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Abstract

Background: West Nile Virus (WNV) is an endemic public health concem in the United States that produces periodic
seasonal epidemics. Underlying these outbreaks is the enzootic cycle of WNV between mosquito vectors and bird
hosts. Identifying the key environmental conditions that facilitate and accelerate this cycle can be used to inform
effective vector control.

Results: Here, we model and forecast WNV infection rates among mosquito vectors in Suffolk County, New York
using readily available meteorological and hydrological conditions. We first validate a statistical model built with
surveillance data between 2001 and 2009 (m09) and specify a set of new statistical models using surveillance data from
2001 to 2012 (m12). This ensemble of new models is then used to make predictions for 2013-2015, and multimodel
inference is employed to provide a formal probabilistic interpretation across the disparate individual model predictions.
The findings of the m09 and m12 models align; with the ensemble of m12 models indicating an association between
warm, dry early spring (April) conditions and increased annual WNV infection rates in Culex mosquitoes.

Conclusions: This study shows that real-time climate information can be used to predict WNV infection rates in Culex

mosquitoes prior to its seasonal peak and before WNV spillover transmission risk to humans is greatest.

Keywords: West Nile Virus, Culex spp., Ensemble Prediction Model

Background

West Nile Virus (WNV), first introduced in North
America in New York during 1999, quickly spread
across the United States. Each year, human WNYV cases
peak during mid to late summer. Most infections are
asymptomatic (~80 %); however, some result in flu-like
symptoms (~20 %) and in rare cases people suffer neu-
roinvasive disease (<1 %). More troubling and less
understood are the links between acute WNV and
chronic morbidity [1]. In the United States (US) there
have been 18,810 cases of neuroinvasive disease (1641
deaths) and 22,952 cases of non-neuroinvasive disease
(124 deaths) reported since 1999 [2]. More recently,
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cases of WNV neuroinvasive disease spiked during
2012 to numbers not observed since 2003, suggesting
that WNV outbreaks will continue to be a problem in
the US [2, 3]. Presently, there is no vaccine for WNYV,
so reduction of human-vector contact through mos-
quito control and behavioral measures remains the
main means of preventing WNV transmission.

WNV in the US is maintained by an enzootic cycle
driven by virus transmission between avian reservoir
hosts and bird-biting mosquito vectors. To date, 65
mosquito species have been found infected with WNV
in the US [4]; however, only a few of these species are
likely important in the transmission of WNV. In the
northeastern US, Culex pipiens and Culex restuans are
the suspected enzootic vectors while Culex pipiens and
Culex salinarius are the main epidemic vectors [5, 6];
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however, the critical vector(s) may change over a season
and may not be fully enumerated [6].

WNYV has also been detected in 326 bird species in the
US; however, like the mosquito vectors, only a few spe-
cies significantly influence transmission dynamics by
amplifying the virus [7, 8]. Humans do not develop high
enough viremia in response to WNV infection to infect
mosquitoes and thus are not involved in the spread of
WNV. Instead, enzootic transmission and amplification
of WNV is supported by the co-occurrence of amplify-
ing avian reservoir hosts, mosquito vectors, and virus
prevalence in the mosquito vector populations. Further-
more, favorable environmental conditions can foment
this co-occurrence and virus amplification, increase the
numbers of infected mosquitoes, and increase transmis-
sion risk to humans [9].

A number of physical environmental conditions have
been shown to affect WNV transmission dynamics.
Temperature influences the rate of vector develop-
ment, vector biting behavior, viral replication in vec-
tors, virus transmission efficiency to avian hosts, and
the seasonal phenology of avian hosts [10, 11]. Overall,
increased temperatures accelerate virus amplification
and transmission. Standing water provides breeding
sites for mosquitoes, but the influence of rainfall on
vector population dynamics is not linear: while above
average rainfall may lead to higher mosquito abundance,
extreme rainfall events may reduce larval survival through
flushing effects [12]. Below average rainfall, or drought,
may facilitate the population growth of certain species due
to reduced predation, and remnant wetlands in periods of
drought may concentrate resources for both mosquito
vectors and avian hosts facilitating WNV amplification
within these populations. Consequently, local hydro-
logical conditions can provide insight into water re-
source availability for both vector and host, and have
been found predictive of WNV transmission dynamics
[9, 13]. Humidity has also been positively correlated with
the population dynamics of some vector species [10].

The extensive distribution of WNYV is tied to its ability
to persist in multiple mosquito vectors that in turn in-
habit a wide variety of ecosystems. [14] The influence of
climate on WNV transmission risk in the US varies by
the geographic range of disease vectors [15-22]. Due to
identified differences in WNV disease ecology, we focus
on studies of WNV disease ecology in the northeastern
US to inform our research in this area.

In the northeastern US most research either links cli-
mate and landscape variables to human WNV cases
[15, 16, 18, 20, 23-29] or to vector abundance [19, 30—
34] but there is limited research linking climate to
WNYV infected mosquitoes [33, 35-37]. The number of
WNV infected Culex mosquitoes influences human
transmission risk by increasing the frequency of contact
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between infected vectors and humans [5]. Therefore,
WNV transmission to humans is directly related to the
abundance of infectious mosquitoes [27, 38], and the
advent of human cases arise from the underlying effects
of climate and landscape on the WNV enzootic trans-
mission cycle. In the northeastern US, above average
temperature is linked to increased enzootic WNV
transmission and risk of spillover to humans [19, 24,
28, 33, 35-37]. Studies have also linked vector abun-
dance and WNV transmission with lower than average
rainfall [15, 20, 21, 33, 36, 37]; however, the effects of
rainfall over time has not been explored in depth.

Accordingly, this study aims to model and forecast
WNV infection rates in mosquito vectors using readily
available monthly mean meteorological and hydrological
conditions between January and August to assess their
temporal influence. Accurate model discrimination in
space and time of areas at risk for mosquitoes with
higher WNYV infection rates can, in theory, be used to
inform the allocation of limited resources for more ef-
fective vector control; however, such out-of-sample
model prediction must be tested before being put into
practice. Indeed, models built to explain vector-borne
disease dynamics are not often validated with prospect-
ive data [39]. Therefore, a central aim of this study is the
validation of forecasts generated in real time with pro-
spective environmental data as it became available at
monthly time steps.

To better understand the dynamics of WNYV transmis-
sion, we here revisit a model describing the spatial-
temporal distribution of positive Culex mosquito pools
collected in Suffolk County, Long Island, New York.
That statistical model (referred to as m09) used me-
teorological and hydrological conditions to simulate
WNV infection in Culex mosquitoes during 2001-2009
[36]. Here, we use pooled Culex WNV infection data
collected during 2010-2015 to validate m09 predictions.
We then explore alternate models using a longer record
(2001-2012) of mean meteorological and hydrological
data to estimate annual Culex WNV infection data. We
then use multimodel inference to identify dominant en-
vironmental predictors and develop a weighted ensemble
prediction framework, which is used to make retrospect-
ive predictions for 2013 and 2015 as well as prospective,
real-time predictions for 2014.

Methods

Study area

Suffolk County occupies the eastern part of Long Island
NY, roughly 15 miles east of New York City and covers
an area of approximately 2370 mile” (Fig. 1). The County
is made up of densely populated residential and com-
mercial properties in the west and is less populated with
more agricultural and rural areas in the east.
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Fig. 1 Map showing location of Suffolk County Long Island, trap locations within Suffolk County both those included and excluded for analysis,
the scale of the NLDAS Grid Cells (13 km?), and both the observed and predicted 2015 WNV infection rates

Mosquito pool data

This study uses WNV-assayed pools of Culex spp. mos-
quitoes. Mosquito collections were made throughout
Suffolk County during 2001-2015 using both Centers
for Disease Control and Prevention (CDC) gravid and
light traps. Gravid traps were baited with rabbit-chow
infusion and light traps with dry ice. Mosquito surveil-
lance was conducted weekly from June to October,
depending upon mosquito population levels and the
presence of WNV in mosquitoes. Trap locations were
guided by the historical presence of WNV at the begin-
ning of the season and expanded based on the occur-
rence of WNV found in vectors and humans as the
season progressed. Collected mosquitoes were anesthe-
tized with dry ice and identified. Culex pipiens and
Culex restuans have very similar morphology and, com-
pounded by damage during the collection process, are
often indistinguishable; consequently, these two species
are grouped together for arboviral testing. Culex sali-
narius are separated whenever possible, but again, due to
damage of identifying characteristics during collection are

often included in Culex pipiens/restuans pools for testing.
For arboviral analysis, pools were submitted to the New
York State Department of Health (Arbovirus Laboratory,
Wadsworth Center).

Table 1 presents a summary of the mosquito data in-
cluding the number of trap locations, the underlying
data for the derivation of vector abundance, percent of
pools positive for WNV, and WNYV infection rates. Vec-
tor abundance was calculated as the total number of all
Culex mosquitoes captured divided by the total number
of trap nights and provides a measure of the relative
number of mosquitoes. High mosquito abundance may
occur in the absence of infection and outbreaks may
occur when abundance is low [14]. The percent of pools
positive for WNV (PP) was calculated as the sum of
positive pools divided by the sum of all pools and pro-
vides an estimate of the rate of WNV in mosquitoes
tested. To measure infection rate, a maximum likelihood
estimate (MLE) was calculated to estimate the preva-
lence of WNV infected mosquitoes in the population.
Here, the MLE infection rate per 1000 specimens



Little et al. Parasites & Vectors (2016) 9:443

Page 4 of 13

Table 1 Overview of human WNV cases and mosquito data in Suffolk County 2001-2015

Year Human cases Pools Positive pools Total mosquitoes Trap locations Vector abundance Percent positive pools  WNV MIR  WNV MLE
2001 1 579 45 16,689 60 28.82 7.77 2.70 2.80
2002 8 546 20 12,332 71 22.59 3.66 1.62 1.65
2003 10 900 26 32,772 71 36.41 2.89 0.79 0.80
2004 0 462 7 13,720 43 29.70 1.52 0.51 0.51
2005 9 927 65 23,445 85 2529 7.01 277 287
2006 2 699 52 23,276 45 3330 744 223 233
2007 0O 308 10 9077 35 2947 3.25 1.10 112
2008 9 467 39 11,116 72 23.80 835 351 3.70
2009 1 660 14 21,074 35 31.93 212 0.66 067
2010 24 1289 276 34,701 82 2692 2141 7.95 9.06
2011 4 1173 67 45,833 57 39.07 5.71 1.46 1.51
2012 14 780 186 32,360 44 4149 23.85 5.75 6.74
2013 4 1128 157 47,887 42 4245 13.92 3.28 3.58
2014 1 1166 176 50,336 39 43.17 15.09 3.50 385
2015 5 1108 180 41,881 43 37.80 16.25 430 471

provides an estimate of the annual average number of
WNV infected mosquitoes for each grid cell [40]. At the
county scale, this MLE of the annual average number of
WNV infected mosquitoes is highly correlated with ob-
served annual human WNYV human cases (r=0.79, P<
0.001).

Meteorological and hydrological data For this study
we used meteorological variables extracted from the
North American Land Data Assimilation Systems (NLDAS)
project-2 for Suffolk County, Long Island. Hourly esti-
mates of precipitation measured in millimeters per
hour, temperature measured in Kelvin 2-m above
ground, and specific humidity measured in kilograms
per kilograms 2-m above ground were used to make
monthly averages. Additionally we used Mosaic hydrol-
ogy model simulations to estimate soil moisture con-
tent [41]. In particular, we used Mosaic model output
layer one soil moisture (L1SM), which represents water
content in the top 10 cm of the soil column, as a previ-
ous study found L1SM and another model output, root
zone soil moisture (RZSM), which represents water
content in the top 40 cm of the soil column, to be
highly correlated [36]. The spatial resolution of both
the NLDAS meteorological and Mosaic hydrological
data is 0.125° (=13 x 13 km grid cells) (Fig. 1). Aggrega-
tion of mosquito data by NLDAS grid cell discounts
more local scale environmental factors that may bias
trap collections and allows for analysis of how climate
conditions influence relative mosquito infection rates.

Model data In this analysis we used 15 years of surveil-
lance data (2001-2015). The WNYV infection rate was

calculated for each of the 15 NLDAS grid cells in Suffolk
County Long Island for which there were both meteoro-
logical and hydrological data available (Fig. 1). However,
in some grid cells in certain years there were no surveil-
lance data to calculate the WNYV infection rate (1 = 26).
For grid cell 9 only two of 15 years had surveillance re-
cords, so we dropped this grid cell from further analysis.

Statistical analysis

The statistical model (m09) used meteorological and
hydrological conditions to estimate WNYV pool infec-
tion rates in Culex mosquitoes in Suffolk County, Long
Island, New York during 2001-2009 [36]. Briefly, a
Poisson model with a dispersion parameter was used to
model the annual percentage of Culex pools testing
positive for WNYV tallied for each NLDAS grid cell area.
Regression was performed using combinations of me-
teorological (precipitation, temperature and specific
humidity) and hydrological (RZSM or L1SM) monthly
averages as the predictor variables. Combinations of
predictor variables were restricted to only include one
parameter of precipitation, temperature, and specific
humidity each between January and August and one hydro-
logical measurement of early season effects (January—April)
and one of late season effects (May—August). The rationale
behind restricting environmental predictor variables was to
assess whether there was a connection between early sea-
son accumulation of standing water and later season dry-
ing, as tested by the two hydrological measurements.

Here we build on the m09 model using an expanded
dataset (2001-2012) to explore alternate model forms
and improve predictive performance. Several alternate
model forms were tested, including negative binomial
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and hurdle. In contrast to the Poisson model, these al-
ternate structures may provide more suitable forms for
addressing over-dispersion and the hurdle model is bet-
ter at modeling count data with many zero observations
[42]. Shaman et al. (2011) noted a strong west—east gra-
dient of meteorological and hydrological conditions, in
particular that temperatures in spring and summer and
hydrological conditions throughout the year are warmer
and drier, respectively, in the western part of the county
[36]. Here we account for this West—east gradient ex-
plicitly by using a mixed effects model with the location
of the NLDAS grid cells as a random effect.

For each of the tested 2001-2012 (m12) model forms
(Poisson, negative binomial, hurdle, mixed effects) we
used the annual infection rate of WNV infection rate
(hereafter referred to as the WNYV infection rate) for each
grid cell as the predictand. Regression was performed
using all combinations (35,960) of meteorological (pre-
cipitation, temperature, and specific humidity) and
hydrological (L1SM) monthly averages, January-August,
as predictor variables. In contrast with the m09 model,
we did not restrict combinations to one parameter of
each climatic and hydrological variable. The large num-
ber of candidate models were tested for hypothesis gen-
eration as to the temporal importance of climatic and
hydrological parameters. Monthly averages were re-
stricted to January-August in order to precede or coin-
cide with peak WNV infection in Culex mosquitoes.
Best model form was identified based on whole model
goodness-of-fit estimated using the Akaike Information
Criterion (AIC).

Among the best-fitting models of the preferred model
form, multimodel inference was used to identify the set
of best-fitting models to be used to make parameter in-
ferences and to calculate model-averaged predictions
with unconditional confidence intervals [43]. Here we
define ensemble modeling as the formal weighted aver-
aging of simulations from multiple models, which is car-
ried out in order to improve the overall accuracy of their
competing predictions. To rank goodness-of-fit among
the models tested, we calculated a second order AIC,
AICc, which is a better estimation of model fit when the
ratio of parameters to observations is small (n/k <40).
The Akaike weight, i.e. the weight of evidence of model i
relative to the best model:

exp( 2A)

S exp(-14,)

was used to scale the relative plausibility of each fitted
model given the data, where A;=AICc; — AlCcym,
AlICcpy is the AICc of the best-fit model, and R is the
number of models meriting inclusion. The inclusion

(1)

wW; =
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criterion was the subset of models whose weights
summed to 0.95 [44].

Model predictions were generated retrospectively for
2013, in real-time for 2014, and then retrospectively
again for 2015. For the 2014 real-time predictions, we
used available data, which necessitated prediction with a
subset of possible model combinations. Specifically, for
May, best-fitting models derived from only January-April
meteorological and hydrological conditions were used to
forecast the 2014 annual WNYV infection rate for each
grid cell. The same procedure was followed for each
subsequent month with conditions from the associated
temporal range: January though May for June predictions,
January through June for July, January through July for
August, and the full time period, January through August,
for September.

The model-averaged prediction was determined as:

6=3" 0o @

where ©); is the estimate of model i. The model-averaged
variance was calculated using an unconditional estimator:

() -

2

Zl 1@\/Var l\g ( ,+®>2

(3)

This unconditional estimator takes into account the
variation within and between each model in the model
set (i.e. the model selection uncertainty) and was used to
estimate unconditional confidence intervals around each
model-averaged prediction. Equations 1-3 were also
used to develop multimodel parameter estimates.

We used the package glmmADMB to fit mixed effect
models [45, 46] and MuMlIn for model averaging [47].
All analyses were run in the statistical software R [48].

Results

Validation of M09

We first tested the predictive capability of the m09 stat-
istical model, using meteorological and hydrological con-
ditions to estimate WNYV pooled infection rates in Culex
mosquitoes in Suffolk County between 2001 and 2009
[36]. A comparison of modeled predictions for the next
5 years (2010-2015) with observed estimates of the per-
cent of pools WNV positive resulted in a Root Mean
Square Error (RMSE) of 15.77. The observations fall
within the credible interval of the m09 predictions 95 %
of the time but were not very accurate. This discrepancy
warranted the testing of alternate model forms and mul-
timodel inference as measures to improve the accuracy
of predictions.
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Model selection

We used an expanded dataset of collections for 2001-
2012 to explore alternate model forms and improve pre-
dictive performance. All model forms used the same set
of environmental predictors (i.e. monthly estimates of
precipitation, temperature, specific humidity, and soil
moisture). Among the model forms tested, a mixed ef-
fects negative binomial (MENB) model with grid cell as
a random effect resulted in the best fitting model by the
Akaike Information Criterion, AIC. The MENB model
was therefore exclusively used to develop predictions;
however, even within this model form, the large number
of parameter combinations tested resulted in a set of
candidate models with equivocal fit. Furthermore, we
found a wide range of predicted WNV infection rates
between models (Additional file 1) indicating need for a
formal probabilistic interpretation across predictions.
Therefore, rather than pick the single best-fit MENB
model, we used multimodel inference to develop ensem-
ble predictions from the many MENB models. Table 2
presents the m12 model set, ranked by a second order
AIC, AICc, which provides a better estimation of model
fit than AIC when the ratio of parameters to observa-
tions is small. Based on their cumulative model weight,
16 models, each with four meteorological and hydro-
logical parameters, were included in our multimodel
inference and prediction.

The parameters included in the m12 model set range
in weighted importance (0.03-0.71) with a few key
variables and a long tail of less important variables
(Additional file 2). Focusing on the key parameters
(those with weight above 0.1) we infer that the
monthly meteorological parameters in April are the
most important predictors of WNV infection rates in
Culex mosquitoes. Specifically drier conditions in early
spring (reduced precipitation and specific humidity
and higher temperatures in April) lead to increased
annual WNV infection rates in Culex mosquitoes.

Multimodel inference

To make more stabilized predictions we averaged pre-
dicted values across component models based on the
respective weight of each model and estimated the un-
conditional variance of the model-averaged prediction
(See Egs. 1 and 2 in Methods). The m12 ensemble model
predictions had a much lower RMSE (3.90) than the pre-
dictions generated with the m09 model (RMSE =10.11).
The observations are within the ml12 unconditional
confidence intervals, indicating that overall the model
weighted-average predictions are a good representation
of the observations (Fig. 2). However, we note that the
confidence intervals of the m12 ensemble model pre-
dictions are large relative to the low infection rates,
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reflecting sizeable, but accurately ascribed uncertainty,
across the set of predictions.

Predictions for 2014 in real-time

Model predictions for 2014 were generated in real time
and changed with the inclusion of additional meteoro-
logical and hydrological estimates, as these data became
available and the component model predictors were ad-
justed to accommodate that availability (see Methods).
The January-April, January-May, and January-July time
periods made almost identical predictions, while the
January-June model made lower predictions and the
January-August model made higher predictions for the
western grid cells (1-6 & 10). All models generated con-
sistently low predictions for the eastern grid cells (7-8 &
11-15).

For each time interval, we compared the number of
component models and number of parameters that were
included in the ensemble models as well as the RMSE il-
lustrating the difference between predicted and observed
WNV infection rates in 2014 (Additional file 3). We
found that some of the lowest RMSE scores were for
the earliest time periods suggesting, at least for 2014,
predictions could be made early. Regardless of the time
period selected the best fitting model included April
temperature, precipitation, and specific humidity - with
warm, dry April conditions favoring increased annual
WNV infection rates in Culex mosquitoes - implying
that early season meteorological conditions largely de-
termine WNYV infection rates.

Leave-one-out temporal cross validation

Leave-one-out temporal cross validation (LOOTCV) was
performed. Each year of data was iteratively omitted
from the analysis and the compiled set of predictions
from the LOOTCV models were then compared with
predictions based on the full record. We found the
LOOTCV model (RMSE =4.27) and the full model
(RMSE = 3.66) predictions comparable (Fig. 3), indicat-
ing that out-of-sample prediction (i.e. model predictions
of a set of observations from a different time period) is
possible and that no single year overly dominates the
model structure. Figure 3 also illustrates that the m12
model is unable to distinguish among different low
WNYV infection rates (<5 WNYV infected mosquitoes per
1000) as these are predicted with nearly the same fre-
quency. However, the model is able to tease apart differ-
ences in WNV Infection rates greater than 5 WNV
infected mosquitoes per 1000 (Fig. 3). While the major-
ity of observed infection rates are <5 WNV infected
mosquitoes per 1000 (81 %), it is the remaining higher
infection rates that are of greatest public health concern.
The ability of the model to distinguish and predict these



Table 2 The M12 Model Set. The effects associated with each parameter, including the month used in the analysis, the parameter estimate, and in parentheses the standard
error of the parameter estimate, are shown. The models included in the multimodel inference add to a weight of greater than or equal to 0.95. For this subset of models the
weights have been rescaled to equal 1

Model rank  AlCc Weight ~ Temperature Precipitation Specific humidity L1SM
1 594.0 0.168 April June July April
0.635 (0.111) 0.322 (0.093) -0.007 (0.003) -1255.622 (296.610)
2 594.1 0.166 April March August April
0.998 (0.091) 0.005 (0.001) 0.004 (0.001)  -1993.274 (343.940)
3 5943 0.145 February April April April
—0.197 (0.046)  0.832 (0.095) -0.008 (0.002) -1169.784 (316.260)
4 594.7 0.121 April April February April
0.801 (0.094) -0.010 (0.002) -1244.152 (305.760)  -999.791 (301.920)
5 5958 0.069 April June March April
0.524 (0.086) 0.006 (0.002) 0439 (0.083) -0453 (0.079)
6 596.1 0.061 April July April June
0.797 (0.083) -0.009 (0.003) -1607.247 (307.630) 476.888 (129.990)
7 596.4 0.053 June August May March
0.688 (0.090) 0.357 (0.121) 0.015 (0.005) 433.041 (132.250)
8 596.6 0.046 April June April June
0.298 (0.088) 0480 (0.100) -0.006 (0.003)  0.006 (0.002)
9 597.1 0.037 March June August June
0.157 (0.045) 0641 (0.097) 0312 (0.126)  0.004 (0.002)
10 5975 0.029 June August January May
0.727 (0.099) 0.528 (0.116) -0.013 (0.004)  0.022 (0.005)
11 5975 0.030 April April March April
0.699 (0.107) -1057.684 (320.540) 0.313 (0.069) -0.323 (0.072)
12 5983 0.019 May July April May
0.848 (0.150) 0.314 (0.080) -0.011 (0.002) -1128.343 (245.040)
13 5984 0.019 June August April May
0.668 (0.091) 0.389 (0.114) -0.007 (0.003) 0.019 (0.005)
14 5985 0018 March June August May
0.145 (0.045) 0644 (0.093) 0397 (0.119)  0.014 (0.005)
15 599.5 0011 April June April April
0.522 (0.101) 0.352 (0.091) -0.005 (0.002) -1071.483 (294.770)
16 599.8 0.009 April June March June

0430 (0.097)

0408 (0.107)

0.004 (0.001)

0.009 (0.002)
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PooledInfRate Excel Add-in [58] (red)
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high infection events in both space and time is thus ex-
tremely valuable.

We tested the sensitivity and specificity of both the full
model and LOOCYV predictions. The sensitivity, or the
probability that both the predicted and observed value
are above 5, and the specificity, the probability that a
predicted value fell below 5 while the observed value
was below 5, were both high. For the full model the sen-
sitivity is 94 % and specificity 85 %. For the LOOCYV the
sensitivity is 93 % and specificity 88 %.

These tests suggest that both the full and temporally
cross-validated models are very good at distinguishing in
both space and time high infection rates.

Discussion
A central aim of this study was to assess the validity of
using meteorological and hydrological conditions to
predict WNV infection rates in Culex mosquitoes in
Suffolk County. Model m09 [36] was used to make out-
of-sample predictions for 2010-2015. Overall, these
predictions captured the range and variability of ob-
served values; however, individually, there were a num-
ber of predictions that failed to accurately estimate
observations. This initial finding prompted the explor-
ation of alternative model forms, as well as use of a set
of models to make inferences. We found a MENB model
to be the best model form and identified 16 component
MENB models (m12), which we used to generate
model-averaged predictions and unconditional confi-
dence intervals. The m12 ensemble of models produced
more accurate 2013-2015 predictions (RMSE = 3.90)
than the m09 model (RMSE =10.11). This finding indi-
cates that weighted ensemble average predictions de-
rived from an updated suite of best-fit models are a
more informative and accurate forecast construct.
Although the predictors in the m12 and m09 models
may at first seem contradictory, a closer look reveals
they are actually well aligned. M09 findings indicated
that wetter winter land surface conditions, warmer
spring temperatures, increased spring precipitation, and
drier early summer land surface conditions all favor the
increased prevalence of WNV among Culex mosquitoes
[36]. The m12 modeling effort indicates that less precipi-
tation in April, more precipitation in May and June,
along with warmer temperatures throughout the spring
favor increased WNV activity in Culex mosquitoes. Al-
though hydrological conditions were not identified as
key parameters in the m12 model, they were included in
two component models of the ensemble model and indi-
cate that wetter March land-surface conditions favor
WNV activity as for the best-fit m09 models. Unlike the
ml12 modeling effort, the m09 models were constrained
to include a summer lag of L1SM (land surface wetness)
conditions and thus found drier summer land surface



Little et al. Parasites & Vectors (2016) 9:443

Page 9 of 13

Full Model Predictions

* Observations
Predictions ]

Infection Rate
15 20 25 30
1 | L |

10
.
-

. oF S e
?

_—+" o o

o .« &2 3 Y
O P st L R IR S SACK
T T
0 50 100 150
Observation

value from least to greatest

Fig. 3 Temporal cross validation predictions and full model predictions. Graphs plot pairs of observations and predictions ordered by prediction

Temporal Cross Validation Predictions

_* Observations
Predictions o

Infection Rate
15 20 25 30
1 1 L

10
0

0 .. L4 ,.
-
s . e -
S
o .. bt o.. '.i-.' . ..-
o* g Oe . e o,
0yt & —v 0s S e LY .
© - iadeencmmenssnde miome © o ws
T T
0 50 100 150
Observation

conditions to be important as well. However, the m12
models did find that in addition to wetter March land-
surface conditions, drier April land surface conditions
favored WNV activity indicating a switch from wetland
surface conditions early in the season to dry land surface
conditions later in the season, similar to the findings of
m09. The m12 model also indicates that reduced pre-
cipitation and specific humidity in April are important
drivers of WNV infection rates emphasizing that dry
April conditions are particularly important for WNV
amplification — a result not specified by m09. However,
like m09, m12 revealed an association between increased
May precipitation and increased WNV infection rates,
and both the m09 and m12 models identified an associ-
ation between increased temperatures in spring and in-
creased WNV infection rates.

Mechanistically, the pattern of wet conditions (in May
and June) sandwiched between periods of drier condi-
tions (in April and July) may provide the needed stand-
ing water conditions that then, during the dry summer
conditions, become eutrophic, free of predators, and
dense with avian hosts to elevate populations of infected
Culex mosquitoes.

The climatic conditions identified here that promote
WNV prevalence in mosquito vectors in Suffolk County,
in particular warm temperatures and precipitation ex-
tremes, are becoming more common in the northeastern

US [49]. The implications of these changing climatic
conditions on WNV transmission risk are manifold: for
mosquitoes, these conditions may elevate abundance
and infection rates; for avian hosts, these conditions may
alter migration, demography, and susceptibility; and for
humans, these changes may confer increased transmis-
sion risk in mid to late summer.

Mosquitoes and the diseases they carry are climate
sensitive. Mosquitoes need still water to breed, and
temperature influences the rate of larval development,
adult feeding behavior, and the rate of pathogen replica-
tion within the mosquito [10]. Because climactic factors
influence the number of disease-infected mosquitoes,
climate directly relates to the risk of disease transmission.
Warm temperatures and increasing precipitation extremes
may increase the risk of WNV; however, human ma-
nipulation of the environment, especially urbanization,
and human behavior complicate the relationship be-
tween mosquitoes and climate. Impervious surfaces
may change the hydrological conditions of an area and
lead to water pooling and retention that may promote
Culex mosquito breeding and increase the risk of spill-
over to humans where these habitats are proximal to
people.

The arrival date of migrating birds and the beginning
of the breeding season for resident birds is tied to spring
temperatures and food availability [50-52]. Of the ten
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most competent WNV avian hosts in the US, eight are
year-round residents of the northeast [53] and are adept
at shifting their breeding behavior earlier in response to
meteorological conditions [50]. Culex pipiens favor the
American robin [54], which congregate in roosts
throughout their breeding season. Roosting might make
robins less available to Culex mosquitoes and result in
Culex pipiens searching for alternative hosts and an as-
sociated increase of spillover transmission to humans in
mid to late summer [7, 54, 55]. Should warmer spring
temperatures effect still earlier arrival and roosting by
robins, early enzootic amplification may be exacerbated.

In addition to climate, land use practices impact local
ecology and WNV transmission. Avian diversity may re-
duce enzootic WNV transmission and spillover risk to
humans [56, 57]. Bird diversity has declined in response
to climate change [58], urbanization [59], and directly
from WNV [60]. In comparison to residential areas, wet-
lands have lower enzootic WNV transmission tied to the
higher avian diversity found in wetlands [44, 61]. Frag-
mentation due to urbanization can increase bird density
[62]. Taken together, fragmentation of wetlands within
residential zones may result in avian communities of re-
duced diversity, greater density, and therefore increased
enzootic WNV amplification.

WNV amplification may be promoted through in-
creased vector host contact rates or demoted through
diluted vector host contact rates depending on the ratio
of vectors to hosts. In roosts, higher numbers of com-
petent avian hosts may reduce vector host contact rates
and decrease exposure to infected mosquitoes in roosts
[55, 63] but in combination with climatic conditions of
reduced precipitation and increased temperature, the
number of mosquito vectors may also increase and re-
sult in increased WNV amplification [9].

As in our study, other studies in the northeastern US
have found that warmer than average temperatures
influence WNV dynamics [19, 24, 28, 33, 35]. Winter
temperatures may be a particularly important con-
straint on WNV dynamics in cold regions such as the
northeastern US [22, 64] and future modeling efforts
should include this winter effect. Lower then average
annual precipitation has been associated with increased
human WNYV incidence [15] and vector abundance [33]
in the eastern US. Results from Chicago also found that
drought followed by wetting was associated with higher
WNYV infection rates in Culex mosquitoes in most years
[21]. Our study, focused on a specific spatial location
and not an entire region, is able to pinpoint when cli-
mate most strongly influences mosquito production
and viral amplification in a given year.

The scale of the analysis can impact its outcome. The
spatial resolution of the meteorological and hydrological
data used in this study defined the spatial scale of the
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analysis, which was somewhat coarse and may obfuscate
observation of patterns at a finer spatial scale. Further-
more, using monthly means of environmental conditions
and annual estimates of WNV infection rates in Culex
mosquitoes may limit temporal understanding. However,
the goal of this analysis was to identify conditions pre-
dictive of high WNYV infection rates in Culex mosquitoes
indicative of increased WNV risk to humans in advance
of this risk. Our results indicate that spring conditions
are predictive of the annual intensity of WNV activity
and how it varies across the county - information of
high utility for vector control officers. Prediction of
intra-annual variability, a more stochastic process, is a
more challenging forecast problem; future research may
need to make use of a mechanistic, process-based, mod-
eling approach that depicts the transmission cycle and
incorporates dynamic measurements of abiotic and bi-
otic factors in order to generate accurate predictions of
intra-annual variability in real time.

The multimodel inference used here addresses dis-
crepancies between models of equivocal fit by defining
a set of candidate models and making inferences based
on the set rather than one best-fitting model. A com-
parison of the model-averaged predictions and the best
fitting m12 model predictions suggests that the best fit-
ting ml12 model predictions are equivalent to the
model-averaged predictions (r=0.99) but with tighter
confidence intervals principally due to the lack of
model selection uncertainty (i.e. in this calculation there is
only one model compared to 16 in the ensemble uncondi-
tional variance calculations) (Fig. 2). Given that the predic-
tions vary substantially by model (Additional file 1) and
that the evidence is not strong enough to warrant pre-
diction with only one model (Table 2), the ensemble
predictions and unconditional confidence intervals pro-
vide better inference. It is necessary to quantify uncer-
tainty in model-generated predictions especially when
communicating findings with vector control and public
health personnel. While the uncertainty of the model-
averaged estimates is large, these predictions exhibit
high sensitivity and specificity for distinguishing high
and low local WNYV infection rates.

The utility of other modeling approaches, such as
boosted regression trees, could be considered in future
analyses. Due to the presence of open water throughout
the study region, differences exist in the land area
among grid cells. Future analysis may also want to ex-
plore a measure of infected mosquito density rather than
abundance. Because our m12 findings corroborated the
m09 findings, future modeling efforts should focus on
the climatic conditions of April-July and determine the
best climate predictors. This could be followed by inves-
tigation of whether the inclusion of other potential
drivers (e.g. land use practices, distribution of wetlands)
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improves model performance. Incorporating these cli-
matic and environmental drivers of WNV infection in
Culex mosquitoes will inform our understanding of how
future changes in climate will influence WNV amplifica-
tion and transmission.

Conclusions

In conclusion, few studies in the northeastern US have
looked at the influence of climate on WNV vector infec-
tion rates, a measure that likely constitutes a more direct
proxy of human WNYV risk. In this study we validate a
model built for prediction of WNV infection rates in
Culex mosquitoes using meteorological and hydrological
parameters. With additional years of surveillance, we de-
velop an improved model form and use a set of best-
fitting models to develop a multi-model prediction
framework. The findings of the m09 and m12 models
are aligned, with the m12 model emphasizing the im-
portance of warmer, drier early spring (April) conditions
for increasing WNYV infection rates in Culex mosquitoes.
This association allows prediction of annual Culex WNV
infection rates early in the season, which can be used to
inform vector control efforts both temporally, whether
there will be particularly high WNV activity, and spatially,
where WNV infection rates will be highest. Our study
shows that real-time climate information can be used to
make predictions before peak WNV infection in Culex
mosquitoes and therefore before the risk of WNV trans-
mission to humans is greatest.
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