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Abstract

Background: The life-cycle of many vector-borne pathogens includes an asexual replication phase in the vertebrate
host and sexual reproduction in the insect vector. However, as only a small array of parasites can successfully
develop infective phases inside an insect, few insect species are competent vectors for these pathogens. Molecular
approaches have identified the potential insect vectors of blood parasites under natural conditions. However, the
effectiveness of this methodology for verifying mosquito competence in the transmission of avian malaria parasites
and related haemosporidians is still under debate. This is mainly because positive amplifications of parasite DNA in
mosquitoes can be obtained not only from sporozoites, the infective phase of the malaria parasites that migrate to
salivary glands, but also from different non-infective parasite forms in the body of the vector. Here, we assessed the
vectorial capacity of the common mosquito Culex pipiens in the transmission of two parasite genera.

Methods: A total of 1,560 mosquitoes were allowed to feed on five house sparrows Passer domesticus naturally
infected by Haemoproteus or co-infected by Haemoproteus/Plasmodium. A saliva sample of the mosquitoes that
survived after 13 days post-exposure was taken to determine the presence of parasite DNA by PCR.

Results: Overall, 31.2% mosquito’s head-thorax and 5.8% saliva samples analysed showed positive amplifications
for avian malaria parasites. In contrast to Haemoproteus DNA, which was not found in either the body parts or the
saliva, Plasmodium DNA was detected in both the head-thorax and the saliva of mosquitoes. Parasites isolated from
mosquitoes feeding on the same bird corresponded to the same Plasmodium lineage.

Conclusions: Our experiment provides good evidence for the competence of Cx. pipiens in the transmission of
Plasmodium but not of Haemoproteus. Molecular analyses of saliva are an effective method for testing the vector
competence of mosquitoes and other insects in the transmission of vector-borne pathogens.
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Background
The avian malaria parasite Plasmodium and the malaria-
like parasites of the genus Haemoproteus are pathogens
that infect birds worldwide and cause infectious diseases
that affect birds’ fitness [1, 2]. These parasites reproduce
asexually in birds but are obliged to complete their sex-
ual and sporogonic phases in their insect vectors before
being successfully transmitted to a new vertebrate host.
Mosquitoes (Diptera: Culicidae), especially those of the
genus Culex, are the main vectors of avian Plasmodium;
biting midges Culicoides (Diptera: Ceratopogonidae) and
louse flies (Diptera: Hippoboscidae), on the other hand,
transmit Haemoproteus (subgenera Parahaemoproteus
and Haemoproteus) parasites, respectively [3, 4]. In mos-
quitoes, after the development of the ookinetes, parasites
penetrate insects’ mid-gut walls and produce oocysts.
These oocysts then divide to produce the sporozoites, the
infective form of the malaria parasites, which migrate to
the salivary glands of the mosquitoes. Sporozoites are thus
transmitted by mosquito bites into the bloodstream of a
new host [4].
Since the seminal paper by Bensch et al. [5], a number

of different molecular approaches have been developed
to study interactions between parasites and birds [6, 7].
These molecular methods are also a valuable tool for
identifying the potential insect vectors of blood parasites
under natural conditions [8, 9]. However, an intense de-
bate exists regarding the reliability of molecular ap-
proaches in the study of vector competence [10, 11].
This controversy arises from the fact that positive ampli-
fication of parasite DNA can be obtained from insects
due to the presence of non-infective forms of the para-
site, which are unable to complete their multiplicative
cycle. For instance, Haemoproteus DNA has been iso-
lated from both Culicoides [12, 13] and several mosquito
species, including Culex pipiens, which have completely
digested blood meals [14–17]. All this evidence suggests
that mosquitoes (and not only Culicoides) could be in-
volved in the transmission of this parasite genus. There-
fore, further studies are still required to determine the
degree to which mosquitoes are competent in the trans-
mission of Haemoproteus parasites.
We conducted an experimental study to determine, to

our knowledge for the first time, the competence of Cx.
pipiens mosquitoes in the transmission of avian malaria-
like parasites of the genus Haemoproteus. Culex pipiens
is a widely distributed mosquito species involved in the
transmission of a number of vector-borne pathogens
[18]. It is believed to be one of the main vectors of avian
malaria parasites, and over 50 different genetic lineages
have been detected in this mosquito species using mo-
lecular methods [14, 19]. To assess vector competence,
mosquitoes were allowed to feed on wild birds naturally
infected by Haemoproteus and birds co-infected by

Haemoproteus and Plasmodium (individuals suffering
co-infections are commonly found in the wild) [20–22].
After allowing the parasite to develop in the mosquito,
we used molecular tools (PCR) to detect the presence of
parasite DNA in the head-thorax (where the salivary
glands are located) and saliva of mosquitoes. The detec-
tion of pathogens in mosquito saliva is frequently used
in studies of the vector competence of pathogens such
as West Nile virus [23] and Chikungunya virus [24] but,
to the best of our knowledge, has never previously been
employed to determine the vector competence of mos-
quitoes for avian malaria and malaria-like parasites.

Methods
Mosquito collection and rearing
Culex pipiens larvae were collected in La Cañada de los
Pájaros, a natural reserve near Seville, Spain (6°14′W,
36°57′N). This area lies beyond the main wetlands of the
Doñana National Park and consists of a freshwater lake
(c.5 ha) surrounded by paddy fields. Larvae were trans-
ferred to the laboratory and kept in plastic trays with
fresh water and fed ad libitum (Mikrozell 20 ml/22 g;
Dohse Aquaristik GmbH & Co. KG, D-53501, Gelsdorf,
Germany). Larvae and adult mosquitoes were main-
tained at constant conditions, 28 °C, 65–70% relative
humidity (RH) and 12:12 light: dark cycle. After meta-
morphosis, adult mosquitoes were immediately placed in
insect cages (BugDorm-43030F, 32.5 × 32.5 × 32.5 cm)
and fed ad libitum with 1% sugar solution. Five to seven
days later, adults were anesthetised with ether [25] and
observed under a stereomicroscope (Nikon SMZ645) to
determine their sex and confirm the species, following
Schaffner et al. [26] and Becker et al. [27]. The sugar so-
lution was replaced with water 24 h prior to each experi-
ment (see below) and completely removed from cages
12 h before experiments began. The experiments were
conducted using 13–22-day-old female Cx. pipiens.

Bird trapping and sampling
Five juvenile (yearlings) house sparrows Passer domesti-
cus were captured using mist nets on 15 July 2014 in
Huelva province and subsequently ringed with num-
bered metal rings. To determine their haemosporidian
infection status, a blood sample (0.2 ml) was taken from
the jugular vein of each bird using sterile syringes and
was then immediately transferred to non-heparinized
Eppendorf tubes. Birds were transported to the Unit of
Animal Experimentation at the Estación Biológica de
Doñana (EBD-CSIC) and kept indoors in birdcages
(58.5 × 25 × 36 cm) in a vector-free room under con-
trolled conditions (23 ± 1 °C, 40–50% RH and 12:12
light: dark cycle). Birds were fed ad libitum with a
standard mixed diet for seed-eating and insectivorous
birds (KIKI; GZM S.L., Alicante, Spain). Three days after
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the last exposure to mosquitoes, birds were blood sam-
pled again (0.2 ml; final blood samples) in the same way
as above to detect any infections by blood parasites that
could have not developed when initially sampled. Sam-
ples were not taken either immediately before or during
the mosquito exposure period due to the stress caused
by mosquito bites. Immediately after sampling, a drop of
blood was smeared, air-dried, fixed in absolute methanol
and stained with Giemsa for 45 min [28]. A total of
4,000–10,000 erythrocytes from each blood smear were
scanned at high magnification (×1000) and the intensity
of infection by Haemoproteus/Plasmodium parasites was
estimated as the percentage of parasite cells per 100
erythrocytes. At the end of the experiment, birds were
released at the capture site 23 days after being captured.

Experimental procedure
Eleven days after capture, each bird was placed in a
birdcage (38.5 × 25.5 × 26 cm) inside an insect tent
(BugDorm-2120, 60 × 60 × 60 cm). Over four non-
consecutive nights, each bird was introduced into an
independent tent and exposed to 50 (first night), 57
(second night), 105 (third night) and 100 (fourth night)
unfed Cx. pipiens females, summarizing a total of 312
mosquitoes per bird. The number of mosquitoes used
each night varied according to the availability of unfed
13–22 days old mosquitoes. Birds were exposed to mos-
quito bites overnight (from 8:00 pm to 8:00 am). After
exposure, mosquitoes with a recent blood meal in the
abdomen were immediately separated and placed in un-
zipped insect cages (BugDorm-43030F 32.5 × 32.5 ×
32.5 cm) and maintained under standard conditions
(28 °C, 65–70% RH and 12:12 light: dark cycle). These
mosquitoes had ad libitum access to 1% sugar solu-
tion during the following 13 days to allow parasite
development.

Sampling of mosquito saliva
Those mosquitoes that survived until 13 days post-
exposure (dpe) were anesthetised with ether [25]. Mosqui-
toes’ legs and wings were removed with a sterile forceps.
The mosquito proboscis was introduced into a 1 μl dis-
posable capillary (Einmal-Kapillarpipetten, Hirschmann®
Laborgeäte, Germany) filled with 1 μl of fetal bovine
serum [29]. Then, 1 μl of 2% pilocarpine (Novartis 2012,
Alcon Cusí S.A. Barcelona, Spain) was applied to the mos-
quito thorax to stimulate salivation [30]. After 45 min, the
medium containing the saliva was placed in 1.5 ml
Eppendorf tubes with 10 μl of MQ water and stored
at −80 °C. Mosquitoes were kept in individual tubes
at -80 °C until further molecular analysis. The head-
thorax of eight mosquitoes and two saliva samples
were not analysed due to logistical problems.

Molecular detection and identification of blood parasites
DNA was isolated from birds’ blood samples (both the
initial and final samples) and from the head-thorax of
mosquitoes using a semi-automatic procedure (MAX-
WELL® 16 LEV Blood DNA Kit) [31]. The Qiagen
DNeasy® Kit Tissue and Blood (Qiagen, Hilden,
Germany) was used to isolate the DNA from saliva
samples. A 478 bp fragment (excluding primers) of the
mitochondrial cytochrome b gene of Haemoproteus/
Plasmodium parasites was amplified following Hellgren
et al. [6]. This procedure is based on a first PCR using
primers HaemNFI (5′-CAT ATA TTA AGA GAA ITA
TGG AG-3′) and HaemNR3 (5′-ATA GAA AGA TAA
GAA ATA CCA TTC-3′), followed by a nested PCR
using primers HaemF (5′-ATG GTG CTT TCG ATA
TAT GCA TG-3′) and HaemR2 (5′-GCA TTA TCT
GGA TGT GAT AAT GGT-3′). This procedure is able
to detect parasite DNA in infections equivalent to less
than one gametocyte per 10,000 erythrocytes in blood
smears [6]. The presence of amplicons was verified in
1.8% agarose gels. Positive amplifications were se-
quenced in both directions using the BigDye technology
(Applied Biosystems) or with the Macrogen sequencing
service (Macrogen Inc., Amsterdam, The Netherlands).
Sequences were edited using the software Sequencher™ v
4.9 (Gene Codes Corp. © 1991–2009, Ann Arbor, MI
48108, USA) and assigned to parasite lineages/morpho-
species after comparison with the GenBank (National
Center for Biotechnology Information) and Malavi [19]
databases.

Results
The five birds included in the study showed positive am-
plifications of blood parasites and there was no differ-
ence between initial and final samples. The parasite
sequences isolated from all five birds had a 100% overlap
with lineage Haemoproteus PADOM05 (corresponding
to H. passeris). No evidence of double peaks in the chro-
matograms was found. The examination of blood smears
revealed the presence of both Haemoproteus and Plas-
modium parasites in two birds (house sparrows 4 and 5),
only Haemoproteus in two other birds (house sparrows 2
and 3), and a total absence of parasites in one bird
(house sparrow 1) (Fig. 1, Table 1).
Overall, 174 of 1560 (11.2%) mosquitoes used in this

study fed on birds’ blood, 149 of them survived until 13
dpe. A total of 141 head-thorax and 139 saliva samples
were molecularly analysed, of which 44 and 8 samples,
respectively, were positive to parasite DNA (Table 1). All
the saliva samples showing positive amplifications corre-
sponded to mosquitoes with head-thorax that were also
positive for parasite DNA. The parasite lineages isolated
from the head-thorax and saliva of the mosquitoes that
fed on the two co-infected birds, as revealed by the
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blood smears, corresponded to Plasmodium lineages.
These lineages were identified as SGS1 (= Rinshi-1, cor-
responding to Plasmodium relictum) and PADOM01.
We were unable to detect Plasmodium in the blood
smear of one bird (identified as house sparrow 3,
Table 1), probably due to a very low-intensity of infec-
tion, but did manage to isolate the P. relictum lineage
GRW11 (= Rinshi-7) in the head-thorax of one of the 36
mosquitoes that fed on this bird (Table 1). Parasites iso-
lated from mosquitoes feeding on the same individual
corresponded to the same Plasmodium lineage. Haemo-
proteus was not found in either the head-thorax or in
the saliva of any of the mosquitoes analysed.

Discussion
Studies of host-parasite co-evolution in the context of
avian malaria mainly focus on the interactions between
parasites and their vertebrate hosts [32–34] but tend to
ignore the role of invertebrate vectors. The development
of avian blood parasites in mosquitoes is the outcome of
a complex evolutionary ‘arms race’ too, in which the
probability of encounter with mosquitoes and their com-
patibility are important obstacles for successful infection
and the proper development of the parasites [35, 36]. Al-
though Cx. pipiens females frequently feed on mammals,
birds are their main blood-feeding source [18, 37, 38], a
preference that may increase their contact rate with
Haemoproteus. Nevertheless, our results suggest that
mosquitoes actually may represent an obstacle to the
successful development of the life-cycle of species in this
parasite genus [36].
Here, we provide evidence of the effectiveness of mos-

quito saliva as a novel way of testing the vectorial com-
petence of mosquitoes in the transmission of avian
malaria and malaria-like parasites. This method has been
commonly used in studies of the vector competence of
mosquitoes in the transmission of a number of viruses
that are of public health concern [39–42] as well as to
detect proteins of Plasmodium bergehi sporozoites in
the saliva of Anopheles stephensi [43]. However, to our
knowledge, this approach has never been used in studies
of mosquito-avian malaria interactions. Despite being
time-consuming (it is possible to obtain the saliva of
about 15 mosquitoes/h), this method is an excellent

Fig. 1 Blood parasites found in house sparrows (a) with details of
Haemoproteus passeris (lineage padom05) (b) and Plasmodium sp.
lineage padom01 (c). Arrows indicate the parasite cell

Table 1 Infection status of birds included in this study and number of engorged and analyzed Culex pipiens mosquitoes

Infection status (PCR) Intensity of infection and morphological
identification of parasites (blood smear)

Engorged
mosquitoes

Alive mosquitoes
after 13 days

Head-thorax
positive/analysed

Saliva positive/
analysed

House sparrow 1 Haemoproteus Haemoproteus (0%) 9 (2.9%) 9 (100%) 0/9 0/9

House sparrow 2 Haemoproteus Haemoproteus (0.4%) 39 (12.5%) 35 (89.7%) 0/34 0/34

House sparrow 3 Haemoproteus Haemoproteus (0.2%) 42 (13.5%) 36 (85.7%) 1/36 0/36

House sparrow 4 Haemoproteus Haemoproteus (0.5%)/Plasmodium (0.2%) 39 (12.5%) 33 (84.6%) 23/26 7/26

House sparrow 5 Haemoproteus Haemoproteus (1.3%)/Plasmodium (0.3%) 45 (14.4%) 36 (80%) 20/36 1/34
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complementary procedure to the frequently used salivary
gland dissection employed in studies on vector compe-
tence. By using this approach, it is possible to obtain
parasite sporozoites while reducing/removing the pres-
ence of tissues derived from the salivary glands present
in the sample. This could be of special relevance in stud-
ies on Plasmodium genotyping where the quantity of
parasite DNA in relation to host DNA is an important
limitation [44]. Moreover, mosquito saliva could be used
in transcriptomic studies of the infective forms of avian
malaria parasites and/or to study the parasite load inoc-
ulated by mosquitoes [45].
The lineages SGS1 (P. relictum) and PADOM01 were

amplified in the saliva of mosquitoes at 13 dpe. However,
a high percentage of mosquitoes with positive DNA am-
plifications in the head-thorax (81.8%) did not show
positive Plasmodium DNA amplifications in saliva at 13
dpe. A recent study found that 13.3% of infected Cx.
pipiens had Plasmodium sporozoites in their salivary
glands [46], indicating that these parasites develop spo-
rozoites in only a small percentage of infected mosqui-
toes. The absence of sporozoites in salivary glands could
be explained by the fact that the parasite does not have
enough time to complete its development until this
phase. Thus, extracting saliva after 13 dpe could have in-
creased the number of positive amplifications in our
samples. However, some studies have found Plasmodium
sporozoites in the salivary glands of mosquitoes from
just 7 dpe [4, 47], although Kazlauskienė et al. [48] were
unable to isolate sporozoites until 14 dpe in salivary
glands (yet mosquitoes at 13 dpe were not analysed).
The differences found between studies could be due to
the use of different mosquito species, a differential mos-
quito microbiota, parasite strains, or environmental tem-
peratures, which may greatly affect the ability of
parasites to complete sporogony [4, 49, 50]. Unlike Plas-
modium, the possibility that Haemoproteus had not have
enough time to develop sporozoites is poorly supported.
Previous studies using direct observational (microscope)
and molecular (PCR) techniques found intermediate
stages (i.e. ookinetes and oocysts) of Haemoproteus para-
sites in the head, thorax and/or abdomen of Ochlerota-
tus cantans mosquitoes from 4–6 dpe onwards, but
presence of sporozoites was not recorded [51, 52]. By
contrast, we found no evidence of Haemoproteus DNA
in the head-thorax of the mosquitoes analysed. In
addition, in their known Culicoides vectors, Haemopro-
teus sporozoites are also present in salivary glands at 5
dpe [53]. Therefore, our results support the inability of
Haemoproteus lineage PADOM05 to complete its life-
cycle in Cx. pipiens.
Molecular approaches allowing the identification of

the parasite lineages harboured by insect vectors provide
valuable information on the potential transmission

networks of avian pathogens [12, 14, 16, 17]. Such tools
enable a huge number of individuals (e.g. thousands of
mosquitoes) to be handled, which is often necessary for
detecting positive amplifications due to the low infection
prevalence that is typical in mosquitoes trapped in the
wild [15, 54, 55]. However, results from these studies
should be interpreted with caution when attempting to
identify the true vectors of avian pathogens, this is espe-
cially true when pathogen DNA is isolated from an un-
expected vector, and highlights the necessity to conduct
further experimental studies of vectorial competence
[10]. Although different approaches including cloning
and the development of specific primers have been
employed to identify parasite lineages in co-infected
birds [7, 56, 57], our results show the importance of
combining the molecular detection of blood parasites
with the analysis of blood smears when aimed at identi-
fying potential co-infections in birds [58].

Conclusions
The results from this study suggest that Cx. pipiens is
unable to transmit Haemoproteus parasites. This study
also highlights the value of targeting mosquito saliva as
a means of assessing the competence of potential mos-
quito vectors in the transmission of avian Plasmodium
lineages.
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