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Background: The yellow fever mosquito, Aedes aegypti, and the common house mosquito, Culex pipiens pallens,
transmit dengue fever and West Nile virus diseases, respectively. This study was conducted to determine the
toxicity of the three lignans (-)-asarinin, sesamin and (+)-xanthoxylol-y,y-dimethylallylether (XDA), and the alkaloid
pellitorine from Zanthoxylum piperitum (Rutaceae) bark to third-instar larvae from insecticide-susceptible C. pipiens
pallens and Ae. aegypti as well as wild C. pipiens pallens resistant to deltamethrin, cyfluthrin, fenthion, and temephos.

Methods: The toxicities of all isolates were compared with those of mosquito larvicide temephos. LCsq values for
each species and their treatments were significantly different from one another when their 95% confidence

Results: XDA was isolated from Z. piperitum as a new larvicidal principle. XDA (LCso, 0.27 and 0.24 mg/l) was 4, 53,
and 144 times and 4, 100, and 117 times more toxic than pellitorine, sesamin, and asarinin toward larvae from
susceptible C. pipiens pallens and Ae. aegypti, respectively. Overall, all the isolates were less toxic than temephos
(LCsp, 0.006 and 0.009 mg/Il). These constituents did not differ in toxicity to larvae from the two Culex strains. The
present finding indicates that the lignans and alkaloid and the insecticides do not share a common mode of

Conclusion: Naturally occurring Z piperitum bark-derived compounds, particularly XDA, merit further study as
potential mosquito larval control agents or as lead compounds for the control of insecticide-resistant mosquito

Keywords: Botanical mosquito larvicide, Zanthoxylum piperitum, Rutaceae, Lignans, Xanthoxylol-y,y-dimethylallylether,

Background

The yellow fever mosquito, Aedes aegypti (Linnaeus,
1762) [1], and the common house mosquito, Culex
pipiens pallens (Coquillett, 1898) [2], are found in trop-
ical and subtropical regions of the world [3] and Eastern
Asia [4], respectively, and are serious disease vectoring
insect pests [5, 6]. A recent study calculated that more
than 2.5 billion people are at risk of dengue infection
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over 100 countries worldwide, and there may be 50-100
million dengue infections annually, including 22,000
deaths every year, mostly among children [7]. From 1999
to 2015, 43,937 cases of human West Nile virus disease
(including 20,265 neuroinvasive disease cases) were re-
ported in the United States (US), which resulted in 1,911
deaths [8]. The most serious problem with the mosquito
species is their ability to evolve resistance to insecticides
rapidly [9]. Increasing levels of resistance to the conven-
tional insecticides have resulted in multiple treatments
and excessive doses, raising serious environmental and
human health concerns. Widespread insecticide resistance
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has been one of the major obstacles in the cost-effective
integrated vector management program. In addition, the
number of approved insecticides may be reduced soon in
the US by the US Environmental Protection Agency as
reregistration occurs [10]. Reregistration requirement is
also a concern in other regions including in the European
Union, where it is under the control of the Commission
Regulation (EC) No 1048/2005 [11]. Therefore, there is a
high need for the development of selective control alterna-
tives with novel target sites to establish a biorational
resistance management strategy based on all available in-
formation on the extent and nature of resistance in mos-
quitoes because vaccines have limited effectiveness in
controlling dengue [12].

Biocides derived from plants have been suggested as
potential alternatives for mosquito control largely because
plants constitute a potential source of bioactive secondary
metabolites that are perceived by the public as relatively
safe and with less risk to the environment, and with min-
imal impacts to human and animal health [13-19]. Phyto-
chemicals act at multiple, novel target sites [14, 16-21],
thereby reducing the potential for resistance [17-19, 22, 23].
Based on these benefits of botanical insecticides, numerous
papers are published annually [19, 24]. Phytochemi-
cals are regarded as potential sources to develop com-
mercial mosquito larvicides as products derived from
certain plants and their constituents meet the criteria
as reduced risk insecticides [16—19, 25]. Recently,
Zanthoxylum plants (Rutaceae) have drawn attention
because they contain insecticidal constituents toward
the cowpea aphid, Aphis craccivora Koch, 1854 [26, 27],
the maize weevil, Sitophilus zeamais (Motschulsky, 1855)
[28, 29], and larvae of various mosquito vectors [17, 30].
However, no previous studies have investigated the
potential use of Japanese pepper, Zanthoxylum piperi-
tum (L.) DC., for managing mosquitoes, particularly
insecticide-resistant mosquitoes, despite its repellency to
Ae. aegypti [31] and the stable fly, Stomoxys calcitrans
(Linnaeus, 1758) [32, 33].

In this study, our aim was to assess whether the
three lignans, asarinin, xanthoxylol-y,y-dimethylally-
lether (XDA) and sesamin, and the isobutylamide
alkaloid pellitorine, extracted from the bark of Z.
piperitum, had the toxicity to third-instar larvae from
insecticide-susceptible C. pipiens pallens and Ae.
aegypti, as well as wild colonies of C. pipiens pallens
resistant to various insecticides [23]. The toxicity of
the bark constituents was compared with that of the
currently available mosquito larvicide temephos to
assess their use as future commercial mosquito larvi-
cides because it is registered as a larvicide for the
control of mosquitoes in South Korea [34]. Also, the
quantitative structure-activity relationship (QSAR) of
the test compounds is discussed.
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Methods

Instrumental analysis

The 'H and '3C nuclear magnetic resonance (NMR)
spectra were recorded in CDCl; on Varian NMR system
spectrometers (Varian, Palo Alto, CA, USA), using tetra-
methylsilane as an internal standard. The chemical shifts
are given in § (ppm). The ultraviolet (UV) spectra were
obtained in methanol on a UVICON 933/934 spectro-
photometer (Kontron, Milan, Italy) and the mass spectra
on a GSX 400 spectrometer (Jeol, Tokyo, Japan). Silica
gel 60 (0.063-0.2 mm) (Merck, Darmstadt, Germany)
and Sephadex LH-20 (Sigma-Aldrich, St. Louis, MO,
USA) were used for column chromatography. Merck
precoated silica gel plates (Kieselgel 60 F,s5,) were used
for analytical thin-layer chromatography (TLC). An
Agilent 1200 series high-performance liquid chromato-
graph (Agilent, Santa Clara, CA, USA) was used to
isolate the active constituents.

Materials

The organophosphorus (OP) insecticide temephos
(97.3%) was purchased from Riedel (Seelze, Lower
Saxony, Germany). Triton X-100 was purchased from
Coseal (Seoul, South Korea). All of the other chemi-
cals used in this study were of reagent-grade quality
and are available commercially.

Mosquitoes

The stock cultures of C. pipiens pallens (susceptible KS-CP
strain) and Ae. aegypti have been maintained in the
laboratory without exposure to any known insecticide,
as described previously [35]. Larvae from YS-CP colony
of C. pipiens pallens, originally collected near rice
paddy fields and cowsheds in Yusung (Daejeon, South
Korea) in September 2010, showed extremely high
levels of resistance to fenthion (resistance ratio (RR),
390) and deltamethrin (RR, 164) and moderate levels of
resistance to cyfluthrin (RR, 14) and temephos (RR, 14)
[23]. Adult mosquitoes were maintained on a 10%
sucrose solution and blood fed on live mice. Larvae
were reared in plastic trays (24 x 35 x 5 cm) containing
0.5 g of sterilised diet (40-mesh chick chow powder/yeast,
4/1 by weight). All stages were held at 27 + 1 °C, 65-75%
relative humidity, and a 14:10 h light:dark cycle.

Plant material

Fresh bark of Z. piperitum was collected from the Southern
Forest Resources Research Center (Jinju, Gyeongnam,
South Korea), National Institute of Forest Science, in mid-
August 2009. A certified botanical taxonomist was used to
identify the plant. A voucher specimen (ZP-01) was depos-
ited in the Research Institute of Agriculture and Life
Sciences, College of Agriculture and Life Sciences, Seoul
National University.
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Extraction and isolation

Air-dried bark (550 g) of Z. piperitum was pulverised,
extracted with methanol (3.3 L) two times at room
temperature for 2 days, and filtered. The combined fil-
trate was concentrated to dryness by rotary evaporation
at 40 °C to yield approximately 70 g of a dark brownish
sticky solid. The extract (20 g) was sequentially parti-
tioned into hexane- (6.4 g), chloroform- (1.36 g), ethyl
acetate- (0.46 g), and water-soluble (11.78 g) portions for
the subsequent bioassays. This fractionation procedure
was repeated three times. The organic solvent-soluble
portions were concentrated under vacuum at 35 °C, and
the water-soluble portion was freeze-dried. To isolate
the active constituents, 10-50 mg/l of each Z. piperitum
bark-derived fraction was tested in a mortality bioassay,
as described by Perumalsamy et al. [22].

The hexane-soluble fraction (19.2 g) was the most
biologically active fraction (Table 1) and was chromato-
graphed on a 5.5 x 70 cm silica gel (500 g) column by
elution with a gradient of chloroform and methanol
[(100:0 (2 1), 95:5 (1 1), 90:10 (2 1), 80:20 (1 1), 50:50 (1 1),
and 0:100 (1.5 1) by volume] to provide 34 fractions
(each approximately 250 ml) (Fig. 1). The column frac-
tions were monitored by TLC on silica gel plates devel-
oped with a chloroform and methanol (9:1 by volume)
mobile phase. Column fractions with similar R values
on the TLC plates were pooled. The spots were detected
by spraying the plate with 4% H,SO, and then heating
on a hot plate. Active fractions 11-17 (H3) were pooled
and rechromatographed on a 55x70 cm silica gel
(500 g) column by elution with a gradient of hexane and
ethylacetate [(90:10 (1 I), 80:20 (1 1), and 0:100 (1 1) by
volume] and finally with 1 1 methanol to afford 16 frac-
tions (each approximately 250 ml). The fractions were
monitored by TLC on silica gel plates developed with a
hexane and ethyl acetate (7:3 by volume) mobile phase.
Active fractions 8—13 (H33) were pooled and crystallised
during being dried by rotary evaporation at 35 °C to
yield compound one (H331). The residual portion
(H332) was isolated by Sephadex LH-20 column chro-
matography using a mobile phase of methanol. Two ac-
tive fractions 4-11 (H3322) and 12-21 (H3323) were
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obtained. The H3322 fraction (4.09 g) was rechromato-
graphed on a 55x70 cm silica gel (120 g) column.
Separation was achieved with a gradient of hexane and
acetone [80:20 (2 1), 70:30 (1 1), 50:50 (1 1), and 0:100
(0.5 1) by volume] and finally with 1 | methanol to afford
25 fractions (each approximately 200 ml). Column frac-
tions were monitored by TLC on silica gel plates devel-
oped with a hexane and ethyl acetate (4:6 by volume)
mobile phase. Active fractions 1-7 (H33221) were ob-
tained. Fraction H33221 was rechromatographed on a
silica gel column using a gradient of chloroform and
ethyl acetate [20:1 (0.3 I), 10:1 (0.2 1), 82 (0.2 1), 1:1
(0.1 1), and 0:10 (0.5 1) by volume] and finally with acet-
one (0.2 1) to afford five fractions (each approximately
200 ml). A preparative high-performance liquid chroma-
tography (HPLC) was performed to separate the constit-
uents from the active H332212 fraction. The column
was a 39 mm id. x 300 mm bondaclone ten silica
(Phenomenex, Torrance, CA, USA) using a mobile phase
of chloroform and ethyl acetate (95:5 by volume) at a
flow rate of 1 ml/min. Chromatographic separation was
monitored using a UV detector at 264 nm. The two ac-
tive constituents two and three were isolated at retention
times of 8.05 and 10.03 min, respectively. For separation
of a constituent from another active H3323 fraction
(1.3 g), a preparative HPLC was performed. The column
was a 21.2 mm id. x 250 mm Phenomenex Prodigy
ODS with a mobile phase of acetonitrile and water (1:1
by volume) at a flow rate of 1 ml/min. Chromatographic
separation was monitored at 287 nm. Finally, an active
constituent four was isolated at a retention time of
5.35 min.

Bioassay

A mortality bioassay [36] was used to assess the toxicity
of all compounds to third-instar larvae from the suscep-
tible and wild mosquitoes. In brief, each compound in
acetone was suspended in distilled water with Triton X-
100 (20 pl/1). Groups of 20 mosquito larvae were separ-
ately put into paper cups (270 ml) containing each
compound solution (250 ml). Temephos served as a
positive control and was similarly formulated. Negative

Table 1 Toxicity of fractions obtained from solvent partitioning of methanol extract of Zanthoxylum piperitum bark to third-instar lar-

vae from Culex pipiens pallens during a 24 h exposure

Material n? Slope + SE LCso Mg/l (95% CI°) LCq0, Mg/l (95% CIP) ' P-value
Methanol extract 240 5.1£057 591 (538-6.44) 1050 (9.28-12.54) 3.25 0974
Hexane-soluble fraction 240 43+047 418 (3.69-4.64) 827 (7.26-9.89) 490 0932
Chloroform-soluble fraction 240 51+054 5.02 (4.53-5.50) 9.02 (8.04-10.58) 6.01 0.921
Ethyl acetate-soluble fraction 60 >100

Water-soluble fraction 60 > 100

“Number of larvae tested
PCl denotes confidence interval
“Pearson’s chi-square goodness-of-fit test
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Hexane-soluble fraction (19.2 g)

S10, column chromatography
4—  (CHCI;:MeOH, gradient)

HI1 H2 H3 H4
(Frs. 1-4) (Frs. 5-10) (Frs. 11-17) (Frs. 18-34)
23¢g 33¢g 152¢ 18¢

Si0, column chromatography
(hexane:ethyl acetate, gradient)

{ ! | |

H31 H32 H33 H34 H35
(Frs. 1-2) (Frs. 3-7) (Frs. 8-13) (Frs. 14-15) (Fr. 16)
02¢g 04g 73¢g 69g 03g
H331 H332
04g 69¢g

Compound 1 (0.4 g) ’ Sephadex LH-20

column chromatography (MeOH )

H3321 H3322 H3323 H3324
(Frs. 1-3) (Frs. 4-11) (Frs. 12-21) (Frs. 22-25)
06g 4.09¢g 13¢ 08g

“— HPLC, ODS column, A =287 nm
H,CN:H,O (50/50, v/v)
Compound 4 (26 mg)

Si0, column chromatography
(hexane:acetone, gradient)

H33221 H33222
(Frs. 1-7) (Frs. 8-25)
232¢g 162¢

SiO, column chromatography
‘—(hexane ethyl acetate, gradient)

\ \ | \ \

H332211 H332212 H332213 H332214 H332215
(Fr. 1) (Frs. 2-3) (Fr. 4) (Frs. 5-0) (Fr. 7)
120mg 43 mg 560 mg 860 mg 590 mg

4—— HPLC, silica column, A =264 nm, CHCl;:H,0 (95/5, v/v)

Compound 2 (6 mg) Compound 3 (3 mg)

Fig. 1 Procedures to isolate the mosquito larvicidal constituents. The Zanthoxylum piperitum bark methanol extract was sequentially partitioned
into hexane-, chloroform-, ethyl acetate-, and water-soluble portions. The hexane-soluble fraction was the most biologically active fraction, and

HPLC was performed. Each fraction (10-50 mg/I) was tested in a mortality bicassay to isolate the active constituents from the fraction

controls consisted of the acetone-Triton X-100 solution
in distilled water. Based on the preliminary test results,
the toxicity of each test compound and insecticide was
determined with four to six concentrations ranging
from 0.1 to 100 mg/l and 0.001 to 0.1 mg/l, respect-
ively. All treatments were replicated three times using
20 larvae per replicate.

Treated and control (acetone-Triton X-100 solution
only) larvae were held under the same conditions as
those used for colony maintenance without providing
food. Larval mortalities were determined 24 h post-
treatment. A larva was considered dead if it did not
move when prodded with a fine wooden dowel [22].

Data analysis
Data were corrected for control mortality using Abbott’s
formula [37]. Concentration-mortality data were subjected

to probit analysis [38]. A compound having LCs, > 100 mg/1
was ineffective as described by Kiran et al. [39]. The LCsq
values for each species and their treatments were signifi-
cantly different from one another when their 95% confi-
dence intervals did not overlap.

Results

Bioassay-guided fractionation and isolation

The fractions obtained from the solvent partitioning of
the methanol extract of the Z. piperitum bark were
bioassayed toward third-instar larvae from insecticide-
susceptible C. pipiens pallens (Table 1) and Ae. aegypti
(Table 2). Significant differences in toxicity were ob-
served among the fractions and were used to identify the
peak activity fractions for the next step of purification.
Based on the 24 h LCs, values, the hexane-soluble
fraction was the most toxic material, followed by the
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Table 2 Toxicity of fractions obtained from solvent partitioning of methanol extract of Zanthoxylum piperitum bark to third-instar larvae

from Aedes aegypti during a 24 h exposure

Material n Slope + SE LCso, Mg/l (95% CIP) LCq0, Mg/l (95% CIP) ' P-value
Methanol extract 240 43+047 3.95 (3.47-4.40) 7.88 (6.92-9.40) 403 0.945
Hexane-soluble fraction 240 40+043 421 (3.75-4.73) 8.78 (7.47-11.19) 3.90 0.951
Chloroform-soluble fraction 240 38+047 5.68 (5.06-6.33) 1230 (10.37-15.94) 414 0.941
Ethyl acetate-soluble fraction 60 > 100

Water-soluble fraction 60 > 100

Number of larvae tested
BCl denotes confidence interval
“Pearson’s chi-square goodness-of-fit test

chloroform-soluble fraction. No toxicity was obtained
using the ethyl acetate- or water-soluble fractions. Mor-
tality in the acetone-Triton X-100-water-treated controls
for any the species in this study was less than 2%.
Bioassay-guided fractionation of the Z. piperitum
bark extract afforded four active compounds that were
identified by spectroscopic analyses, including electron
ionized mass spectrometry (EI-MS) and NMR spectros-
copy. The four active compounds were (—)-asarinin (5-
[3-(1,3-benzodioxol-5-yl)-1,3,3a,4,6,6a-hexahydrofuro(3,
4-c]furan-6-yl]-1,3-benzodioxole) (1), (+)-xanthoxylol-
v,y-dimethylallylether (XDA) (2), pellitorine [(2E,4E)-N-
(2-methylpropyl)deca-2,4-dienamide] (3), and sesamin
[5,5'-(15,3aR,4S,6aR)-tetrahydro-1H,3H-furo[3,4-c]furan-1
,4-diylbis(1,3-benzodioxole)] (4) (Fig. 2). (-)-Asarinin (1)
was identified based on the following evidence: white
powder. EI-MS (70 eV), m/z (% relative intensity): 354
[M]*, 336, 203, 161, 149, 135, 122 (Additional file 1). 'H
NMR (CDCls, 500 MHz): § 2.85 (1H, dd, /= 7.0, 14.0 Hz),
3.30 (1H, m), 3.83 (2H, m), 3.83-4.09 (2H, m), 4.40
(1H, d, /=9.5 Hz), 4.82 (1H, d, J=7.0 Hz), 5.95 (4H, d,
J=6.0 Hz), 6.79 (4H, m), 6.86 (2H, s) (Additional file 2).
'C NMR (CDCl;, 125 MHz): § 50.1 t, 54.6 t, 69.6 d, 70.9
d, 82.0 d, 87.6 d, 100.9 t, 101.0 t, 106.3 d, 106.5 d, 108.1 d,
118.6 d, 119.5 d, 132.2 s, 135.1 s, 146.5 s, 147.1 s,
147.6 s, 147.9 s (Additional file 3). (+)-Xanthoxylol-

v;y-dimethylallylether (2) was characterized as follows:
viscous solid. EI-MS (70 eV), m/z (% relative inten-
sity): 424 [M]", 356 (100), 325, 205, 178, 149, 135, 69
(Additional file 4). 'H NMR (CDCls, 600 MHz): &
1.74 (3H, s), 1.78 (3H, s), 2.92 (1H, q), 3.34 (1H, m),
3.86 (3H, m), 3.88 (3H, s), 4.12 (1H, d, J=9.0 Hz),
442 (1H, d, J =6.6 Hz), 4.59 (2H, d, /=6.6 Hz), 4.85
(1H, d, J=5.4 Hz), 5.53 (1H, m), 597 (2H, s), 6.78
(1H, m), 6.81 (1H, m), 6.84 (1H, m), 6.86 (1H, m),
6.87 (1H, m), 6.92 (1H, d, J=1.2 Hz) (Additional file 5).
13C NMR (CDCls, 150 MHz): § 18.4 q, 26.0 q, 50.4 d, 54.7
d, 56.1t, 66.1t, 699 d, 71.2 d, 82.3 d, 87.9 d, 101.2 q,
106.6 d, 108.4 d, 109.6 d, 113.2 d, 118.6 d, 118.9 d, 120.2
d, 132.5s,133.8s,137.8 s, 146.8 s, 147.5s,147.95,1499 s
(Additional file 6). Pellitorine (3) was characterized as
follows: viscous oil. EI-MS (70 eV), m/z (% relative
intensity): 223 [M]", 208, 180, 167, 152 (100), 113, 96,
72 (Additional file 7). '"H NMR (CDCls;, 400 MHz):
'"H NMR (CDCls, 400 MHz): 8 0.88 (3H, s), 0.91 (3H,
s), 0.93 (3H, s), 1.28 (4H, m), 1.37 (2H, m), 1.76 (1H,
m), 2.13 (2H, dd, /=7.0, 13.8 Hz), 3.16 (2H, t, /=6.4,
12.9 Hz), 5.60 (1H, br s), 5.76 (1H, d, J=15.0 Hz),
6.09 (2H, m), 7.19 (1H, d, /= 15.0 Hz) (Additional file 8).
¥C NMR (CDCl;, 100 MHz): § 14.0 q, 20.1 q,
225t 285 t, 286 d, 31.4 t, 329 t, 469 t, 121.7 d,
128.2 d, 128.2 d, 141.2 d, 166.4 s (Additional file 9).

of sesamin (4) is CyoH;80s, With @ molar mass of 354.35 g/mol

Fig. 2 Structures of asarinin, xanthoxylol-y,y-dimethylallylether, pellitorine, and sesamin. These compounds were identified in the bark of Zanthoxylum piperitum in
this study. The chemical formula of (=)-asarinin (1) is CooH;0s, With @ molar mass of 354.35 g/mol; the chemical formula of (+)-xanthoxylol-y,y-dimethylallylether (2)
is CosH260g, with a molar mass of 42448 g/mol; the chemical formula of pellitorine (3) is Cy4H,5sNO, with a molar mass of 22335 g/mol; and the chemical formula
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Sesamin (4) was characterized as follows: colorless crys-
tals. EI-MS (70 ev), m/z (% relative intensity): 354 [M]",
323, 203, 178, 161, 149 (100), 135 (Additional file 10). 'H
NMR (CDCls, 500 MHz): § 3.05 (2H, m), 3.86 (2H, dd, /
=3.0, 9.0 Hz), 4.23 (2H, dd, /= 6.5, 9.0 Hz), 4.71 (2H, d, J
=4.0 Hz), 5.95 (4H, s), 6.79 (4H, d, ] = 8.0 Hz), 6.85 (2H, s)
(Additional file 11). "*C NMR (CDCls, 125 MHz): § 50.1 t,
54.6 t, 69.6 d, 70.9 d, 82.0 d, 87.6 d, 100.9 t, 101.0 t, 106.3
d, 1065 d, 108.1 d, 118.6 d, 1195 d, 122.0 s, 132.2 s,
146.5 s, 147.1 s, 147.6 s, 147.9 s (Additional file 12).

Larvicidal activity of test compounds

The toxicity of the four isolated constituents to third-
instar larvae from KS-CP strain of C. pipiens pallens was
likewise compared with that of temephos, which was used
as a positive control (Table 3). Responses varied according
to compound examined. Based on the 24 h LCs, values,
XDA (0.27 mg/l) was the most toxic compound, followed
by pellitorine (1.12 mg/l). These constituents were 45 and
187 times less toxic than temephos, respectively. LCsq of
sesamin was 14.28 mg/l. The toxicity of asarinin was the
lowest of any of the compounds examined. Interestingly,
the toxicity of all constituents was virtually identical to-
ward both insecticide-susceptible and wild third-instar C.
pipiens pallens larvae (Table 4), indicating a lack of cross-
resistance in the resistant larvae.

Toward third-instar Ae. aegypti larvae (Table 5), XDA
(LCs0, 0.24 mg/1) was the most toxic compound, followed
by pellitorine (LCsy, 0.98 mg/l), as judged by the 24 h
LCs, values. These constituents were 27 and 109 times
less toxic than temephos, respectively. LCso of sesamin
and asarinin was 23.98 and 28.15 mg/], respectively.

Discussion

Certain plant-derived materials and their constituents
can be developed into products suitable for integrated
mosquito management because they are selective, bio-
degrade to nontoxic products, have few harmful effects
on nontarget organisms, are environmentally nonpersis-
tent, and can be used in conjunction with biological con-
trol [13-19, 40]. These potential mosquito larvicides can
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be applied to mosquito breeding places in the same
manner as conventional mosquito larvicides. Although
several plant preparations meet the criteria for efficacy,
only a very few commercial botanical products have
been marketed because there are some formidable bar-
riers to commercialization, as well described previously
[17-19, 40]. In addition, some botanical insecticides may
contain nonselective substances that may have a negative
impact on small nontarget organisms such as crusta-
ceans and zooplankton [17, 40] and human (e.g. contact
dermatitis, allergic reactions, severe acute poisoning)
[40]. Many plant-derived products and their constituents
manifest toxicity to different mosquito species larvae
[13, 14, 16, 17, 30], and have been proposed as alterna-
tives to conventional mosquito larvicides. Komalamisra
et al. [41] considered larvicidal products exerting LCs <
50 mg/l active, 50 mg/l < LCsq < 100 mg/l moderately ac-
tive, 100 mg/l < LC50< 750 mg/l effective, and LCsq >
750 mg/l inactive. Kiran et al. [39] considered com-
pounds with LCs < 100 mg/l as exhibiting a significant
larvicidal effect. It has been reported that the most
promising botanical mosquito control agents are plants
in the families Asteraceae, Cladophoraceae, Lamiaceae,
Meliaceae, Oocystaceae, and Rutaceae [13]. The efficacy
of various plant extracts and their fractions (LCsq, 2.6—
44,400 mg/l) and essential oils (LCso, 0.2-194 mg/l;
LCyy, 0.5-260 mg/l) toward various mosquito species
larvae has been well documented by Shaalan et al. [14]
and Pavela [17], respectively, although the larvicidal ac-
tivity can vary significantly according to plant species,
chemotypes, plant tissue, age of plant, geographic condi-
tions, solvent used in extraction, and mosquito species
[13, 17, 40]. In the current study, Z. piperitum (Rutaceae)
bark methanol extract and its hexane- and chloroform-
soluble fractions exhibited good larvicidal activity toward
C. pipiens pallens (LCsy, 4.18-591 mg/l; LCy, 8.27-
10.50 mg/l) and Ae. aegypti (LCsp, 3.95-5.68 mg/l; LCy,
7.88-12.30 mg/l). Zanthoxylum piperitum is distributed
in northeast Asia (Korea, China, and Japan) [42], and the
Z. piperitum bark contains unsaturated aliphatic acid am-
ides [43]. Pavela and Govindarajan [30] reported that the

Table 3 Toxicity of Zanthoxylum piperitum bark constituents and temephos to third-instar larvae from insecticide-susceptible KS-CP

strain of Culex pipiens pallens during a 24 h exposure

Compound n® Slope + SE LCso, Mg/l (95% CI) LCo0, Mg/l (95% P X< P-value
XDA (2)¢ 420 1.8+£0.10 0.27 (0.24-0.30) 144 (1.21-1.79) 6.61 0.980
Pellitorine (3) 300 25+023 1.12 (0.95-1.35) 3.75 (2.95-5.20) 567 0.957
Sesamin (4) 240 28+031 14.28 (12.24-16.66) 4048 (32.03-56.93) 1.82 0.997
Asarinin (1) 300 44 +045 38.90 (35.26-42.50) 75.77 (67.01-89.69) 6.34 0.932
Temephos 300 14+0.18 0.006 (0.005-0.008) 0.049 (0.032-0.096) 249 0.999

“Number of larvae tested

PCl denotes confidence interval
“Pearson’s chi-square goodness-of-fit test
annthoxonI—v,y—dimethylallylether
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Table 4 Toxicity of Zanthoxylum piperitum bark constituents and temephos to third-instar larvae from wild YS-CP colony of Culex

pipiens pallens during a 24 h exposure

Compound n? Slope + SE LCso, Mg/l (95% CIP) LCo0, Mg/l (95% CIP) < P-value
XDA (2)° 300 194021 031 (026-0.38) 139 (1.03-2.13) 623 0937
Pellitorine (3) 300 21+0.29 142 (1.17-1.80) 546 (3.71-10.29) 1.81 0.997
Sesamin (4) 300 23+024 12,64 (10.48-14.90) 4573 (36.14-63.54) 59 0947
Asarinin (1) 240 55+067 33.80 (31.30-36.47) 5767 (51.01-69.59) 441 0927
Temephos 360 41+£034 0.149 (0.133-0.166) 0.307 (0.271-0.358) 6.90 0.975

“Number of larvae tested

BCl denotes confidence interval
“Pearson’s chi-square goodness-of-fit test
9Xanthoxylol-y,y-dimethylallylether

Zanthoxylum monophyllum leaf essential oil had potent
larvicidal activity toward Anopheles subpictus (LCso and
LCoq, 41.50 and 82.19 mg/l), Aedes albopictus (LCsy and
LCoo, 45.35 and 88.07 mg/l), and Culex tritaeniorhynchus
(LCs0 and LCqg, 49.01 and 92.08 mg/l).

Phytochemicals such as alkaloids, phenols and terpe-
noids, alone or in combination, contribute to acute toxicity
toward various arthropod species [15]. Active larvicidal
constituents (LCsq < 50 mg/l) [41] derived from plants in-
clude alkaloids (e.g. pellitorine, guineensine, pipercide, and
retrofractamide A, LCs, 0.004—0.86 mg/l [44]), terpenoids
(e.g. quassin, LC59 6.0 mg/l [45]; germacrene D-4-ol
and a-cadinol, LC59 6.12-7.26 and 10.27-12.28 mg/]
[30]), coumarins (e.g. imperatorin and osthole, LCsq
2.88 and 3.14 mg/l [23]), flavonoids (e.g. karanjin, karanja-
chromene, pongamol, and pongarotene, LCs, 14.61—
37.61 mg/l [46]), phenylpropanoids (e.g. methyleu-
genol and a-asarone, LCs9 10.49 and 26.99 mg/1 [22];
ethyl p-methoxycinnamate and ethyl cinnamate, LCsq
12.3 and 24.1 mg/l [36]), neolignans (e.g. conocarpan,
eupomatenoid-5, and eupomatenoid-6, LCso < 10 mg/l
[47]), cyanogenic glycosides (e.g. dhurrin, LCsq
1.12 mg/l [48]), lactones (e.g. goniothalmin, LCs,
0.87-25.95 mg/l [49]), acetylenic alcohols (e.g. falcari-
nol and falcarindiol, LC59 3.49 and 6.51 mg/l [50]),
phenols (e.g. 4-butoxymethylphenol, LCs, 0.05 mg/l
[51]), and fatty acids (e.g. oleic acid and palmitic acid,
18.07-18.45 and 34.50-42.96 mg/l [46]).

In the current study, we used a mortality bioassay to
identify the larvicidal constituents from the Z. piperitum
bark extracts. The active constituents were determined
to be the furofuranoid lignans (-)-asarinin (1), (+)-XDA
(2) and sesamin (4), and the isobutylamide alkaloid pelli-
torine (3). The interpretations of the proton and carbon
signals of compounds 1, 2, 3, and 4 were largely consistent
with those of Perumalsamy et al. [22], Biavatti et al. [52],
Perumalsamy et al. [22] and Park et al. [44], and Ju et al.
[53], respectively. XDA was isolated from Z. piperitum as a
new larvicidal constituent. This compound was most toxic
toward larvae of two vector mosquito species, although it
was less toxic than temephos. Pellitorine was also highly
toxic toward C. pipiens pallens and Ae. aegypti, as described
previously [22, 45]. In addition, these constituents were also
effective toward C. pipiens pallens larvae resistant to
various insecticides. The present finding indicates that
Z. piperitum bark-derived preparations containing the
active constituents, particularly XDA and pellitorine, hold
promise for the development of novel, effective, naturally
occurring mosquito larvicides even toward currently
insecticide-resistant mosquito populations, because XDA
(LCs0 0.24-0.27 mg/l for two mosquito species) and pelli-
torine (LCsq 0.98—1.12 mg/I for two mosquito species) meet
the stage 3 criteria (LC5o < 1 mg/l) set by Shaalan et al.
[14]. The next step stage 4 involves the determination of ef-
fective field application rates of various formulations in
simulated field trials and/or small-scale field trials [14].

Table 5 Toxicity of Zanthoxylum piperitum bark constituents and temephos to third-instar larvae of Aedes aegypti during a 24 h

exposure

Compound n® Slope + SE LCso, Mg/l (95% CI) LCo0, Mg/l (95% P X< P-value
XDA (2)¢ 300 1.8+£0.17 0.24 (0.20-0.30) 1.29 (0.95-1.97) 6.37 0.983

Pellitorine (3) 240 26+0.30 0.98 (0.84-1.16) 298 (2.30-4.36) 349 0.967

Sesamin (4) 240 24+025 23.98 (20.48-28.33) 82.75 (63.03-122.72) 2.66 0.998

Asarinin (1) 300 75+0.79 28.15 (26.25-29.95) 41.60 (38.51-46.18) 2.07 0.995

Temephos 240 16+038 0.009 (0.007-0.012) 0.062 (0.032-0.373) 148 0.999

“Number of larvae tested

PCl denotes confidence interval
“Pearson’s chi-square goodness-of-fit test
annthoxonI—v,y—dimethylallylether
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QSARs of phytochemicals in many insects have been
well noted. For example, Wang et al. [23] studied the
toxicity of six linear furanocoumarins including impera-
torin and six simple coumarins including osthole. They
reported that the chemical structure and alkoxy substi-
tution and length of the alkoxyl side chain at the C8
position are essential for imparting toxicity. Park et al.
[44] reported that the larvicidal activity toward three
vector mosquito species was much more pronounced in
compounds such as guineensine, pipercide, and retro-
fractamide A with an isobutylamine moiety than in one
such as piperine without this moiety among the methylene-
dioxyphenyl (MDP)-containing compounds. In addition,
the isobutylamides with an MDP moiety was more active
than the ones without an MDP moiety. The MDP moiety is
thought to stabilise the chemical structure [54]. In the
current study, XDA with an MDP moiety was more toxic
than either asarinin or sesamin with two MDP moieties. In
addition, sesamin was more toxic than asarinin, 7-epimer
of sesamin. Our findings, along with previous studies, indi-
cate that other factor(s) such as chemical structure, func-
tional group, and isomerism, as well as hydrophobic (log P)
and molecular refraction parameters, may play, in part, a
role in determining the lignan toxicities to mosquito larvae,
although the MDP moiety might contribute, to some
extent, to the larvicidal effect.

An investigation of the modes of action and the resist-
ance mechanisms of biolarvicides may contribute to the
development of selective mosquito control alternatives
with novel target sites. Major mechanisms of resistance
to insecticides currently available to control mosquitoes
are target site insensitivity that reduces sodium channel
sensitivity to pyrethroid insecticides or sensitivity of
acetylcholinesterase to OP and carbamate insecticides,
as well as enhanced metabolism of various groups of in-
secticides [55, 56]. Some phytochemicals were found to
be highly effective toward insecticide-resistant mosqui-
toes [14, 22, 23], and they are likely to be useful in resist-
ance management strategies. For example, imperatorin
and osthole are effective toward larvae from wild C.
pipiens pallens with extremely high to moderate levels of
resistance to cyfluthrin, deltamethrin, fenthion, and
temephos [22]. The current findings that the three furofur-
anoid lignans and the isobutylamide alkaloid described
were of equal toxicity to both insecticide-susceptible and
-resistant larvae of C. pipiens pallens suggest that the phy-
tochemicals and the pyrethroid and OP insecticides do not
share a common mode of action or elicit cross-resistance.
Detailed tests are needed to understand fully the exact
mode of action of the furofuranoid lignans and the iso-
butylamide alkaloid, although the octopaminergic and
y-aminobutyric acid receptors have been suggested as
novel target sites for some monoterpenoid essential oil
constituents in the American cockroach [57] and the
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cotton bollworm [20] and the fruit fly [21], respectively. It
has also been reported that tannins and pellitorine primar-
ily affect the midgut epithelium and secondarily affect the
gastric caeca and the malpigian tubules in C. pipiens larvae
[58] and Ae. aegypti larvae [59], respectively.

Conclusion

Zanthoxylum piperitum bark-derived products contain-
ing xanthoxylol-y,y-dimethylallylether and pellitorine
could be useful as larvicides in the control of mosquito
populations, particularly in the light of their activity
toward insecticide-resistant mosquito larvae. Further
research is needed on the practical applications of
plant-derived preparations as novel mosquito larvi-
cides to establish their safety profiles in humans, al-
though Z. piperitum is commonly used as a spice and
as a traditional medicinal plant [60, 61]. In addition,
their effects on nontarget aquatic organisms including
larvivorous fishes, biological control agents for mos-
quitoes [62], and the aquatic environment need to be
established. Lastly, detailed tests are needed to under-
stand how to improve the larvicidal potency and sta-
bility of the compounds isolated from Z. piperitum for
eventual commercial development.
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