
host structures)

C9ZIE8 CALP1.2

Q57WJ7 CALP5.5 V

C9ZT01 CALP7.1

Q387E1 CALP11.6

Q4GZ06 SKCRP1.4

C9ZIF2 SKCRP1.5

C9ZIF6 SKCRP1.7

Paraflagellar/paraxial
rod (PRF) protein family

C9ZVV0 69 kDa PFR-A 69-kDa and 73-kDa proteins are the major structural
components of T. brucei flagellar; Important for
parasite motilityC9ZLC1 73 kDa PFR-C

Peroxiredoxin alkyl hydroperoxide reductase C (AhpC)-
type family

C9ZL57 Tryparedoxin TXN/TXNPx are highly abundant in all life stages of
T. brucei; Important in trypanosome metabolism
(nucleotide synthesis); and oxidative defence
(detoxification of hyperoxides)

C9ZUX7 Tryparedoxin
peroxidase

C9ZXT5 Tryparedoxin
peroxidase

Bloodstream stage alanine-rich protein (BARP) C9ZZP8 BARP BARPs are GPI-anchored proteins, which are important for
cytokinesis; BARPs are proposed to form stage-specific
coat for epimastigote forms of T. bruceiO60946 BARP

Q38CW0 BARP

Q38CW1 BARP

C9ZZQ0 BARP

Molecular chaperones; heat shock proteins (Hsp) family C9ZL02 Putative Hsp20 Molecular chaperones are central players in various
physiological processes such as protein folding and
in maintenance of cellular homeostasis/survival under
optimal growth conditions

D0A349 Mitochondrial
Hsp60

C9ZR44 Mitochondrial
Hsp70

Q383E5 Hsp70

D0A4N5 Hsp83

D0A590 Putative Hsp

Membrane transporters Q388Z2 Plasma membrane
ATPase (PMA1)

Involved in salvage of nutrients and other metabolites
from the host

C9ZK10 ATP synthase subunit
beta (ATP5B)

Kariithi et al. Parasites & Vectors  (2016) 9:424 Page 13 of 19



least 17 proteins related to the UPS pathway, suggesting
that metacyclogenesis requires protein translation and/or
degradation efficiency. Moreover, the importance of pro-
tein turnover/folding/modifications during parasite infec-
tions is underscored by differential modulations of the
UDE homolog [62], TcP-1 components [63] and various
molecular chaperones identified in the current study.

Trypanosoma b. brucei induces upregulation of key
regulators (host proteins) of diverse pathways
The identification of the significantly upregulated SUMO
as one of the top interacting proteins in the predicted PPI
network (Fig. 3) is interesting given its central roles in the
regulation of various cellular processes including tran-
scription, replication, chromosome segregation and DNA

repair. SUMO is required for activation of the Ras/MAPK
pathway in Drosophila S2 cells [64]; Drk is one of the
essential components of the pathway. Additionally, the
14-3-3 protein family, which constitute a multitude of func-
tionally diverse signalling proteins related to behaviour, is
also a SUMO substrate. Sumoylation of 14-3-3 proteins
results in modulation of diverse cellular processes, inclu-
ding cell cycle regulation, metabolism control, apoptosis
and gene transcription control [65]. Furthermore, sumoy-
lation and ubiquitin-proteasome systems are known to
selectively modify the functions, sub-cellular locations and
half-life of proteins in a very specific manner to maintain
cellular homeostasis [66]. According to our PPI predictions
(see Fig. 3 and Additional file 1: Table S12) sumoylation
targets include several proteins of the TcP-1 complex,

Table 5 BLASTp similarity scores for T. b. brucei uncharacterized proteins using Phylum Euglenozoa non-redundant NCBI database

UniProt ID Length (aa) Best BLASTp match (description of homologies) Functional characterization;
signature domains/motifsHomology hits

(species name)
%
identity

Accession No. E-value Bits
score

C9ZMR8 150 Flagellar associated protein;
(T. grayi)

76 XP_009315587.1 4.00e-81 242 p25-alpha domain-protein; promote
tubulin polymerization

C9ZJQ8 1488 Pro-Glu/polymorphic GC-rich
repeat (PE-PGRS) protein;
(T. grayi)

36 XP_009311393.1 1.00e-27 121 Antigenic variations

C9ZWF1 607 Calpain-like cysteine
peptidase; (T. grayi)

66 XP_009312440.1 0.0 778 A ribonuclease inhibitor-like protein involved
in cell cycle progression in parasites

Q57XH8 459 T. brucei (s.l.)-specific protein;
(T. b. gambiense)

41 XP_011775378.1 5.00e-91 290 –

C9ZL20 483 Succinate dehydrogenase
flavoprotein subunit; (T. grayi)

57 XP_009307889.1 0.0 528 Mediates protein-protein interactions/assembly
of multi-protein complexes

C9ZU33 97 Acyl-CoA-binding protein-like
protein 3; (T. grayi)

69 XP_009316294.1 1.00e-43 142 Supply of myristoyl-CoA to the fatty acid
remodelling machinery of GPI biosynthesis
in trypanosomes; antigenic variations

Q380Y7 1004 Auxin-induced in root
cultures 9 (AIR9)-like protein;
(T. b. brucei)

98 CBY84490.1 0.0 2028 Expressed in all life-cycle stages; essential
for normal T. brucei proliferation in vitro

D0A668 462 Osmotic avoidance abnormal
protein 3 (OSM3)-like kinesin;
(T. grayi)

46 XP_009307651.1 2.00e-69 234 Intraflagellar (chemosensation) transport

Functional characterization of the proteins is detailed in the last column. All the proteins listed in this table are uncharacterized

Table 4 Major clusters of T. brucei specific proteins identified in this study (Continued)

Q581D7 Putative adenosine
transporter 1 (ENT1)

Ribosomal proteins (RPs) D0A7E1 RPS5 Involved in the regulation of protein translation

C9ZXI9 RPS7

O76223 RPS12

C9ZRH0 RPS14

D0A2S1 RPS18

C9ZZX2 RPL10a

C9ZYV4 RPL23

Functional roles were inferred from available literature. Only a selection of variant/invariant surface glycoproteins (VSGs/ISGs) is shown in this table
(see full list of the isoforms and/or variants in Additional file 1: Table S3)
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members of the 70-kDa heat shock protein family (Hsp70-
4 and Hsp70-5), translation initiation factors and several
enzymes (see Fig. 3).
On the other hand, members of the NADH-ubiquitin

oxidoreductases (in our case the nuo-24 protein; signi-
ficantly upregulated; Table 2) are important for energy
metabolism and nucleotide synthesis; these proteins are
also the initial enzymes in mitochondrial transport chain
(mtECT). In fact, mtECT-related proteins were reported
to be upregulated during the invasion of mosquito SGs by
Plasmodium parasites [67]. Following a blood meal, GS
(a key enzyme in glutamine biosynthesis) is upregulated in
mosquito midguts [68], which agrees with the results
shown in Additional file 1: Table S5. Glutamine is even-
tually used for production of chitin, which is also produced
in other tissues including the SGs. Perhaps the upregula-
tion of GS is related to chitin biosynthesis in Glossina,
requiring modulation during parasite infection as can be
observed in our PPI predictions, i.e. Serp-4 and ubiquitin-
related proteins were first neighbours of GS (see Fig. 3).
Finally, the central hub occupied by the V-ATPases in the
predicted PPI network is noteworthy because these elec-
trolyte/solute trans-epithelia transporters are critical in
saliva secretion in other insects such as the blowflies [69].
Trypanosoma. b. brucei may therefore modulate the ex-
pression of V-ATPases to facilitate saliva-mediated trans-
mission to the mammalian host, which possibly explains
the upregulation of various V-ATPases (Additional file 1:
Table S5). Taken together, the central hubs occupied by
the significantly upregulated proteins in the predicted PPI
network potentially indicate manipulations of diverse cellu-
lar processes in response to trypanosome infection. These
processes require strict control of the participating proteins
and enzymes.

Trypanosoma. b. brucei MT-parasites express specific pro-
teins in preparation to invade mammalian host
During metacyclogenesis, the MT-parasites re-acquire
the VSG/ISG coat and enter the SG lumens in prepa-
ration for invading susceptible mammalian hosts [70].
Expressions of VSG and the VSG-shielded ISGs are
activated in the SGs to mediate the parasite’s evasion
of and/or escape the immune surveillance of the host, and
successful establishment of mammalian infections [71, 72].
Trypanosomes have other VSG-shielded proteins or pro-
teins that are ‘hidden’ within the flagellar pocket, where
they mediate numerous host-parasite interactions. For
instance BARPs are predominantly used by the parasites to
attach to the SG plasma membranes and promote the
release of VSGs [32, 73]. In fact, mutations of BARPs are
reported to block cytokinesis in T. b. brucei [74]. Further,
expression site-associated gene (ESAG) proteins are widely
distributed amongst different Trypanosoma species albeit
with low expression [72, 75], probably explaining the

detection of only few ESAG variants in our study (see
Table 4 and Additional file 1: Table S3). Notably, to en-
hance adaptive immunity, T. brucei switches the expression
of VSGs with compatible ESAG variants [76]. Moreover,
the identification of members of the diverse and rapidly
evolving RHS family in our study is noteworthy (see
Table 4). Since RHS proteins are localized in polymorphic
subtelomic regions [77], they are likely to confer the MT-
parasites with selective advantages (via antigenic variations).
Additionally, detoxification is also important in parasite
metabolism, which underscores the importance of the
abundance of TXNs, members of the peroxiredoxin AhpC-
type family (Table 4). Abundant in all T. brucei life stages,
TXNS are crucial in nucleotide synthesis and adaptive de-
fence (hyperoxide detoxification) [78, 79].
KMP-11 and CALP/SKCRP are well-conserved hetero-

dimeric proteins with strict stage-specific expression
patterns in kinetoplastids [80–82]. Stebeck et al. [82]
reported that KM-11 is differentially expressed in various
trypanosome life-cycle stages. CALP/SKCRP are abun-
dantly expressed in mammalian-infective MT-parasites,
and are involved in various cellular Ca2+-regulated
processes such as signal transduction, differentiation, viru-
lence, cytoskeletal rearrangement, and protein-membrane
interactions with host structures [80, 83]. Out of the 18
(12 CALPs; six SKCRPs) family members known in T.
brucei [81], we identified eight including CAP5.5 V, a
variant of the insect stage-specific CAP5.5 (see Table 4).
Finally, one of the uncharacterized proteins that we identi-
fied (C9ZWF1; Table 5) was homologous to the T. grayi
calpain-like cysteine peptidase, an important protein in
parasite cell cycle progression [84].
The interchange between the functionally and morpho-

logically distinct forms of trypanosomatids (from epimas-
tigotes to trypomastigotes) is accompanied by efficient
regulation of gene expression, which is largely posttrans-
lational [85]. Among other strategies, this regulation can
be through the control of the expression of translation
factors; translation of RPs is reduced during differentiation
of trypanosomatids into the MT-parasites [86]. The possi-
bility of this form of translational repression partially
explains our detection of only few RPs (see Table 4), po-
tentially because the MT-parasites are essentially growth-
arrested. Our results echo studies on the on differential
expression of RPs in the closely related Chagas disease
causative agent,T. cruzi [86].
During active replication, trypanosomes heavily rely on

membrane transporters for nutrient and metabolite sal-
vage from the host. The main transporters include purine/
pyrimidine transporters (trypanosomes are incapable of de
novo purine synthesis) [87], hexose/sugar transporters
(to meet parasite’s nutritional requirements) [88], amino
acid transporters (for incorporation into proteins by the
parasite) [89, 90], aquaporins (for osmotic protection and
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metabolism) [91, 92] and fatty acids transporters (for pre-
servation of organelle vitality and expansion of vacuole
sizes to the accommodate growing parasite progenies) [93].
Trypanosoma brucei contains a repertoire of 305 trans-
porters clustered in 23 families [94]. We identified only
three transporters, all with low abundances (see Table 4).
Potentially, the growth-arrested MT-parasites may not
require expression of many transporters; expression of the
transporter genes is probably activated in the next life-cycle
stage, i.e. proliferating bloodstream forms in the mamma-
lian host.

Potential approaches to enhance trypanosome
refractoriness in tsetse
Factors such as the lack of effective vaccines, resistance
to pesticides/drugs and inefficient public health infra-
structures make African trypanosomosis increasingly
important in sub-Saharan Africa. The fact that sterile
males are still competent trypanosome vectors reduces
the efficacy of tsetse and trypanosomosis control via the
SIT programs. One of the strategies to solve this prob-
lem is to enhance the natural trypanosome refractoriness
or reduce the competence of the tsetse vector. This can
be achieved by identifying candidate genes and creating
transgenic sterile males that are incapable of transmitting
trypanosomes to mammalian hosts. Ideally, the transgenic
sterile males released into wild tsetse populations could
eventually block trypanosome transmission. This would
be important especially in the event that the areas into
which these males are released have active trypanosome
circulation.
Although a proteomic approach is far better (in pro-

tein identification and observed quantitative expression
changes) than a transcriptomic approach, the former
approach is often not precise enough to directly make
valid biological inferences, especially due to the post-
translational modifications that play important roles in
protein functions. Nevertheless, our proteomics and
pathway analyses are important milestones in the iden-
tification and characterization of SG proteins that po-
tentially contribute to the trypanosome infection status
(refractoriness) in the tsetse vector. Having confirmed
the protein abundances and expression patterns (para-
sitized vs unparasitized SGs), we are now designing bio-
assays to functionally appraise the biological
consequences (by immunoblotting, qPCR, RNAi gene
silencing) of the protein level changes of some of the
proteins identified in our proteomics data sets. After
validation, the next objective is to use modern tools
such as the piggyBac transposon or CRISPR/Cas9 sys-
tems [95], or paratransgenesis [96] to enhance trypano-
some refractoriness of the sterile males that are used in
SIT programs. Previous studies have provided proof of
principle that these methods are feasible in creation of

parasite-refractory insect vectors. For instance, using
the piggyBac system, Ito et al. [97] created Plasmo-
dium-refractory anopheline mosquitoes by over-
expressing a blood-inducible anti-plasmodium gene
(salivary gland/midgut-binding peptide 1; SM1) in a tissue-
specific manner. Recently, Gantz et al. [98] used the
CRISPR/Cas9 system to create Plasmodium-resistant
mosquitoes by expression of blood-inducible and tissue-
specific single chain variable fragment antibodies (scFvs)
against Plasmodium proteins. In the case of tsetse flies,
De Vooght et al. [96] demonstrated that transformed
Sodalis can secrete significant amounts of functional Nano-
bodies against Trypanosoma VSG epitopes. The concept of
paratransgenesis has also been demonstrated in the control
of Leishmania transmission by sand flies [99]. Taken to-
gether, our data take us a step closer towards improved
anti-vector methods against tsetse and African trypanoso-
miasis. We have made significant progress towards this
direction in that the Joint FAO/IAEA Division of Nuclear
Techniques in Food and Agriculture has brought together
research experts in different disciplines in a collaborative
coordinated research project to explore ways to enhance
trypanosome refractoriness in tsetse [2].

Conclusions
Our data suggest that T. b. brucei modifies SG protein
composition and functions (suppression of abundant SG
proteins) and induces SG cellular proliferation (upregula-
tion of immunity, stress, homeostasis and translatome-
related proteins). Further, the repertoire of T. b. brucei-
specific proteins largely consisted of proteins reminiscent
of non-replicative MT-parasites (suppression of RPs and
transporters), and proteins critical for preparing the trypo-
mastigotes for invasion and evasion of mammalian host
immune responses (over-representation of immunity,
signal transduction and virulence-related proteins). In
response to T. b. brucei infection of G. m. morsitans SGs,
divergent cellular processes appear to be manipulated via
modulations of proteins involved in various pathways,
which is accompanied by modulations of proteins involved
in the control of protein turnover. Similar to the tsetse
midgut barrier, SG micro-environment is a critical bottle-
neck with key determinants to T. b. brucei life-cycle tran-
sitions. Our proteomic data provide evidence that these
genes are not only transcribed (as evidenced by previous
transcriptome-based studies), but are also translated into
(potentially functional) proteins. These proteins, especially
the immunity-related proteins, present an attractive plat-
form to enhance trypanosome refractoriness as an anti-
vector strategy to control tsetse and African trypanoso-
mosis. However, as we have discussed above, we are aware
of the need to experimentally validate our proteomics data,
a process which is now on-going.
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Additional file 1: Table S1. 523 non-redundant protein groups identified
by LC-MS/MS. Table S2. 362 protein groups specific to the host vector.
Table S3. 158 protein groups specific to the parasite identified in parasitized
SG of G. m. morsitans. Table S4. Four bacterial endosymbiont proteins
identified in the G. m. morsitans by LC-MS/MS. Table S5. 276 protein groups
upregulated in the parasitized SGs of G. m. morsitans. Table S6. 32 protein
groups significantly upregulated in the parasitized SG of G. m. morsitans.
Table S7. 81 protein groups downregulated in parasitized SGs. Table S8.
Four host proteins not affected by parasite infection. Table S9. Distribution
of GO terms associated with biological processes. Table S10. GO terms
associated with molecular functions. Table S11. GO terms associated with
cellular compartments. Table S12. 225 protein pairs with significant
interacting probabilities (≥0.2) determined by FpClass. (XLSX 352 kb)
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