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Abstract

Background: The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of
human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene
family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum
MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi
MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in
P. knowlesi clinical samples from Peninsular Malaysia.

Methods: Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008-2012). The
pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3
sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3
were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes.

Results: From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous
and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain
A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis
of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and
haplotype network analyses revealed that the haplotypes clustered into two distinct groups.

Conclusions: A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region
(Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups
provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should
investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human
knowlesi malaria infection still occur.
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Background

Malaria is a disease caused by the infection of blood
protozoa belonging to the genus Plasmodium. Molecular
evidence suggests that the simian malaria agent Plasmo-
sium knowlesi evolved from a group which included
Plasmodium cynomolgi and P. vivax some 30.5 million
years ago [1]. The first report of natural transmission of
P. knowlesi to humans was reported in 1965 when a US
Army surveyor acquired the infection while working in
Peninsular Malaysia [2]. It was observed that the parasite
could be transmitted to humans through blood inocula-
tion and thus the authors designated it the human strain
or strain H. A second case was reported in southern
Peninsular Malaysia 5 years later [3]. A large number of
human knowlesi malaria was reported in Malaysian
Borneo in 2004 [4], and reports have also been published
on this infection in several neighbouring Asian countries
such as Singapore [5], the Philippines [6] and Thailand
[7]. However, the majority of the infections have been
recorded in Malaysia. More than 300 human cases have
been detected in Peninsular Malaysia since 2005 [8—10].
Recently, a study reported that more than half of the
malaria cases in Malaysia were caused by P. knowlesi
[11]. The highest proportion of P. knowlesi cases was
found to be in the Malaysian Borneo as well as in the
Peninsular Malaysia states of Kelantan, Pahang,
Terengganu and Johor [11].

Malaria parasites invade the red blood cells (RBC) of
many vertebrate hosts including humans and simians.
The proteins involved in the invasion process have been
studied to gain deeper insights of the invasion mechan-
ism, and also to identify potential vaccine candidates
against malaria [12]. One of these proteins, the merozo-
ite surface protein-3 (MSP3), was identified in P. falcip-
arum in 1994 [13, 14]. Subsequently, a novel surface
antigen was discovered in P. vivax and was named
MSP3q, due to its putative similarity to the MSP3 of P.
falciparum [15]. Two paralogs of the P. vivax MSP3 pro-
tein were further identified, designated as PvMSP3p and
PvMSP3y [16]. Due to the presence of more than one
such protein in a species, the P. vivax MSP3 proteins
were grouped into a multi-gene family [17]. Full gen-
ome analysis on P. vivax (Salvador I strain) revealed 12
msp3 paralogs which cluster on chromosome 10 [18].
Surprisingly, these paralogs have limited similarity to
the P. knowlesi MSP3 and the four P. falciparum MSP3
proteins. Although a number of studies have suggested
that the msp3 genes in P. vivax and P. falciparum are
related, a closer comparison between the domain orga-
nizations on chromosome 10 as well as the syntenic loci
of pvmsp3, pfmsp3 and P. knowlesi putative msp3 genes
suggest that these genes are not homologues [19].

Structurally the protein is characterized by a putative
signal peptide and lacks a transmembrane domain or a
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GPI-lipid modification to anchor it to the outer mem-
brane of the parasite. Another characteristic of the pro-
tein family is the presence of an alanine-rich central
domain containing a series of heptad coiled-coil re-
peats [15, 20]. Recent studies have predicted that the
MSP-3 proteins in P. vivax form oligometric and elon-
gated molecules suggesting the protein may mediate
interactions between host proteins and other merozoite
surface proteins [21].

Genetic diversity in a natural population is usually
generated by the introduction of new alleles through the
process of migration, mutation, or recombination [22].
The frequency of these alleles on the other hand is gov-
erned by the actions of selection and natural drift [23].
For pathogens that infect humans, the host’s immune re-
sponses as well as modes of treatment administered are
major components of selection, thus, genetic diversity
can be an important indicator of how a pathogen re-
sponds to modes of intervention such as vaccines or
drugs [24]. In this instance, directional selection leads
towards fixing beneficial alleles in the population,
resulting in reduced diversity [25]. Conversely, natur-
ally acquired host immunity can exert balancing selec-
tion which tends to preserve or increase the allelic
diversity of antigen genes. This of course occurs within
the functional constraints of the encoded protein to
prevent the protein from losing its native ability and
function [26, 27]. The modelling of neutral processes
in a population with a constant size allows for the pre-
diction of expected frequencies of a particular allele.
Thus, departures from this neutrality can thus be uti-
lised to identify or pinpoint alleles that are targets for
directional or balancing selection [28-31].

Several studies have been carried out on MSP3 proteins
of P. falciparum and P. vivax; however, studies on P.
knowlesi MSP3 lag far behind. In this study, the genetic di-
versity, natural selection and haplotype groups of pkmsp3
gene of P. knowlesi clinical isolates from Peninsular
Malaysia were studied. Evidence of purifying selection in
the C-terminal domain and haplotype grouping of P.
knowlesi MSP3 was found. These data will be useful in
understanding the genetic variation and natural selec-
tion forces acting on this gene and may indicate the
gene’s potential as a vaccine candidate.

Methods

Blood sample collection

Twenty-three blood samples from knowlesi malaria pa-
tients were obtained from the University of Malaya
Medical Centre (UMMC), Kuala Lumpur as well as from
private clinics in Peninsular Malaysia between July 2008
and July 2012. Each blood sample was assigned a refer-
ence code for laboratory record. Knowlesi malaria infec-
tion was re-confirmed using several tests including
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microscopic examination of Giemsa-stained thick and
thin blood smears, BinaxNOW?® malaria rapid diagnostic
test (Inverness Medical International, Stockport, United
Kingdom) and polymerase chain reaction (PCR) based on
the Plasmodium small subunit ribosomal RNA gene [4].

Genomic DNA extraction

Genomic DNA was extracted from the blood samples
using a commercial blood extraction kit (QIAGEN,
Hilden, Germany). One hundred pl of blood were used
per extraction and the DNA was eluted into 50 pl of
TE Buffer.

PCR, cloning and sequencing of pkmsp3

The pkmsp3 gene was amplified by nested PCR. For the ini-
tial primary PCR, oligonucleotide primers MSP3NI1F: 5'-
CCT CTT CAA CCA CAC ACA CA-3" and MSP3NIR:
5-GTT CAT TCT GGC GGA TAA GG-3' were used
[19]. Oligonucleotide primers MSP3N2F: 5'-CCC GTG
AAA TAA CAC CCA-3" and MSP3BN2R: 5'-CCA CCA
TCT TAC GTT CAG-3' [19] were used for the secondary
PCR. Approximately 0.5 ug of genomic DNA was used in a
final volume of 20 pl which also contained 0.2 mM of
dNTP, 04 pM of forward and reverse primers, 2 mM
MgCl, and 1 unit of Tuag DNA polymerase in buffer
provided by the commercial kit (Promega, Madison,
WI, USA). The PCR thermal profile was as follows, an
initial denaturation of one cycle at 95 °C for 5 min
followed by 30 cycles of 1 min at 94 °C, 1 min at 50 °C
for annealing and 1 min 30 s at 72 °C for nest 1. Cyc-
ling for nest 2 consisted of a 5 min initial denaturation
at 95 °C and 30 cycles of 1 min at 94 °C, 1 min at 48 °C,
1 min 30 s at 72 °C, and a final extension step at 72 °C for
10 min. PCR products were analysed by gel electrophor-
esis on a 1.5% agarose gel stained with SYBR® Safe DNA
gel stain (Invitrogen, Eugene, USA).

Purification of PCR products and DNA cloning

PCR products were purified using QIAquick PCR purifi-
cation kit (Qiagen, Hilden, Germany) per the manufac-
turer’s instructions. The purified PCR products were
then ligated into the pGEM-T® TA cloning vector (Pro-
mega, Madison, Wisconsin, USA) and transformed into
Escherichia coli TOP10F competent cells; colonies were
then screened for the presence of recombinant plasmids
harbouring the pkmsp3 fragment. These plasmids were
then sequenced in a commercial laboratory (MyTACG
Bioscience Enterprise, Malaysia). Between 3 and 5
recombinant plasmids were sent for sequencing per
isolate. DNA for isolates showing clonal sequence var-
iations (singletons or rare substitutions) was re-
amplified and re-sequenced in order to confirm that
the variations were genuine, and not the result of in-
corporation errors of the Tag DNA polymerase.
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Analysis of pkmsp3 sequences

Editing and alignment of the pkmsp3 nucleotide se-
quences (including the sequence of reference P. knowlesi
strain H, GenBank: XM_002259752) were performed
using the BioEdit sequence alignment editor ver. 7.2.0.
Gene Runner ver. 4.0.9.2 was used to deduce the re-
spective amino acid sequences. The Neighbour Joining
method described in MEGA6 was used to construct a
phylogenetic tree [32] with bootstrap replicates of 1000.
The Median-Joining method in NETWORK v4.6.1.2 pro-
gram [33] was used to establish the genetic relationship
among pkmsp3 haplotypes and construct the haplotype
network. All newly-generated sequences were deposited
in the GenBank database (KT900798—-KT900845).

Sequence polymorphism analysis of pkmsp3

The programme DnaSP ver. 5.10.01 [34] was used to de-
termine pkmsp3 genetic polymorphism by calculating the
number of nucleotide differences per site (1), singleton
sites (S), segregating sites (Ss), haplotypes (H), parsimony-
informative sites (Ps), and haplotype diversity (Hd) [35].

The neutral model of molecular evolution acting on
the pkmsp3 was tested according to nucleotide polymor-
phisms and haplotype distribution in the Fu and Li’s D*
and F* tests [36]. The Tajima’s D test [22] was calculated
to test the hypothesis that all mutations are selectively
neutral. Tajima’s D test is based on the difference be-
tween Ss and 1 where positively significant values indi-
cate balancing selection and negatively significant values
indicate directional or purifying selection. In all tests
carried out, sites that had gaps were excluded from the
analysis. In tests requiring an outgroup, Plasmodium
cynomolgi MSP3 was used (GenBank: KC907504). The
Fgr fixation index [37] in DnaSP 5.10.00 was used to
measure the genetic differentiation between the different
clustering groups observed in the pkmsp3 phylogenetic
tree and haplotype network.

The effect of natural selection was evaluated by the
codon based Z-test, which determines whether it is
negative or positive selection. Probability (P) values of
less than 0.05 were considered significant. The variance
of the differences was computed using the bootstrap
method with 1000 replicates. The ratio between the
average number of non-synonymous substitutions per
non-synonymous site (dy) and the average number of
synonymous substitutions per synonymous site (ds)
using the Nei-Gojobori method with Jukes and Cantor
correction [38] was also calculated. MEGA6 was used to
calculate the Z-test and dy/dg ratio [32].

The Interpro programme (http://www.ebi.ac.uk/interpro)
predicted the P. knowlesi MSP3 to have a large coiled-coil
region. Genetic diversity and selection analyses were also
performed separately on the coiled-coil region (Domain A)
and the C-terminal (Domain B) of the protein (Fig. 1). This
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Fig. 1 Domain structures in pkmsp3. Organisation of the pkmsp3 gene showing the positions of coiled-coil region identified as Domain A (vellow),

the C-terminal region as Domain B (blue) and the signal peptide (green)

was carried out to investigate domain specific selective
pressure.

Results

Genetic diversity at the nucleotide level

Successful PCR amplification produced DNA fragments
of 1077 bp. This fragment contained a region coding a
protein sequence of 338 amino acids. A total of 48 se-
quences were obtained for analysis.

Table 1 gives the estimates of genetic diversity for the
full length pkmsp3 sequence, Domain A and Domain B.
In the full length sequence, 384 segregating sites were
observed; of these, 320 were parsimony-informative and
64 were singleton sites. When separated into Domain A
and B, however, Domain B contained more segregating
sites as compared to Domain A (273 vs 104). As for di-
versity, the full length sequence had haplotype diversity
(Hd) of 0.997 + 0.005. Both Domains A and B had simi-
lar Hd of 0.989 + 0.007.

Nucleotide diversity (m: 0.046 + 0.011) for the full
length sequence was found to be several times higher
compared to other P. knowlesi functional genes such
as PkDBPall (m: 0.012) [39], PKAMA-1 (m: 0.00501)
[40] and PKRAP-1 (m: 0.01298) [41]. Diversity for
Domain B (m: 0.067 + 0.025) was found to be higher
than that for Domain A (m: 0.039 £ 0.002). A sliding
window plot with a window length of 100 bp and a
step size of 25 bp provided a detailed analysis of the
full length sequence, with m ranging from 0.012 to
0.087 (Fig. 2). The highest peak diversity was within
nucleotide positions 801-975 in Domain B, whereas in
Domain A, the most conserved region was within nu-
cleotide positions 51-150.

Genetic diversity at the amino acid level

Comparisons and analysis with P. knowlesi strain H as a
reference sequence showed mutations at 339 positions.
Of these positions, 101 were synonymous changes and
238 were non-synonymous. When translated into de-
duced amino acids, high level polymorphism was ob-
served (Fig. 3 and Additional file 1: Table S1). Among the
119 polymorphic sites, 100 were monomorphic mutations
with a change into one amino acid type, and 19 showed
dimorphic mutations with change in two amino acid types
(K33R/N, T38I/S, N59E/G, L62E/Q, N66T/Y, N68D/G,
T72A/M, A78K/E, V82M/A, K118N/R, K155E/R, E158Q/
R, H173N/Y, Y197W/C, N228H/K, A281V/T, E307G/A,
E317D/G and H319Y/P). The amino acid sequences could
be categorised into 42 haplotypes (H1-42) (Fig. 3) with
haplotype 11 having the highest frequency. Fifteen of the
23 patient samples had mixed haplotype infections
(Table 2).

Phylogenetic analysis of pkmsp3

Analysis of the phylogenetic tree (Fig. 4) and haplotype
network (Fig. 5) revealed that the haplotypes are clus-
tered into two main groups (Group 1 and Group 2),
which contained almost equal number of haplotypes.
Furthermore, mixed haplotypes from the same blood
sample were found to cluster into the same group in
both the phylogenetic tree (Fig. 4) and haplotype net-
work and (Fig. 5).

Further analysis was carried out to determine if
Domain A or Domain B contributed to the haplotype
clustering. A Neighbour Joining tree was constructed for
both the domains (Fig. 6) and it was observed that poly-
morphisms in Domain A contributed to the haplotype

Table 1 Estimates of DNA diversity, selection, and neutrality tests of full length, Domain A and Domain B of pkmsp3 gene

Pkmsp3 Sites® Ss S Ps  Hd+=SD m+SD dy £ SE ds + SE dw/ds  Z-test P-values Tajima’s  Fu & Li's
dy=ds dy>ds du<ds D D* B

Full 1077 384 64 320 0997+ 0.046 0.052 + 0.058 + 1.1 045 1.00 0.24 -1440  -0.077 1.046

length 0.005 0.011 0.004 0.008

Domain A 534 104 44 60 0989+ 0.039+ 0.039+ 0.030+ 13 034 0.10 1.00 -0.723  -1852 -1670
0.007 0.002 0.002 0.008

Domain B 483 273 16 257 0989+ 0.067 £ 0.025 + 0.042 + 0.6 0.19 1.00 0.09 -1918  -1579 -1.711
0.007 0.025 0.007 0.002

Abbreviations: dy non-synonymous polymorphism, ds synonymous polymorphism, dy/ds ratio of dy to ds, Hd haplotype diversity, Ps number of informative-parsimonious
sites, 7 nucleotide diversity, S number of singleton sites, SD standard deviation, Ss number of segregating sites

*Total number of sites analysed excluding gaps
*Modified Fu & Li's D and F tests
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Fig. 2 Nucleotide polymorphism in the pkmsp3. Sliding window plot
of the nucleotide diversity (m) along the pkmsp3, generated with a
window length of 100 bp and step size of 25 bp

clustering, as the clustering observed in this domain
mirrored the tree constructed using the full length
pkmps3 sequences.

Analysis on the diversity parameters and natural se-
lection of members in Groups 1 and 2 was also carried
out (Table 3). Haplotype diversity (Group 1: 0.993;
Group 2: 0.995) and nucleotide diversity (Group 1:
0.02276; Group 2: 0.02418) of both groups were quite
similar, as was the average number of nucleotide differ-
ences (Group 1: 24.31; Group 2: 25.97). The Fgr value
between the groups was 0.402, indicating high genetic
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analysis of the phylogenetic tree did not indicate any
temporal distribution between the two groups.

Tests of selection for pkmsp3

Tests were carried out to determine if the diversity in
pkmsp3 was due to natural selection. The Tajima’s D, Fu
& Li’s D* and F* tests showed no significant departure
from neutrality in the full length pkmsp3, Domain A or
Domain B (Table 1), thus suggesting neutral selection
may be acting on these regions. Similarly, Tajima’s D test
carried out on Group 1 and 2 showed no significant de-
parture from neutrality (Table 3). This was reinforced by
estimation of the dy/dg ratio, where, the dy/dg ratio for
the full length sequence as well as Domain A were just
slightly above 1, indicating neutral selection. However,
the dy/ds ratio for Domain B was 0.6, suggesting that
this domain may be under purifying selection.

Discussion

Vaccine development against malaria parasites is not a
straightforward procedure. Multistage vaccines have
recently been proposed because unique antigens are
produced during the different stages of the parasite’s
life-cycle. The merozoite has been identified as an im-
portant vaccine target due to its mobile and invasive
nature, which exposes this stage to the host’s immune
responses [42]. Many of the merozoite surface proteins
contain polymorphic domains that signify diversifying

differentiation between these two groups. However, selection, and conserved domains which indicate
N
1111111111111 11111111111222222222222222222222222222222222222233333333333333
11222233345555556666666667777778888999999001112333334555677778899000111222222233444455556666677778888800001112234445
Haplotype 58957123936843456790123456892356780258023789274785134898589203463967479023012567849012424680157945681234934576791780235 Total
1(Reference) W SLNYYSLIKI TGDDNDI NKNLNEENNDTEDNVAPVHSQKKEIAAEDTKTPENESI KENIEHI DKDTY EKGKEAKMQIPENEKDANTAAPQEAEVEPASQAESKAQNSEKEHDEQEKNK 1
2 ......GGS EN.E. . D.A. E K.. . TE............ KD N.... E. . L \ \ LGl 2
3 G 1. GGS EN.Q. DQT ... . TE K.v.o . ... .. EQK.. . NVA. . E. W N Q o Voo |/ [ 1
4 G C .. GGS EN. Q. DQT ... . TE K.v.o . ... .. EQK.. . NVA. . E. W N. Q . v H '8 . 1
5 | ... GG EN.Q.DQ N E E. . . E K.V N. ... KD EQK. . NVA. E. C ....E..VH.Q L v.v.. ... EK P.. KQ. 1
6 .8.GGS EN.E. .. A E K. . . E .. N.. KD B AN N. ... E. Q T. V. VT EK. G B o 1
7 .. GGS EN.E... . D.A.E K.. . TE CALKD. L N. ... E.... ... .. Voo 1
8 G GG EN.Q.DQ N E E. . CERNK. V. ... KD EQK. . NVA. E. C .E..VH. Q V. V. EK P.. KQ. 2
9 G GG EN.Q.DQ N E E. CERNK.V. ... KD EQK.. NVA. E. C .... ET.VH. Q. ... ... V.v.. ... EK P.. KQ. 1
10 GGS EN.E... . D.A. E K. KD VL NANKSE. . .. VH T G . H DP. . . .. 1
1 GGS EN. E D.A E K KD v NANKSE VH T G DP 3
12 R GGS EN.E D. A E K KD v NANKSE VH T G DP. G R 1
13 GGS EN.E D.A E K TE KD v N I E v 1
14 GGS EN. E D.A E K TE KD N E v 2
15 s GGS EN. E D.A E K KDG N E \ 1
16 GGS EN. E D.A ED. K TE KD N E v DP 1
17 GGS EN. E D.A E K TE KD N E \ 1
18 I.GGS i E KR. RTE K v N E - V.V B 1
19 I SGGS i E KR TE K v N E K. - vsv B 1
20 - GS ENDQTDQ ... . TE o N Q. ... .. V.v.. ... P..... 2
21 G V. GG EN.Q.DQ N E E.. . ERNK.V CKNV. . E.C. NANKSE. ... VH. Q S .S V. V. . EK. A P.. KQ. 1
2 G . GG EN.Q.DQ N E B. . . ERNK.V KNV. . E.C. NANKSE. ... VH. Q . .S vV.v. . .E. EK. A P..KQ. 1
23 G . S ENDQ. DQT. NMG ER. . E K.V P .. NVA E.C N. .. o Q e G PVv. . .. 1
24 G N S ENDQ. DQT. NMG ER. . E K.V .. NVA E.C N. . N KQ LA PV. 1
25 G . S ENDQ. DQT. NMG ER. . E K.v.o . ... .. .. NVA E.C N. . o Q e PV. 1
2% C. GGS ENDQTDQ. . .. . ... ... .. G. .. .. L. N, ... B . B..... 1
27 . GG EN.Q.DQ N E E.. . E K.v.o . ... .. KD .KNV. . E.C N ... . L Q .. G LoV PV. . 1
28 GGS EN.E... . D.A.E KR. . TE Koo KD e N. ... E..VH .S v . . B..... 1
29 G GG GN. Q. DQ N E. AE ERNK.V KD ERK NVA.E. C E VH. Q V. v EK B KQR 1
30 G T GG EN.Q.DQ N E E ERNK.V KD EQK NVA.E. C E VH. Q V. v EK B KQ 1
31 §. GGS EN. E E KRM. TE KT KD L v N E VH G B D 1
2 §. GGS EN. E E KRM. TE K KD L v N E VH G N P 1
33 I. GG VEN. E G. A E KRA . TE I E NANKSE VH A EK P 1
34 4 I. GG EN. E D.A E KRA . TE E NANKSE VH il EK B 2
35 P GS ENDQTDQ R R Yv s VH G V. v E P 1
3% GS ENDQTDQ T Yv VH S V. v E B 1
37 | GG.G.EN. Q. DQ N E E E K.V N KD EQK NVA. E. W N Q V. v EK P KQ 1
38 | GG EN.Q.DQ N E B. . . E K.V . EQK.. NVA.E. W N. . Q V.v.. ... EK GP. . KQ. 1
39 | GG EN.Q.DQ N E . . E K.V EQK.. NVA. E. W N. Q v.v EK P.. KQ. 1
40 GG EN.Q.DQ N E E. . E K.V E .NVA. E.C N. Q V.v. . EK P.. KQ. 1
4 GG EN.Q.DQ N E . . E K. Vv .. NVA. E.CD N. Q . o V. v EK P.. KQ. 1
42 GG EN.Q.DQ N E B. . . E K.V .NVA.E.C N. . Q LT v.v.. ... EK R.P..KQ. 1
Fig. 3 Amino acid sequence polymorphism in pkmsp3. Polymorphic amino acid residues are listed for each haplotype. Monomorphic and
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Table 2 Haplotypes of pkmsp3 detected in human blood
samples. Each blood sample was assigned a reference code
(alphabetical or numerical)

Blood sample code Haplotype detected

ANU H2

AZ| H3, H4

CHO H5

GAN H6

MAH H7

NGO H8, H9

OTH H10, H11

RAU H11, H12
SAM H13, H14

SYA H15, H16, H17
UMO0001 H18, H19
UMO0004 H20

UMO0006 H21, H22
UMO0009 H23, H24, H25
UMo014 H26

UMO0015 H27

UMoo16 H28

UMO0018 H29, H30
UMO0020 H31, H32
UM0029 H33, H34
UMO0032 H35, H36
UMO0047 H37, H38, H39
UMO0050 H40, H41, H42
P. knowlesi strain H H1

functional constraints of the protein. Furthermore, dif-
ferent strains within a Plasmodium species have been
found to co-exist [43], thus vaccine candidates would
need to be strain-transcending as one particular anti-
body generated against the protein from one strain
may be ineffective against another. Antigenic diversity
in vaccine candidates is one of the hurdles to design
effective malaria vaccine. In vaccine development, it is
prerequisite to survey genetic polymorphism of the
candidate antigens, particularly the polymorphism
from a wide range of field isolates. Furthermore, gen-
etic polymorphism is also an important epidemio-
logical tool. Plasmodium knowlesi has emerged in
south-east Asia within the recent decade, and molecu-
lar epidemiological investigation may explain reasons
of this recent emergence.

Although the biological functions of P. vivax and P.
knowlesi MSP3 are not fully understood at this juncture,
the alanine-rich central core in both proteins is pre-
dicted to form a coiled-coil tertiary structure [18]. Being
located on the surface of the merozoites, the P. vivax
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MSP3 has been suggested to interact with other mero-
zoite surface proteins, possibly mediated through
protein-protein interactions involving the coiled-coil
structure [18, 19] which is similar to what is observed
in P. falciparum MSP3 [44]. In the present study, the
coiled-coil region of P. knowlesi MSP3 was observed to
be conserved. Therefore, similar to P. falciparum and
P. vivax MSP3, the P. knowlesi MSP3 coiled-coil region
may also utilise protein-protein interaction type bonds
to interact with other merozoite surface proteins.

The nucleotide diversity (m: 0.046 £ 0.011) was found
to be high when compared to other P. knowlesi func-
tional genes [39—41], considering that most of the haplo-
types discovered in this study were unique. A similar
observation has also been reported for other merozoite
surface antigens such as ebal75, and this suggests that
even where functional constraints exist, a range of hap-
lotypes can still occur [45]. The low nucleotide diversity
in Domain A as compared to that of the full length se-
quence, suggests limited polymorphism in the domain
due to the presence of the coiled-coil region. Sliding
window plot analysis (Fig. 2) showed high nucleotide di-
versity in the C-terminal, a finding also reported in
pvmsp3f5 [20]. Temporal distribution of the haplotypes
was not detected and this may be due to the fact that
the P. knowlesi isolates were recent and collected within
a 4-year period (2008—2012). The possibility of temporal
distribution happening within such a short time is
unlikely.

The pkmsp3 gene shares significant homology with
the P. vivax pvmsp3 [46]. A study on pvmsp3 of P.
vivax isolates from Korea revealed nucleotide diversity
of 0.0727 +0.002 and 0.0304 + 0.001 at the N- and C-
terminal domains respectively [47], which contrast the
nucleotide diversity of pkmsp3 domains (N-terminal m:
0.039 +0.002; C-terminal m: 0.067 + 0.025). However,
similar to pkmsp3, the C-terminal of pvmsp3 had ratio
of dy/ds <1, indicating purifying selection in that re-
gion. A study on pvmsp3 of P. vivax isolates from
Thailand found nucleotide diversity of 0.0877 + 0.005
[48], which is comparatively higher than the nucleotide
diversity of pkmsp3 (m: 0.046 + 0.011). Like pkmsp3, the
C-terminal of pvmsp3 of the Thailand isolates also
showed purifying selection (dy/ds < 1).

Phylogenetic and haplotype network analyses revealed
that the P. knowlesi MSP3 haplotypes were clustered
into two main groups. The Domain A in particular con-
tributed to this clustering (Fig. 6). To gain a clearer pic-
ture of selection, the Z-test and Tajima’s D test for all
three sets of sequences were analysed. In this instance,
results for both the Z-test and Tajima’s D were not sig-
nificant for the full length gene, Domain A or Domain
B, indicating neutral selection. The dy/ds ratio is widely
used to evaluate the effect of natural selection on genes
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Fig. 4 Phylogenetic tree of pkmsp3 haplotypes. The neighbour joining method was used to construct the tree, which contains 42 haplotypes.
Numbers at the nodes indicate percentage support of 1000 bootstrap replicates

Fig. 5 Network analysis of pkmsp3 haplotypes. The NETWORK program v4.6.1.2 was used to construct the haplotype network, which contains 42
haplotypes. Nodes in red indicate Group 1 haplotype members and nodes in yellow indicate Group 2 haplotype members




De Silva et al. Parasites & Vectors (2017) 10:2

Page 8 of 10

Domain A

Domain B e

Fig. 6 Phylogenetic trees of Domains A and B of pkmsp3. Neighbour joining method was used to construct the tree. In both trees, taxa indicated
in red represent haplotypes of Group 1, whereas the taxa indicated in green are members of Group 2. The Domain A tree shows clustering similar
to the tree of full length pkmsp3 (Fig. 4). Numbers at the nodes indicate percentage support of 1000 bootstrap replicates

where a lack of dy relative to dg (dn/ds<1) suggests
negative or purifying selection. Conversely, a higher
value of dy compared to dg (dy/dg>1) is indicative of
positive selection. The dy/ds ratio for the full length
gene as well as Domain A marginally exceeded 1, indi-
cating neutral selection. Domain B, however, had a ratio
of 0.6, indicating purifying selection on this part of the
gene. Thus, it could be postulated that the P. knowlesi
MSP3 has a functionally restricted Domain A which is

Table 3 Estimates of DNA diversity and selection for Group 1
and Group 2, which are the major clusters obtained in the
phylogenetic analysis

Pkmsp3  H Hd +SD nm+SD K Tajima’s D
Group 1T 26 0993+0011 002276+000167 2431 —0.81373
Group2 19 0995+0.018 0.02418+0.00226 2537  —046858

Abbreviations: H number of haplotypes, Hd haplotype diversity, K average
number of nucleotide differences, m nucleotide diversity, SD
standard deviation

protected from immune responses by an exposed and
polymorphic Domain B.

In the present study, the phylogenetic tree showed
separation of the P. knowlesi MSP3 haplotypes into two
groups. Studies on P. knowlesi proteins such as the Duffy
binding protein (PkDBPall) [39], Pknbpxa [49] and
PkAMA-1 domain I [50] have also reported bifurcation
of haplotypes, indicating dimorphism of the genes.
These findings provide support to the notion that two
distinct P. knowlesi types or lineages exist in south-east
Asia [51]. Microsatellite DNA analysis revealed two diver-
gent P. knowlesi populations which have been associated
with different macaque reservoir host species [52]. Re-
cently, a whole-genome population study highlighted two
major subgroups of P. knowlesi clinical isolates [53].

Conclusions
To the best of our knowledge, the present study is the
first to investigate genetic diversity of the pkmsp3 gene
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as well as the natural selection acting on it. A moderate
level of genetic diversity was observed in the pkmsp3
and only the C-terminal region (Domain B) appeared to
be under purifying selection. The separation of the
pkmsp3 into two groups of haplotypes provides further
evidence of the existence of two distinct P. knowlesi
types or lineages. Future studies should investigate the
diversity of pkmsp3 among P. knowlesi isolates in North
Borneo, a region with reports of the highest number of
human knowlesi malaria cases to date.

Additional file

Additional file 1: Table S1. Multiple alignment of full amino acid
sequences of pkmsp3. The yellow columns are the variable amino acid
positions. The region highlighted in red at the top of the alignment indicates
Domain A, and the region in green indicates Domain B. (XLS 389 kb)
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