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Abstract

Background: Characterization of the microbial diversity and symbiont dynamics of ticks may help to understand
the development of ticks and reveal new strategies to control tick-transmitted pathogens, which has not yet been
explored in the Tibetan tick Haemaphysalis tibetensis. This tick species is widely distributed in the Tibetan Plateau,
and is recognized as one of the primary parasites affecting domestic and wild animals.

Methods: In the present study, the endosymbionts of H. tibetensis were characterized using diagnostic polymerase
chain reaction (diagnostic PCR), and further evaluated for tissue distribution and population dynamics at each
developmental stage of ticks and in tissues at different reproductive statuses by real-time quantitative polymerase
chain reaction (RT-qPCR).

Results: Two symbionts were found in H. tibetensis, and named as CLS-Ht (Coxiella-like symbiont in H. tibetensis) and
RLS-Ht (Rickettsia-like symbiont in H. tibetensis). They showed 100% infection rate in both females and males of H.
tibetensis. CLS-Ht and RLS-Ht can be observed within eggs, larvae, nymphs and adults, which indicates vertical
transmission in H. tibetensis. CLS-Ht was specifically distributed in the female ovaries and Malpighian tubules, whereas
RLS-Ht was detected within ovaries, Malpighian tubules, salivary glands and midguts of the ticks. Real-time qPCR
suggested that adult ticks carried the largest amount of CLS-Ht and RLS-Ht with CLS-Ht having a significantly higher
presence in females than in males (P < 0.05), whereas the presence of RLS-Ht showed no significant differences
between sexes. In the ovaries, CLS-Ht distribution reached a peak at one day post-engorgement, and then gradually
declined to a lower level, whereas no change was observed in RLS-Ht. In Malpighian tubules, the amount of both
symbionts displayed an increasing trend with time post-engorgement. In midguts and salivary glands, the amount of
RLS-Ht showed no significant differences.

Conclusion: Two novel endosymbionts (CLS-Ht and RLS-Ht) were characterized in H. tibetensis both showing a high
prevalence and stable vertical transmission. The described tissue distribution and population dynamics might imply the
important functions of these symbionts during the development and reproduction of ticks.
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Background
Ticks are obligate blood-sucking ectoparasites of many
vertebrate animals and can transmit a diversity of patho-
gens including bacteria (rickettsiae and spirochetes), viruses
and protozoans [1]. As the worldwide distribution and dy-
namic frequency from ‘on-host’ to ‘off-host’ changes, the in-
volvement of ticks in commensal, mutualistic or parasitic

interactions with different kinds of microorganisms be-
comes unavoidable [2, 3].
Many symbionts and complex bacterial communities

have been explored from different tick species [4, 5], dif-
ferent tissues and organs [6, 7], different life stages [8] and
different feeding statuses [9]. These symbionts include
Coxiella-like symbionts [10], Rickettsia-like symbionts,
Arsenophonus-like symbionts [11], Francisella-like symbi-
onts [12, 13], “Candidatus Midichloria mitochondrii” and
Wolbachia-like symbionts [14]. Some microbes have been
shown to provide the necessary nutrition needed for tick
development whereas others have been shown to interfere

* Correspondence: zhijunyu@cunet.carleton.ca; liujingze@hebtu.edu.cn
†Equal contributors
1Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of
Hebei Province, College of Life Sciences, Hebei Normal University,
Shijiazhuang 050024, China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wang et al. Parasites & Vectors  (2017) 10:259 
DOI 10.1186/s13071-017-2199-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-017-2199-0&domain=pdf
mailto:zhijunyu@cunet.carleton.ca
mailto:liujingze@hebtu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


with survival and transmission of tick-borne pathogens
[15]. Among the tick-associated symbionts, Coxiella-like
symbionts have been detected in several genera of ticks
[16, 17], and were found mainly infecting ovaries and ver-
tically transmitted by transovarial transmission [18, 19].
Eliminating of Coxiella-like symbionts with antibiotics
could cause severe reduction in fecundity and fitness of
Amblyomma americanum [20], and recent genome
studies on Coxiella-like symbionts in A. americanum and
Rhipicephalus turanicus suggested their specific functions
in providing required nutrients lacking in a blood meal
[21, 22]. Furthermore, Coxiella-like symbionts could im-
pact the colonisation and transmission of other pathogens
[16]. Similarly, Rickettsia-like symbionts characterized in
Dermacentor variabilis and Dermacentor andersoni show
little or no pathogenicity in laboratory animials, but can
influence the physiology of host ticks and affect the trans-
mission of the coinfected pathogenic rickettsiae [16]. A
metabolic reconstruction on the genome of Rickettsia
endosymbionts in both Ixodes scapularis and Ixodes
pacificus has revealed the present of folate (B9 vitamin)
biosynthesis genes [23]. Hence, characterizing the
symbiont dynamics in ticks may help understand the de-
velopment of ticks and reveal new strategies to control
tick-transmitted pathogens.
The tick Haemaphysalis tibetensis is an important

endemic-pathogen vector in the Qinghai-Tibet Plateau,
from which new strains of spirochete and orbivirus were
isolated [24, 25]. This species of tick can occur above an
altitude of 4,000 m where the environment is cold and
dry [26]. The microbial diversity and symbiontic dynam-
ics of H. tibetensis have not yet been explored, therefore,
the current study investigated the endosymbionts in H.
tibetensis, and the tissue tropism, population dynamics
and vertical transmission of these endosymbionts were
further evaluated in the hope of a better understanding
the relationship between this species of tick and its dif-
ferent microorganisms.

Methods
Collection and rearing of ticks
Free-living H. tibetensis ticks were collected by flag
dragging from vegetations in the Damxung County
(90°45′–91°31′E, 29°31′–31°04′N; altitude 4,353 m),
north Lhasa City, Tibet Autonomous Region, China,
and identified according to available characteristics
[27–29]. Part of the collected ticks (defined as field
colony) were frozen in liquid nitrogen and then
preserved at -80 °C until use; others were reared on
domestic rabbits Oryctolagus cuniculus as described
previously [30]. Offspring of H. tibetensis (defined as
laboratory colony) were maintained at 26 °C, humidity
80% with a light: dark regime of 16:8 h.

Dissection of ticks
Ticks were first surface sterilized with 70% ethanol
(3 washes) and then dissected sterilely under a
stereomicroscope at 10 × 23 magnification using a
micro-clipper in sterile phosphate-buffered saline
(PBS) (137 mM NaCl, 2.7 mM KCl, 4.3 mM
Na2HPO4 · 7H2O, 1.4 mM KH2PO4, pH 7.4) as de-
scribed previously [31]. Specific organs including
ovaries, Malpighian tubules, salivary glands and mid-
guts were separately collected in 1.5 ml sterile vials
(Axygen, Union City, USA) and frozen in -80 °C for
subsequent use.

Genomic DNA extraction
Total genomic DNA was extracted from each group of
adults (10 females and 10 males, respectively) from field
or laboratory colonies, and from dissected tissues and or-
gans using a Genomic DNA isolation kit (Qiagen, Hilden,
Germany). The concentration of the extracted genomic
DNA was measured using a Nanodrop (Thermo Fisher
Scientific, Waltham, USA) and the purity was evaluated
by electrophoresis of the extracts in 1% (w/v) agarose gels.

Bacterial 16S rRNA gene library and restriction fragment
length polymorphism (RFLP) analysis
The bacterial 16S rRNA gene library was constructed
using the genomic DNA of pooled ticks from field and
laboratory colony. A ~1,500 bp fragment of 16S rRNA
gene was amplified using bacterial universal primers
Eub27F/Eub1492R [32] (Table 1). Resultant PCR products
were purified with a PCR Purification Kit (Bioteke, Beijing,
China) and ligated into the pEASY-T1 cloning vector
using the pEASY-T1 simple cloning kit (TransGen,
Beijing, China). Recombinant DNA was transformed into
Escherichia coli TOP10 competent cells (TransGen,
China). Thereafter, both Hae III and RsaI restriction endo-
nucleases were applied to digest the gene library for subse-
quent RFLP analysis. Positive clones with different
restriction fragment patterns were sequenced (Sangon
Biotech, Shanghai, China) and blasted in the NCBI data-
base (http://www.ncbi.nlm.nih.gov/BLAST/).

Phylogenetic analysis
The 1,500 bp 16S rRNA gene sequences obtained were
compared with known sequences listed in the GenBank
nucleotide sequence databases, aligned using the
CLUSTAL W program, and manually checked with
excluded DNA gaps. The phylogenetic trees were pro-
duced according to the neighbor-joining method after
Kimura 2-parameter correction in the MEGA version 6
using bootstrap analyses with 1,000 replicates; the gram-
positive bacterium Bacillus subtilis (X60646) was used
as the outgroup species.
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Prevalence, tissue distribution and dynamic of the
symbionts
The prevalence, vertical transmission and dynamics of
the symbionts were evaluated and monitored using
SYBR green-based real-time qPCR. Briefly, genomic
DNA was isolated from several groups including individ-
ual adults (50 females and 50 males) from the laboratory
colony, and pooled samples of ticks in various develop-
mental stages (500 eggs, 200 larvae and 50 nymphs,
respectively), or from different organs. Standard curves
were established by serial dilutions of plasmids contain-
ing inserts of the amplified 16S rRNA gene sequences
from symbionts and host (tick) actins (Table 1). The
25 μl master mix was composed of 12.5 μl of 2×
TransStartTM Top Green qPCR SuperMix (TransGen,
China), 0.5 μl of each 10 μM primer [33] (Table 1),
10.5 μl H2O and 1 μl template DNA. The qPCR assays
were conducted in 96-well polypropylene plates in a
Mx3005P qPCR system (Agilent Technologies, Santa
Clara, USA) and conditions were set as follows: 94 °C
for 30 s; 40 cycles of 94 °C for 5 s and 60 °C for 30 s.
The primers with high amplification specificity were
verified by unique peaks observed in corresponding
melting curves. Each plate contained triplicate reactions
for each DNA sample. Melting curves were also traced
after each assay to confirm that the fluorescence signal
had been retrieved from specific PCR products and to
ensure the absence of primer dimers. Sterile water was
used as the negative control. Parametric data were tested
by t-tests and one-way analysis of variance using SPSS
17.0 for Windows software (SPSS Inc, Chicago, USA).

Results
Identification and phylogenetic analysis of symbionts
After constructing 16S rRNA gene libraries and RFLP ana-
lyses, two different bacterial genera were detected from the
H. tibetensis. After submitting the sequences to GenBank,
about 99 and 97% of the sequences showed sequence simi-
larities with Rickettsia japonica (GenBank NR074459) and
Coxiella-like symbionts from Dermacentor silvarum

(GenBank JN866592), and therefore they were assigned into
genera Coxiella (GenBank KU758901 and KU758902) and
Rickettsia (GenBank KU758903 and KU758904) and
ultimately named as CLS-Ht (Coxiella-like symbiont in H.
tibetensis) and RLS-Ht (Rickettsia-like symbiont in H. tibe-
tensis). After phylogenetic analysis, the partial 16S rRNA
gene sequence of CLS-Ht proved to be close to that of the
symbiotic Coxiella in Rhipicephalus sanguineus (GenBank
D84559), and RLS-Ht clustered with Rickettsia peacockii
(GenBank DQ062433) (Fig. 1).

Prevalence of symbionts
A total of 20 females and 20 males from the field colony
were collected and studied by diagnostic PCR and se-
quencing. The results showed that all the ticks were
CLS-Ht and RLS-Ht positive, suggesting that the infec-
tion rate of CLS-Ht and RLS-Ht might be 100% in H.
tibetensis (Additional file 1: Figure S1).

Vertical transmission of the symbionts
To test whether transmission of CLS-Ht and RLS-Ht was
transovarial or transstadial, samples of eggs, the first gen-
eration (F1) larvae, F1 nymphs, F1 females and F1 males
were screened. All the tick extracts were infected with
CLS-Ht and RLS-Ht, which is consistent with vertical
transmission (Additional file 2: Figure S2).

Tissue distribution of the symbionts
The distribution analysis revealed that CLS-Ht was
sepcifically harbored in ovaries and Malpighian tubules,
whereas RLS-Ht was harbored in ovaries, Malpighian
tubules, salivary glands and midguts of H. tibetensis
(Additional file 3: Figure S3).

Population dynamics of the symbionts
The density of CLS-Ht was high in adults but was at a low
level in eggs, larvae and nymphs. For RLS-Ht, the results
showed a low level in eggs and larvae but an increasing
trend was seen from larvae to nymphs, and reached the
peak in adults (Figs. 2 and 3). After feeding of larvae and

Table 1 Oligonucleotide primers used for PCR amplification and sequencing

Primer Species Target gene Nucleotide sequence
(5′–3′)

Annealing temperature
(°C)

Approx. product size
(bp)

Reference

CLS-F Coxiella 16S rRNA CACGTAGGAATCTACCTTGTAG 55 90 [4]

CLS-R CGTTTTGTTCCGAAGAAATTAT

Eub27F Eubacteria 16S rRNA AGAGTTTGATCCTGGCTCAG 55 1,500 [32]

Eub1492R TACCTTGTTACGACTT

Rickettsia354F Rickettsia 16S rRNA CAGCAATACCGAGTGAGTGATGAAG 56 350 [33]

Rickettsia647R AGCGTCAGTTGTAGCCCAGATG

Actin-F Haemaphysalis actin CGTTCCTGGGTATGGAATCG 55 100 [4]

Actin-R Haemaphysalis actin TCCACGTCGCACTTCATGAT
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nymphs, the CLS-Ht was decreased, whereas the RLS-Ht
was increased (Fig. 3). When compared between sexes,
CLS-Ht abundance was significantly higher in females
than in males (t(4) = 5.43, P = 0.011), whereas no obvious
differences were observed in RLS-Ht between females and
males (t(4) = 0.92, P = 0.41) (Fig. 4).
In the ovaries, the densities of CLS-Ht were at lower

levels in non-engorged stages, and increased on the first
day after engorgement but subsequently declined slightly
on the 5th day after engorgement (Fig. 5). In Malpighian
tubules, CLS-Ht was high one day after engorgement,

declined the second day after engorgement, and thereafter
the CLS-Ht increased again until the fifth day after
engorgement.
The amount of RLS-Ht in ovaries of H. tibetensis was

significantly higher than in any other organ (F(4, 21) = 7.19,
P = 0.012), where the highest copy ratio reached 70 and
varied randomly with time. In Malphibian tubules, the
amount of RLS-Ht showed an elevating trend with copy
ratio increasing from 10 to 40. In midgut, no obvious
changes occurred, as the lowest copy ratio seen in the first
day of engorgement (which was below 10) remained fairly
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stable afterward at 20. In the salivary glands, there
were no obvious changes with copy ratio consistently
below 2 (Fig. 6).

Discussion
Ticks are notorious for acting as vectors and also serve
as reservoirs of a great diversity of mammalian patho-
gens, hence the microbiome and endosymbionts within
ticks have attracted the attention of researchers since
each tick species harbors its own unique bacterial com-
munity [3, 34]. In the Tibetan tick H. tibetensis, CLS-Ht
and RLS-Ht were characterized by constructing 16S
rRNA libraries and RLFPs. Both CLS-Ht and RLS-Ht

showed 100% infectivity and vertical transmission in H.
tibetensis; however, differences in tissue-specific distribu-
tion was observed. The CLS-Ht mainly infects the ovar-
ies and the Malpighian tubes, which is consistent with
the previous observation of Coxiella-like symbionts in R.
sanguineus and R. turanicus ticks [18]. No tissue-specific
infectivity was observed for RLS-Ht, a conclusion that is
similar with the Rickettsia-like symbiont distribution in
H. longicornis and D. silvarum found previously [4]. The
coinfection of symbionts is common in ticks. Endosym-
bionts belonging to the genera Rickettsia, Coxiella and
Arsenophous have been found in A. americaum where
species of all of the three genera showed vertical
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transmission [35]. The Coxiella-like and Francisella-like
symbionts were found coinfected in Ornithodorus mou-
bata [36, 37]. In the tick R. turanicus and R. sanguineus,
both Coxiella-like and Rickettsia-like symbionts were de-
tected, and densities were overall stable throughout the
questing season [38].
In the tick H. tibetensis, the density of both CLS-Ht

and RLS-Ht varied with respect to the developmental
stage of the host, showing the highest density in adults.
A relatively low density was observed in eggs, larvae and
nymphs and the relative stable of density among these
developmental stages potentially due to the bottleneck
effect during vertical transmission [39]. A similar
phenomenon was also observed in the intracellular
symbiont “Candidatus Midichloria mitochondrii” har-
bored in Ixodes ricinus and numerous insect symbionts
[40–42]. The narrow bottleneck effect could give rise to

more genetic drift in symbiont populations, which would
cause further genome erosion and streamlining [43, 44],
and increasing evidences have been found in reduced
genome of Coxiella-like symbionts in A. americanum
[21] and R. turanicus [22].
A sex-specific distribution of CLS-Ht, with high density

in females and low density in males was observed in the
tick H. tibetensis. Similar results were also observed in the
distribution of Coxiella-like endosymbionts in H. hystricis,
H. lagrangei, H. obesa, H. shimoga [45] and R. turanicus
[18]. However, no sex-specific distribution was observed
for RLS-Ht in H. tibetensis. After feeding of larvae and
nymphs, the density of RLS-Ht was increased when com-
pared to the unfed group. Similar results were observed in
the amount of “Candidatus Midichloria mitochondrii” in
I. ricinus, hence, they were putatively involved in the feed-
ing process of ticks [46]. Both CLS-Ht and RLS-Ht were
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mainly distributed in the ovaries in this study similar to
the previous findings for D. silvarum [47]; however, the
dynamics of both endosymbionts was different. The
CLS-Ht density reached a peak one day after engorgement
but subsequently decreased to lower levels, whereas
RLS-Ht densities varied randomly while remaining rela-
tively high in ovaries compared to other organs in females.

Conclusions
Taken together, two novel endosymbionts (CLS-Ht and
RLS-Ht) were characterized, both showing a high preva-
lence and stable vertical transmission in H. tibetensis. The
described tissue distribution and population dynamics
might imply the important functions of these symbionts
during the development and reproduction of ticks. Further
investigations are required to explore the interactions be-
tween CLS-Ht, RLS-Ht and ticks in order to further
characterize the effects of the host-pathogen interactions.

Additional files

Additional file 1: Figure S1. PCR analysis of the prevalence of CLS-Ht
and RLS-Ht in H. tibetensis adults. (PPTX 215 kb)

Additional file 2: Figure S2. PCR analysis of the vertical transmission of
CLS-Ht and RLS-Ht in H. tibetensis. (PPTX 68 kb)

Additional file 3: Figure S3. Detection of infection sites of two symbionts
by PCR from different tissues of H. tibetensis. (PPTX 66 kb)
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