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Abstract

Background: Paragonimiasis is an important and widespread neglected tropical disease. Fifteen Paragonimus
species are human pathogens, but two of these, Paragonimus westermani and P. skrjabini, are responsible for the
bulk of human disease. Despite their medical and economic significance, there is limited information on the gene
content and expression of Paragonimus lung flukes.

Results: The transcriptomes of adult P. westermani and P. skrjabini were studied with deep sequencing technology.
Approximately 30 million reads per species were assembled into 21,586 and 25,825 unigenes for P. westermani and
P. skrjabini, respectively. Many unigenes showed homology with sequences from other food-borne trematodes, but
1,217 high-confidence Paragonimus-specific unigenes were identified. Analyses indicated that both species have the
potential for aerobic and anaerobic metabolism but not de novo fatty acid biosynthesis and that they may interact
with host signaling pathways. Some 12,432 P. westermani and P. skrjabini unigenes showed a clear correspondence
in bi-directional sequence similarity matches. The expression of shared unigenes was mostly well correlated, but
differentially expressed unigenes were identified and shown to be enriched for functions related to proteolysis for

species.

transcriptomics, RNA-Seq

P. westermani and microtubule based motility for P. skrjabini.

Conclusions: The assembled transcriptomes of P. westermani and P. skrjabini, inferred proteins, and extensive
functional annotations generated for this project (including identified primary sequence similarities to various
species, protein domains, biological pathways, predicted proteases, molecular mimics and secreted proteins, etc.)
represent a valuable resource for hypothesis driven research on these medically and economically important
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Background

Food-borne trematode (FBT) infections are important
neglected tropical diseases (NTDs) with a global public
health impact estimated at more than 665 thousand
disability-adjusted life years (DALYs); paragonimiasis is
arguably the most important of these because it
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accounts for nearly 30 % of the FBT-related DALYs [1].
Approximately 20 million people already have a Parago-
nimus infection, and almost 300 million people are at
risk of becoming infected [2, 3].

More than 50 species in the genus Paragonimus have
been described, although several could be considered syn-
onymous [4]. Fifteen species are known to infect humans,
but the P. westermani and P. skrjabini species complexes
are responsible for the bulk of disease in Asia, particularly
in the People’s Republic of China, which has the heaviest
disease burden among 48 endemic countries [3].
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The life-cycle of Paragonimus flukes involves com-
plex interactions with three separate hosts [3]. Embry-
onated eggs expelled in the sputum or feces hatch in
freshwater, releasing larvae that undergo rounds of
growth and asexual reproduction in the first inter-
mediate host, an aquatic snail. The snails, in turn,
release larvae that develop into metacercariae in crus-
taceans. When infected crustaceans are ingested by a
permissive host (typically small carnivores such as ca-
nids, felids, murids, mustelids, viverrids, etc.), metacercar-
iae migrate out of the digestive tract and into the lung,
where they mature to long-lived, hermaphroditic, sexually
reproducing adults within pulmonary cysts. In contrast,
metacercariae ingested by a non-permissive often fail to
find the lung. They remain in an immature state and mi-
grate through abnormal tissues including the central ner-
vous system (CNS). Paragonimus skrjabini, for example, is
poorly adapted to humans and often causes these ectopic
infections [3].

Paragonimiasis is commonly diagnosed by detecting
parasite eggs in stool or sputum. Unfortunately, the
time interval between infection and oviposition is typ-
ically 65-90 days [3], and migrating parasites are cap-
able of causing disease much sooner than this [1].
Migration of worms through the abdominal cavity can
cause diarrhea, abdominal pain, fever and hives. Para-
sites in the lung trigger asthma- or tuberculosis-like
symptoms with including cough, fever, pleural effu-
sion, chest pain and bloody sputum. Ectopic infec-
tions in the CNS can lead to headache, visual loss, or
death if left untreated [1]. Paragonimiasis is easily
treated with oral praziquantel. However, diagnosis and
treatment are often delayed, because of the non-
specific nature of the symptoms and the lack of sensi-
tive and reliable diagnostic methods [5].

Apart from widely used phylogenetic markers, Asian
Paragonimus species are very poorly represented in
pubic sequence repositories. In the year 2015, there were
only 456 protein sequences from the genus Paragonimus
in NCBI’s non-redundant protein database (NR). This
represents a significant hindrance to the biological re-
search that will be needed to promote the development
of novel methods for diagnosis, treatment and global
control of paragonimiasis. In order to address this need,
we have sequenced and characterized the transcriptomes
of P. westermani and P. skrjabini adult worms. Tran-
scriptome sequencing is a well-established, efficient, and
cost-effective method of gene discovery that has been
used to characterize the expressed genes of trematodes
and other parasites [6-8].

Thus, our study has provided insights into the biology
of two Paragonimus species along with a wealth of novel
sequence data that could be explored to test specific
hypotheses relating to Paragonimus and other FBTs.
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Methods
Parasite material
Freshwater crab intermediate hosts were collected to ob-
tain parasite metacercariae. Crabs of the genus Isolapta-
mon were collected from Liuyang county (now called
Baisha county), Hunan Province, China, a region specif-
ically endemic to P. westermani [9]. Likewise, Sinopota-
mon denticulatum were collected from Changan county
of Shanxi Province, China, a region specifically endemic
to P. skrjabini [10]. Metacercariae were isolated from
crab tissue as previously described [11]. The shells of the
crabs were removed and the soft tissues were processed
in 1x phosphate-buffered saline with a meat grinder.
The homogenized meat was allowed to settle, and the
supernatant was discarded. The sediment was rinsed
several times in water, and metacercariae were collected
under a dissection microscope. Species identity was con-
firmed by morphological examination of metacercariae
and later by examination of adult parasites [12-15].
Dogs obtained from non-endemic areas and clear of
existing infections were inoculated orally with 200-300 P.
westermani or P. skrjabini metacercariae. Adult worms
were harvested from the lungs 100 days post-infection,
washed thoroughly in diethylpyrocarbonate-treated water,
frozen in liquid nitrogen, and stored at -80 °C prior to use.

RNA isolation and sequencing

A total of 5 adult P. westermani and 5 adult P. skrjabini
were homogenized in 1 ml TRIzol reagent with micro-
centrifuge pestle, and total RNA was purified from the
homogenate using a TRIzol Plus RNA Purification Kit
manufacturer’s recommended protocol (Thermo Fisher
Scientific, Waltham, MA, USA) and DNase-treated.
Samples had very prominent 28S peaks and very small
18S peaks, with RIN values and DV200 values of 8.3 and
71 (P. westermani, concentration 677 ng/ul) and 7.7 and
72 (P. skrjabini, concentration 562 ng/ul), respectively
(Additional file 1: Figure S1). Sequencing libraries were
prepared from 2 pg total RNA using Illumina's TruSeq
Stranded mRNA Library Preparation Kit according to the
manufacturer’s protocol and sequenced on the Ilumina
HiSeq2000 platform (Illumina, San Diego, CA, USA). Raw
reads (100 bp in length) were deposited in the NCBI se-
quence read archive under BioProject ID PRINA219632
for P. westermani and PRINA301597 for P. skrjabini.

RNA-Seq read processing and assembly

Raw reads were subjected to stringent quality control
and contaminant filtering as previously described [16].
Briefly, reads were trimmed to remove low quality
regions, and filtered based on read length, sequence
complexity, and similarity to known or suspected con-
taminants, including ribosomal RNA [17, 18], bacteria
[19], Homo sapiens (GenBank version hs37) and Canis
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familiaris (GenBank version 3.1). Remaining high-
quality, contaminant-free read sets were down-sampled
by digital read normalization using khmer (k =20) [20].
Reads selected in the down-sampling and their mates
were assembled using the Trinity de novo RNA-Seq assem-
bler using default parameters [21]. Scripts included in the
Trinity software package were used to map the complete,
cleaned read set to the assembled transcripts and filter tran-
scripts less than 1 transcript per million reads mapped and
less than 1 % of the per unigene expression level [21].
Assembly fragmentation was calculated with respect to
Clonorchis sinensis coding sequences (WormBase ParaSite
BioProject PRJDA72781) using in-house scripts and is re-
ported as the percentage of reference genes matched to
multiple, non-overlapping transcript BLAST hits.

Transcript expression analyses

The complete, cleaned read sets were mapped to the corre-
sponding filtered, high-quality transcript assemblies, and
fragments per kilobase of exon per million mapped frag-
ments (FPKM) were calculated for each unigene according
to an RNA-Seq by expectation-maximization (RSEM)
protocol using scripts included in the Trinity software pack-
age [21]. Unigenes were ranked according to abundance
based on FPKM values. Fold changes were calculated for
the corresponding unigenes from the two assemblies. The
average fold change plus or minus 1.96 times the standard
deviation (corresponding to the top 5th percentile of up-/
downregulation) was used as a cut-off to select unigenes
that were differentially expressed between the two species.

Protein prediction and functional annotation

Protein sequences were predicted from transcripts using
Prot4EST [22] based, in part, on results from BLAST
searches against the NCBI non-redundant protein data-
base (NR, downloaded on 15 April 2014) and databases
of ribosomal [17, 18] and mitochondrial genes (down-
loaded from GenBank on 26 July 2013).

Protein translations were compared to known proteins
in NR (downloaded on 15 June 2015), Clonorchis sinensis
(WormBase ParaSite BioProject PRJDA72781),
Opisthorchis viverrini [23)], Fasciola hepatica [24] and
Paragonimus  kellicotti [16] protein sequences by
BLASTP, and results were parsed to consider only non-
overlapping top hits with e-value > 1e*°. Sequences from
Paragonimus species were excluded from NR prior to
BLAST searches in order to facilitate identification of
genus- and species-specific transcripts. The longest
predicted protein isoform of each assembly unigene
was also subjected to a reciprocal best BLAST match
between the P. skrjabini and P. westermani transcripts
with an e-value cut-off of 1e°,

Predicted proteins were matched to conserved do-
mains (InterPro) and gene ontology (GO) terms using
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InterProScan [25-27]. Associations with biological path-
ways (KEGG orthologous groups, pathways and pathway
modules) were determined by KEGGscan [28, 29] using
version 70 of the KEGG database. KEGG module com-
pletion was determined as previously described [30]. Pu-
tative proteases and protease inhibitors were identified
and classified by comparison with the MEROPS database
[31]. Classical secretion signals found within the first
70 N-terminal amino acids and transmembrane domains
were predicted with Phobius [32]. All assembled tran-
scripts, predicted proteins, and associated functional an-
notations are available at Trematode.net [33].

Identification of “host mimic” proteins

The longest isoform of each assembly unigene was
compared to proteins from Homo sapiens (NCBI
hs38) and the closest sequenced free-living relative,
Schmidtea mediterranea (WormBase ParaSite Biopro-
ject PRINA12585), by BLASTP. Deduced Paragonimus
proteins were considered putative “host mimics” when
they shared at least 70 % sequence identity over at
least 50 % of the length with the human ortholog but
less than 50 % identity (if any) with the S. mediterranea
ortholog.

Functional enrichment of gene ontology (GO) terms
Functional enrichment of GO terms was calculated
using FUNC with a P-value cut-off of 0.01 [34]. In all
cases, the target list was comprised of the longest tran-
script of each unigene associated with the feature of
interest and the background list was comprised of the
target list plus the longest transcript from each
remaining unigene.

Results and discussion

Transcriptome sequencing, assembly and annotation

The adult transcriptomes of P. westermani and P. skrja-
bini were sequenced, assembled de novo, and filtered to
consider only high-confidence transcript sequences
(Table 1). In each case, related transcripts thought to re-
sult from alternative splicing of the same gene were clus-
tered into “unigenes”. A total of 27,842 transcripts from
21,586 unigenes were generated from P. westermani
while 35,312 transcripts from 25,825 unigenes were gener-
ated from P. skrjabini. Unigenes from the two species had
similar length distribution patterns (Fig. 1). We expect
these species to encode a gene complement similar in size
to those of other FBTs: 13,634 for C. sinensis [35], 16,379
for O. viverrini [23] and 15,740 for F. hepatica [24]. In an
ideal assembly, the number of unigenes would equal the
number of genes expressed genes in the life-cycle stage or
condition studied. However, de novo short read assemblies
tend to be fragmented, and this inflates unigene counts.
Fragmentation, reported as the percentage of reference
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genes matched to non-overlapping transcript BLAST hits,
was estimated at 24.3 % for P. westermani and 26.7 % for
P. skrjabini with respect to the protein coding sequences
of C. sinensis. For clarification, this indicates that 24.3 % of
all C. sinensis genes are associated with multiple, non-
overlapping P. westermani transcripts.

A total of 26,431 and 32,796 unique protein transla-
tions were generated from P. westermani and P. skrja-
bini respectively, and these were annotated based on
similarity to sequences in various publicly available data-
bases (Table 1). Complete annotations are provided in
Additional file 2: Table S1 and Additional file 3: Table
S2. Altogether, functional information (e.g. BLAST
matches, structural domains, functional classification,
etc.) was deduced for a majority of unigenes, 79.3 % and
80.0 % for P. westermani and P. skrjabini, respectively.

Sequence conservation with relevant trematode species

Due to the sparse representation of Paragonimus se-
quences in public sequence repositories, only a small
fraction of our predicted proteins shared highest se-
quence similarity with Paragonimus sequences in NR
(125 transcripts from 86 P. westermani unigenes and

Table 1 Sequencing, assembly and annotation of the
transcriptomes of adult P. westermani and P. skrjabini

P. westermani P. skrjabini

Sequence data

Raw read pairs 46,468,226 49,816,749

Clean read pairs 34,096,586 38,071,235
Raw transcript assembly

Unigenes 54488 90,091

Transcripts 71317 126,745
Filtered transcript assembly

Unigenes 21,586 25,825

Transcripts 27,842 35,312

Mean unigene length (bp) 813.0+5985 7724+ 5700

Mean transcript length (bp) 853.9+600.1 834.8+5959

Fragmentation rate 243 % 26.7 %
Predicted proteins

Unigue protein translations 26,431 32,706

Unigenes 21,585 25,822

Transcripts 27,838 35,305

Mean protein length (aa) 2710+ 1995 257.5+190.0
Annotation (functional terms / unigenes)

Unique InterPro domains 4,190 / 8,853 3,263 /7,152

Unique GO terms 1,197 / 6,964 1,024 / 5460

Unigue KEGG orthologous groups 3,618 /13,257 3,605/ 12,168

Unique KEGG pathways 313 /8,081 313/7426

Unique KEGG pathway modules 218 / 3,189 220/ 2,897
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Fig. 1 Unigene length distribution for Paragonimus westermani (a)
and Paragonimus skrjabini (b)

151 transcripts from 88 P. skrjabini unigenes); a majority
of these also had close matches to non-Paragonimus se-
quences. Predicted proteins from 69.8 % and 60.6 % of
P. westermani and P. skrjabini unigenes, respectively,
had top matches to non-Paragonimus proteins in NR
(Additional file 2: Table S1 and Additional file 3: Table
S2) due to the underrepresentation of Paragonimus spp.
references in NR. Top hits were mostly to other food-borne
trematodes, particularly C. sinensis and O. viverrini. Some
1,217 of the 6,513 P. westermani and 10,171 of the P. skrja-
bini unigenes with no significant match to non-Paragoni-
mus proteins in NR were homologous in both species (i.e.
conserved hypothetical unigenes, Fig. 2). This strengthens
the notion that they are indeed valid (not caused by assem-
bly errors), Paragonimus-specific transcripts.

Comparisons to other trematode species at the pri-
mary sequence level indicated that deduced proteins
from P. westermani and P. skrjabini share higher se-
quence identity with proteins from P. kellicotti (the only
Paragonimus species with an available adult transcrip-
tome) compared to other FBTs (Table 2). Paragonimus
westermani and P. skrjabini may share slightly higher se-
quence identity with C. sinensis as compared to O. viver-
rini and F. hepatica; however, this result may be biased
by the quality and completeness of the genome assem-
blies and gene models included in the analysis, as
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phylogenetic analyses based on mitochondrial markers
have previously placed Paragonimus alongside F. hepat-
ica rather than the carcinogenic liver flukes [36, 37].

Metabolic potential of Paragonimus westermani and P.
skrjabini
Translated proteins were matched to KEGG orthologous
groups and their parent unigenes were binned into
broad functional categories (Table 3). The most abun-
dantly populated categories from both assemblies were
“signal transduction”, “translation” and “protein folding,
sorting, and processing”. Most of the InterPro domains
and KEGG orthologous groups that were represented in
the adult transcriptomes of P. westermani and P. skrjabini
were also represented in the genomes of other food-borne
trematodes (Fig. 3). The 1,989 conserved protein domains
and 1,419 conserved KOs provide a catalog of functions
involved in core biological processes common to all se-
quenced FBTs. Paragonimus westermani and P. skrjabini
shared more InterPro domains with the genome of F. hep-
atica as compared to the genome of C. sinensis. Some 145
InterPro domains and 195 KEGG orthologous groups
were represented in the transcriptome assemblies of both
Paragonimus species but absent from the draft genomes
of the other two flukes. These Paragonimus conserved/
specific KEGG orthologous groups were involved in 28
unique modules, all of which were sparsely populated
(Additional file 4: Table S3); therefore, it is difficult to
comment on metabolic differences between Paragonimus
and other FBTs based solely on the transcriptomes.

The metabolic potential of the two species was
assessed at the level of KEGG pathway modules. A
KEGG module is considered to be complete when the

1,217 8,954

P. westermani P. skrjabini

Fig. 2 Paragonimus-specific proteins from Paragonimus westermani
and Paragonimus skrjabini. Predicted proteins from 6,513 P. westermani
unigenes and 10,171 P. skrjabini unigenes found no significant match
to non-Paragonimus sequences in NR. Of the unigenes with no BLAST
match in NR, 1,217 from each assembly were matched to a non-hit
unigene in the other assembly
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transcriptome includes the full complement of enzymes
(assessed at the level of KO’s) necessary to convert the
initial substrate to the final product. Of 95 helminth-
relevant KEGG modules [30], 35 were complete in both P.
westermani and P. skrjabini. A total of 30 complete mod-
ules are shared between the two, with five uniquely
complete in each species. However, the difference between
the complete modules in one species and the incomplete
modules in the other is at most two KO’s, suggesting high
functional conservation among the two species.

Other FBTs are known to undergo transitions in
energy metabolism over the course of the life-cycle,
shifting from aerobic respiration in larval stages to
anaerobic respiration in adult stages to adapt to low oxy-
gen microenvironments in host tissues [23, 24, 38].
Given that oxygen tension fluctuates within parasite lung
cysts, adult P. westermani are thought to be facultative
anaerobes with separate populations of mitochondria
capable of either aerobic or anaerobic respiration [39,
40]. Pathway modules associated with aerobic respiration
(e.g. MOO0087: beta-oxidation, M00009: citrate cycle,
MO00148: succinate dehydrogenase, etc.) were complete
in both transcriptomes (Additional file 4: Table S3), and
key enzymes involved in anaerobic dismutation (e.g.
phosphoenolpyruvate carboxykinase) were also identified
(Additional file 2: Table S1 and Additional file 3: Table
S2). Modules related to fatty acid initiation (M00082,
two of 13 KOs) and elongation (M00083, one of 14 KOs)
are incomplete and poorly represented, so it is unlikely
that these processes take place in adult Paragonimus
(Additional file 4: Table S3), although fatty acid binding
proteins were identified in both species (based on NR
matches; comp22449_c0 and comp19053_c0 in P. wester-
mani and comp74673_c0 in P. skrjabini). This is consist-
ent with the hypothesis that trematodes (with the possible
exception of C. sinensis [35]) are incapable of de novo fatty
acid biosynthesis [23, 24, 41].

Host-parasite interaction

Secreted and excreted proteins are of particular interest
in parasites like Paragonimus. They often play important
roles in host parasite interaction [41, 42] and are useful
targets for diagnostic assays [43-45]. While the N-
terminal regions of proteins, which contain secretion
signals, are often underrepresented in transcriptome as-
semblies, 622 P. westermani and 750 P. skrjabini uni-
genes were found to contain classical signal peptides and
no transmembrane domains. This suggests that they
may be secreted from cells. Several GO terms related to
proteolysis and redox regulation were enriched in the
putative secreted unigenes in both species (Additional
file 5: Table S4). This is consistent with previous findings
that highlighted the prevalence of proteases in trematode
excretory-secretory products [46—49] and outlined their
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Table 2 BLASTP comparisons of P. westermani and P. skrjabini
proteins with selected trematode species. The number of
transcripts/unigenes with BLASTP match (e-value < 1e®) to subject
proteins is indicated. Average percent identity was calculated
based on the top hit to the longest isoform of each unigene

P. westermani (27,838 /  P. skrjabini (35,305 /
21,585) 25,822)

18144 / 14,164 (623 %) 19,271/ 14,441 (64.0 %

( ) ( )
18489 / 14,423 (61.7 %) 20,186 / 14,974 (63.6 %)
( ) ( )
( ) ( )

Clonorchis sinensis

Opisthorchis viverrini
17,246 / 13,403 (59.6 %) 17,848 / 13,308 (62.2 %
19,529 / 15,075 (85.5 %) 22,493 / 16,296 (864 %

Fasciola hepatica

Paragonimus
kellicotti

Paragonimus - 22,496 / 16,290 (85.8 %)

westermani

Paragonimus 18,890/ 14,693 (843 %) -

skrjabini

Table 3 KEGG categorization of assembled unigenes

P. westermani  P. skrjabini

Cellular processes 1,709 1,645
Cell communication 504 512
Cell growth and death 561 495
Cell motility 239 220
Transport and catabolism 795 787
Environmental information processing 1,455 1,372
Membrane transport 72 74
Signal transduction 1,306 1,220
Signaling molecules and interaction 159 157
Genetic information processing 3,303 3011
Folding, sorting and degradation 1,142 1,087
Replication and repair 460 361
Transcription 775 706
Translation 1,208 1,138
Metabolism 2,407 2,223
Amino acid metabolism 425 395
Biosynthesis of other secondary metabolites 59 54
Carbohydrate metabolism 539 514
Energy metabolism 428 402
Glycan biosynthesis and metabolism 316 304
Lipid metabolism 386 353
Metabolism of cofactors and vitamins 246 216
Metabolism of other amino acids 185 169
Metabolism of terpenoids and polyketides 102 90
Nucleotide metabolism 391 375
Xenobiotics biodegradation and metabolism 87 104
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important roles in migration through host tissues, feed-
ing and immune evasion [50—53].

Molecular mimicry is a well-known strategy for host
manipulation and immune evasion [54]. Interestingly,
122 and 134 predicted proteins from P. westermani and
P. skrjabini had far better blast matches to Homo sapiens
(a potential host species) than to the free-living, fresh-
water planarian platyhelminth, Schmidtea mediterranea
(Additional file 2: Table S1; Additional file 3: Table S2;
see Methods for details). These putative “host mimic”
proteins were enriched for kinase and GTPase activity in
both species (Additional file 5: Table S4), which may in-
dicate roles in signaling. Parasites like Plasmodium spp.,
Echinococcus multilocularis and Schistosoma mansoni
are known to possess functional homologs of host hor-
mone receptors [54—57]; thus there is a precedent for
comingling of host and parasite signaling pathways.

Gene expression in Paragonimus westermani and P.
skrjabini

Expression levels were estimated for each unigene in the
two transcriptome assemblies (Additional file 2: Table
S1; Additional file 3: Table S2). As expected, the top 5 %
most highly expressed unigenes in both assemblies were
enriched for GO terms related to basic cellular functions
such as translation, ATP synthesis and redox regulation
(Additional file 5: Table S4). Finding a direct one-to-one
correlation between assembly unigenes can be chal-
lenging due to the incompleteness and fragmentation
of de novo transcript assemblies; however, 12,432 P.
westermani and P. skrjabini unigenes were linked
through a bi-directional blast match of the longest
transcript isoform from each. The expression of matched
unigenes tended to be well correlated, but some differen-
tially expressed unigenes were identified (Fig. 4, Table 4).
The 303 unigenes that were upregulated in P. westermani
were enriched with GO terms related to endopeptidase ac-
tivity whereas the 249 unigenes upregulated in P. skrjabini
were enriched with GO terms related to microtubule
based movement (Additional file 5: Table S4). Disparities
in gene complement and expression such as these could
account for the striking biological differences between P.
westermani and P. skrjabini.

Diagnostic potential of deduced P. westermani and P.
skrjabini proteins

In a previous study, proteins predicted from the de novo
transcriptome of P. kellicotti were used as a comparative
database in a mass spectrometry study aimed at
identifying parasite proteins that could be used as
serodiagnostic markers [16]. Paragonimus kellicotti
proteins were immunoaffinity-purified from worm
lysate with IgG from the serum of infected patients
and proteins predicted from 321 transcripts (227
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InterPro protein domains

KEGG orthologous groups

Cs Fh
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B

Fig. 3 Distribution of InterPro domains and KEGG orthologous
groups among selected food-borne trematodes. InterPro protein
domains and KEGG orthologous groups were assigned to proteins
from the complete genomes of Clonorchis sinensis and Fasciola
hepatica and to proteins predicted from the Paragonimus westermani
and Paragonimus skrjiabini transcriptome assemblies, and intersections
were determined. Abbreviations: Pw, P. westermani; Cs, C. sinensis; Fh, F.
hepatica; Ps, P. skrjabini

unigenes) were identified by mass spectrometry.
Some 205 of the immunoreactive P. kellicotti pro-
teins have blast matches to proteins deduced from
the transcriptomes of both P. westermani and P.
skrjabini (Additional file 2: Tables S1; Additional file
3: Table S2). Among these conserved proteins was a
putative myoglobin isoform proposed as a diagnostic
candidate due to its high detection levels in the MS
study and its low sequence conservation with trema-
todes of other genera (Fig. 5). Further studies will be
needed to thoroughly explore the utility of this pro-
tein as a pan-Paragonimus diagnostic marker.
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Fig. 4 Estimated expression of Paragonimus westermani and P. skrjabini
assembly unigenes. Corresponding P. westermani and P. skrjabini
unigenes identified by bi-directional blast search. The expression levels
of each unigene (FPKM) were estimated, and the expression of
matched unigenes were compared. a The average fold change
plus or minus 1.96 times the standard deviation (corresponding
to the top 5th percentile of differential regulation) was used as
a cutoff to select unigenes differentially expressed between the
two species. b Expression levels of corresponding unigenes were

plotted, and differentially expressed unigenes are colored

Conclusions

This study provides the first insights into gene content
and expression in P. westermani and P. skrjabini. Genetic
conservation and diversification were assessed to
characterize present and absent metabolic pathways. Like
other FBTs [23, 24, 41], these species appear capable of
both aerobic or anaerobic metabolism, but not de novo
fatty acid biosynthesis. For the most part, conserved uni-
genes were expressed to similar degree in both species.
Genes upregulated in P. westermani were enriched for
GO terms related to proteolysis while genes upregulated
in P. skrjabini were enriched for GO terms related to
microtubule based movement. Expressed orthologs of P.
kellicotti serodiagnostic antigens were identified in both
species, and should be explored in pan-Paragonimus
diagnostic assays. We expect that the assembled transcrip-
tomes and the accompanying functional annotations will



Table 4 Top 30 differentially expressed unigenes of P. westermani and P. skrjabini

P. westermani unigene

P. skrjabini unigene

Top non-Paragonimus NR BLASTP match of upregulated unigene
(e-value)

P. westermani FPKM

P. skrjabini FPKM

Fold change (P. westermani / P. skrjabini)

comp24563_c2
comp20235_c3
comp18122_c0
comp26350_c1
comp22100_c0
comp23043_cO
comp22520_c0
comp26308_c0
comp23905_c0
comp24308_c0
comp19972_c0
comp25450_c1
comp26673_c2
comp19193_c2
comp27091_cO
comp16826_c0
comp19146_c1
comp13982_c0
comp29521_c0
comp17946_c0
comp19442_c0

comp65706_c0
comp18789_c0
comp63230_c0
comp7414_c0

comp29913_c0
comp6439_c0

comp14255_c0
comp14876_c0
comp16223_c0

comp79108_c0
comp97009_c0
comp67960_c0
comp73392_c0
comp49569_c0
comp67491_c0
comp77222_c0
comp83382_c0
comp85010_c1
comp80461_c0
comp81354_c0
comp80216_c0
comp57972_c0
comp66866_c0
comp77961_c0
comp85805_c0
comp87478_c0
comp90793_c1
comp86043_cl
comp90932_c0
comp86832_c0

comp89911_c1
comp86285_c0
comp84630_c0
comp80611_c0
comp84815_c0
comp78453_cl
comp79740_c0
comp83945_c0
comp82281_cl

C. sinensis cysteine protease (5e’81)

C. sinensis cysteine protease (2e®")

Pelodiscus sinensis papain-like protein (7e™?)

F. hepatica ferritin-like protein (8¢9

Haplorchis taichui cytochrome ¢ oxidase subunit lll (8e ™)
Strongylocentrotus purpuratus proactivator polypeptide (4e™'?)
C. sinensis cathepsin F precursor (96'82)

Fasciola gigantica legumain-1 (4e%)

Amphimedon queenslandica uncharacterized protein (1e°%)
Trichobilharzia regenti cathepsin B1 isotype 1 precursor (2¢™'°)
Fasciola sp. cytochrome ¢ oxidase subunit 2 (379

O. viverrini hypothetical protein (3e”)

S. mansoni reverse transcriptase (16

O. viverrini hypothetical protein (1e°)

C. sinensis hypothetical protein (4e'°")
C. sinensis ELAV like protein (4748

C. sinensis malate dehydrogenase (2e™)

S. mansoni reverse transcriptase (3e2%)

F. hepatica mitochondrial acetate:succinate
CoA-transferase (1e”)

O. viverrini hypothetical protein (2e %)

O. viverrini hypothetical protein (5%

Tetrancistrum nebulosi cytochrome ¢ oxidase subunit Il e

Acyrthosiphon pisum kunitz-type proteinase inhibitor (3e')

3941297
4,15067
483175
336834
399212
2,567.33
2,189.89
16,728.14
29015.14
363833
233418
4,984.93
2399.15
243120
28623
213

6.19

203

325

158

402

1.36
1.82
422
750
475
3.18
397
4.09
383

12.39
1.72
247
1.79
235
1.55
1.59
13.71
25.29
3.32
2.22
5.99
3.70
5.89
207
130.95
407.90
13937
255.19
150.89
39513

17431

346.66

1,369.68
2,512.29
4,443.78
4,014.38
6,073.01
6,662.22
8,683.69

11.64
11.24
1093
10.88
10.73
10.69
1043
10.25
10.16
10.10
10.04

9.70

9.34

8.69

711
-5.94
-6.04
-6.10
-6.29
-6.58
-6.62

-7.00
-7.57
-8.34
-8.39
-9.87
-10.30
-10.58
-10.67
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Fig. 5 Alignment of myoglobin orthologs from Paragonimus species and other trematodes. Although assembly fragmentation resulted in a truncated
sequence from P. skrjabini, it had greater 90 % similarity with Paragonimus myoglobin (at the amino acid level), with much less similarity to myoglobins
from other trematodes. Abbreviations: Pk, Pk34178_txpt1 [16]; Pw, comp20873_cO_seq2; Ps, comp80973_c0_seq3; Cs, C. sinensis gi:349998765; Ov,
Opisthorchis viverrini gi: 663047528; Fh, F. hepatica gi:159461074; Sm, S. mansoni gi:256084837; Sj, S. japonicum gi:226487206

be a valuable resource for future research, including
ongoing genome sequencing projects [33].
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Additional file 1: Figure S1. Quality metrics for RNA samples used in
the RNA-Seq experiment. Electrophoresis results and RIN graphs are
included for (A) P. westermani and (B) P. skrjabini. (TIF 372 kb)

Additional file 2: Table S1. Complete functional annotation and
expression data for P. westermani transcripts. (XLSX 6726 kb)
Additional file 3: Table S2. Complete functional annotation and
expression data for P. skrjabini transcripts. (XLSX 7927 kb)
Additional file 4: Table S3. KEGG module representation and
completeness for P. westermani and P. skrjabini. (XLSX 49 kb)

Additional file 5: Table S4. Gene Ontology term enrichment among
transcript sets of interest from P. westermani and P. skrjabini. (XLSX 42 kb)
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