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Abstract

Background: Human granulocytic anaplasmosis is a zoonotic bacterial disease with increasing relevance for public
health in Europe. The understanding of its sylvatic cycle and identification of competent reservoir hosts are
essential for improving disease risk models and planning preventative measures.

Results: In 2012 we collected single ear biopsy punches from 964 live-trapped rodents in the Province of
Trento, Italy. Genetic screening for Anaplasma phagocytophilum (AP) was carried out by PCR amplification of
a fragment of the 16S rRNA gene. Fifty-two (5.4%) samples tested positive: 49/245 (20%) from the bank vole
(Myodes glareolus) and 3/685 (0.4%) samples collected from the yellow-necked mouse (Apodemus flavicollis).
From these 52 positive samples, we generated 38 grofl and 39 msp4 sequences. Phylogenetic analysis confirmed the
existence of a distinct rodent strain of AP.

Conclusions: Our results confirm the circulation of a specific strain of AP in rodents in our study area; moreover,
they provide further evidence of the marginal role of A. flavicollis compared to M. glareolus as a reservoir host for

this pathogen.

Phylogenetic analysis
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Background

Anaplasma phagocytophilum (AP) is a gram-negative
bacterium transmitted by ixodid ticks, mainly by Ixodes
ricinus in Europe [1, 2], although I tranguliceps may
play a critical role in the sylvatic cycle [3]. This zoonotic
pathogen, reported from about 100 species of verte-
brates worldwide [4], is responsible for anaplasmosis in
livestock and companion animals and therefore is of
recognised veterinary relevance. AP also causes human
granulocytic anaplasmosis (HGA), an emerging human
disease of public health concern [5, 6]. AP primarily invades
and replicates in polymorphonuclear leucocytes and usually
causes influenza-like symptoms in humans, although infec-
tion is occasionally fatal [7]. The epidemiological cycle of
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this pathogen in Europe is poorly understood but is likely
complex given a large number of possible reservoir hosts,
the broad distribution and extensive niches of tick vector
species and the various bacterial genotypes identified [6].

In Italy, as in the rest of Europe, the majority of stu-
dies on this pathogen have focused on the screening of
the main tick vector, I ricinus, with prevalence in
engorged ticks ranging from 1 to 20% in Europe (see [4]
and references therein) and from 4.4% (Province of Belluno
[8]) to 24.4% (Region of Lazio [9]). Other European studies
have confirmed AP infections in medium-sized and large
wild mammals, such as roe deer, red deer, wild boar and
red fox [2, 10] as well as in companion animals, like dogs,
horses and domestic ruminants [4, 11, 12]. Very little is
known about the role of passerine or migratory birds as
competent reservoirs or as tick dispersers [13, 14], al-
though Jahfari et al. [1] recently reported that AP genotype
IV tends to be associated with bird species. This genotype
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has not been detected in other vertebrates or questing
L ricinus ticks [1].

Here we focus on the role of small mammals, which
are well-known reservoirs of many tick-borne patho-
gens, but also crucial feeding hosts for various stages
of I ricinus [15]. Recent observations from central and
western Europe, including Italy, suggest that small
mammals may have independent epidemiological cy-
cles involving genetically distinct, non-pathogenic AP
genotypes [16—18]. In this study we use a collection of
tissue samples from live-captured animals in four study
sites at two different altitudes in the Province of
Trento, Italy, to investigate AP genotypes circulating in
rodents in more detail. A large number of PCR positive
samples allowed us to confirm the existence of distinct
AP strains associated with rodents. Moreover, we ex-
tended the knowledge on AP prevalence in rodents in
this area.

Results

Four rodent species belonging to A. flavicollis (n = 685),
M. glareolus (n = 245), A. sylvaticus (n = 28) and
Microtus multiplex (n = 6) were captured. Ear biop-
sies from all 964 individuals were screened for AP.
Fifty-two rodents tested positive with an overall PCR
prevalence of 5.4% (52/964, 95% CI: 3.97-6.83%); ran-
ging from 0% for A. sylaticus and M. multiplex to
0.4% (3/685; 95% CI: 0.07-0.87%) for A. flavicollis
and 20% (49/245; 95% CI. 9-31%) for M. glareolus.
The difference in prevalence among the two most
represented species, A. flavicollis and M. glareolus,
was statistically significant (y* = 130.82, df= 1, P < 0.0001),
with more PCR-positive bank voles than yellow-necked
mice. Only rodents trapped at high altitude study
sites were positive for AP (Table 1). The ratio of cap-
tured rodent species also differed greatly at the two
altitudinal levels with 301 A. flavicolllis and 3 M.
glareolus at the lower altitude sites (100 to 1), and
384 and 242, respectively, at the higher altitude sites
(1.5 to 1). AP prevalence between species in the two
positive sites was compared, but no statistical diffe-
rences were observed (Fisher’s exact test, P > 0.01).
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A total of 1746 ticks (1717 larvae; 29 nymphs) were
counted on rodent hosts (see Table 1). Apodemus flavicollis
hosted a higher number of ticks (n = 1526) compared to
M. glareolus (n = 220) (Fisher’s exact test, P < 0.0001). The
mean and total number of ticks hosted by rodents was
higher at low altitude study sites (mean = 3.86; n = 1142)
compared to high-altitude sites (mean = 0.97; n = 604).
The 11 specimens of I trianguliceps ticks were collected
from the yellow-necked mouse and the bank vole species
and were represented by 1 larva, 6 nymphs and 4 adults.

Two hundred and fifty-one animals out of 930 (27%)
from this study were screened for the presence of AP in
blood pellets in the previous work [18]. One animal
tested positive in both ear and blood samples, while 12
animals previously negative on a blood sample, now
tested positive on ear punch sample.

The partial 16S rRNA gene was sequenced for all 52
positive PCR products and confirmed as AP. From these,
we also obtained 39 msp4 and 38 groEl sequences. The
mean nucleotide diversity (r) among the A. phagocyto-
philum sequences was 0.073 (range 0-0.161) for msp4
and 0.034 (range 0-0.192) for groEL. The maximum
likelihood phylogenetic trees for the two partial genes,
including previously published reference samples [18],
and available sequences from the GenBank database,
had similar topologies and consisted of two main clades
(Fig. 1). The first clade included haplotypes detected in
questing I ricinus ticks and various vertebrate hosts
such as deer, birds, domestic sheep, domestic dogs
and humans from various European countries and the
USA. The second clade included only haplotypes from
feeding I trianguliceps from Slovakia, as well as ro-
dents and insectivores from various EU countries.
Specifically, all groEL sequences generated here, re-
gardless of rodent host species, were 100% identical
to groEL sequences of AP from blood samples of
bank voles from Italy (GenBank: KF031390) and 99%
to groEL sequences of AP extracted from I triangu-
liceps feeding on voles from Slovakia (GenBank:
KF383233, KF383235) [17, 18] (Fig. la). The msp4
representative sequence was 100% identical with that
from blood samples of bank voles from Italy (Gen-
bank: KF031422-KF031424, KF031426) and the UK

Table 1 Total and average number of ticks by stage, counted on rodent species in the high and low altitude sites in 2012 (Province

of Trento, Italy)

High altitude sites

Low altitude sites

Species Total no. of larvae Total no. of nymphs Total Total no. of larvae Total no. of nymphs Total
(Mean) (Mean) (Mean) (Mean) (Mean) (Mean)
Apodemus flavicollis 383 (0.99) 2 (0.005) 385 (1) 1124 (3.84) 17 (0.06) 1141 (3.89)
Myodes glareolus 209 (0.87) 10 (0.04) 219 (0.91) 1(0.33) 0 1(0.33)
Total no. of ticks 604 (0.97) 1142 (3.86)

(Mean)
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Fig. 1 The distance tree inferred by Maximum likelihood analysis using the Tamura-Nei model of 1117 bp long groEL gene sequence (@) and 298 bp long
msp4 gene sequence (b) of A. phagocytophilum. Host species, sequences names, two-letter country code and GenBank accession numbers are shown. The
numbers at the nodes are bootstrap values expressed as percentages of 1000 bootstrap replicates: the bar (0.02) represents the number of mutations per site.
The analysis involved 59 nucleotide sequences of gro£l and 64 nucleotide sequences of msp4. Representative samples of this study are indicated with =
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(GenBank: FJ469653), as well as from I trianguliceps
feeding on rodents from Slovakia (GenBank: KF420109)
[16-18] (Fig. 1b).

Discussion

Understanding the natural infection cycle of AP is com-
plicated by the presence of several genetic variants car-
ried by some tick vectors feeding on a variety of
vertebrate host species. HGA cases are the third most
common tick-borne human diseases in USA and Europe
[19], although European cases are less severe than Asian
and North American ones [20, 21]. Not all AP genetic
variants identified are pathogenic to humans, and
even if several variants may coexist in the same geo-
graphical area, they appear to have distinct enzootic
cycles [1, 16, 22]. For example, in the eastern USA, L
scapularis hosts both the Ap-V1 non-pathogenic va-
riant as well as Ap-ha pathogenic variant; however,
among vertebrates, Ap-V1 is only found in the white-
tailed deer (Odocoileus virginianus) [23], while Ap-ha only
in the white-footed mouse (Peromyscus leucopus) [24].

In Europe, several studies have confirmed the impor-
tance of I ricinus as a vector of AP [4] and the role of
small mammals in maintaining the immature stages of
this tick [17, 25, 26]. However, AP infection prevalence
in rodents varies considerably between studies and ro-
dent species [4]. A recent phylogenetic analysis sug-
gested that the rodent AP strains belonged to a different
cluster to that of other mammals and involved another
tick species, I trianguliceps [1]. For this reason, we per-
formed our analysis on a large rodent dataset to improve
our knowledge of a possible independent epidemio-
logical cycle for same AP genotype.

In a previous study, we presented an assessment of the
circulating genotypes of AP in the rodents in the Pro-
vince of Trento, using blood samples [18]. The overall
prevalence in 1295 animals (A. flavicollis, Moscardinus
avellanarius and M. glareolus) was 0.3% (4/1295), but
only bank voles were positive (4/100; 4%). In this study,
the overall prevalence was 5.4% (52/964). Bank voles
were 20% (49/245) PCR-positive and yellow-necked mice
0.4% (3/685). Similar results for AP prevalence in bank
voles have been obtained across Europe; for example,
19.2% in Switzerland from blood and tissue samples
[25], 3.6—20.5% in Slovakia from ear and spleen samples
[17], 13.8-23.1% in France from blood and spleen sam-
ples [27] and 22% in Finland from blood samples [28].
To increase the number of bank voles we included sites
above 1000 m asl. In fact although this species is well
represented in temperate woodlands, it becomes scarce
in Mediterranean areas, its southern limit of distribution,
where it is influenced by tree cover and height, the pre-
sence of dead vegetation, moss and rocks, and moist
woodlands [29]. In our study area, these characteristics
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are satisfied above 1000 m asl where the climate is clas-
sified as alpine-continental with an average annual
temperature around 8-9 °C and 1000—1500 mm precipi-
tation [30].

In this study, 251 animals screened using ear biopsies
were previously PCR-screened from blood pellets in
Bardkova et al. [18]. Twelve animals testing negative in
blood samples tested positive from ear punch samples
posing concerns about PCR sensitivity or which sample
is better to test. Therefore, possible reasons for these re-
sults could be that 1) AP infection in the peripheral
blood stream of rodents seems to be short-lived [3, 25,
26, 31, 32]; 2) at the onset of infection the pathogen
stays in the peripheral blood before spreading to the
overall circulatory system, similar to other tick-borne
pathogens [33], but the detection level of AP DNA in
blood of non-immune animals reaches and exceeds the
threshold of PCR sensitivity only a few days after tick
detachment [34]. Since ear biopsies are a less invasive
biological sample yet more efficient in the detection of
AP compared to blood or organs collection in rodents,
we conclude that ear biopsies should be used in the
future for screening AP whenever possible.

Our study presents a phylogenetic analysis of the lar-
gest number of AP sequences from rodents thus far. The
use of specific molecular markers has recently helped to
discriminate between genotypes and revealed the exis-
tence of an independent epidemiological cycle involving
rodents as reservoir hosts, the tick I trianguliceps as a
vector [16, 17] and a non-pathogenic AP strain. The
groEL and msp4 sequences generated in this study (Fig.
1) confirm that a single rodent AP genotype circulates in
Italy, distinct from the strains found in other hosts, as
previously suggested by Bown et al. [16] and by
Bardkova et al. [18]. This genotype is also identical to
those reported from the UK in the field vole (Microtus
agrestis) and bank vole [3], and in Slovakia in the
yellow-necked mouse and L trianguliceps [17].

Among all the questing and feeding ticks screened for
the presence of AP in our previous study [18], only I
ricinus tested positive, and the AP genotype was diffe-
rent from that found in rodents [6, 16—18, 26]. In this
study the number of ticks counted on the rodents was
higher at low altitudinal level (Table 1), in particular on
the yellow-necked mouse. Other authors in Europe re-
ported a higher infestation rate of I ricinus on Apodemus
species compared to M. glareolus [35-38] although some
exceptions are noted [39-42]. The role of L ricinus as
important vector of rodent AP infections in continental
Europe has been described [25], but evidence showed that
if only this species is present, AP cannot be maintained in
woodland rodent communities, on the contrary, this is
achieved where I trianguliceps is also present [3, 26]. In
addition, no efficient transmission of AP to I ricinus
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Fig. 2 Map of the Province of Trento, Italy, showing the position of the rodent sampling sites (stars indicate high altitude sites; circles indicate
low altitude sites). Map is a high-resolution digital elevation model (10 m) and land use map both provided by the “P.AT. SILAT." service of the
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larvae under laboratory conditions has been confirmed
using field-captured tick-infested rodents [43]. Although
some authors reported the presence of a small proportion
of infected I ricinus larvae, supporting the hypothesis
that all three tick stages are involved in AP transmis-
sion [1, 32, 44], this mode remains minor and needs
to be further investigated. The presence of I trianguliceps
has been recently confirmed in northern Italy [18]. I
trianguliceps, also known as vole tick, is endophilic, host
specialist, non-questing and usually present at very low
level on its rodent host [3, 45]; for these reasons chances
of contacts with humans are unlikely. Nonetheless, the
main concern is that the sympatric presence of both spe-
cialised and generalised species has been shown to have a
role in maintaining a high level of infection on rodent
hosts [1, 3, 46]. In our specific context, I trianguliceps
may be important in maintaining high infection levels in
the reservoir hosts with regards to Babesia microti and
Anaplasma phagocytophilum [1, 3, 47]. Moreover, due to
the complexity of interactions between ticks, vertebrates

and associated pathogens, the enzootic infections main-
tained in an L trianguliceps-rodent cycle could escape into
other hosts, including humans [3].

Conclusions

Using a high number of positive rodent samples and
sequenced partial genes than previous studies we have
shown that in the Province of Trento, Anaplasma
phagocytophilum is present and circulates predominantly
among rodents, especially bank voles, with a distinct
enzootic cycle. The presence of the tick species, L trian-
guliceps, could not be quantified. The strain of AP found
in rodent ear punches in this study was 100% identical
to that found in rodents and I trianguliceps reported in
other European studies. From an infectious control
perspective, it is important to clarify the role of small
mammals in the transmission cycle of Anaplasma
phagocytophilum and the role of other tick species in
maintaining high infection levels in the reservoir hosts
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and acting as possible bridging vectors for the rodent
genotype toward humans or domestic animals.

Methods

Study sites and rodent sample collection

Small rodents were live-trapped in the Province of
Trento, Italy, from April to October 2012 using
multiple-capture Ugglan live traps (model 2, Granhab,
Sweden), set in 8 x 8 square array grids with a 10 m
inter-trap distance. Four grids were set at each of four
locations in beech forests where both rodents and ticks
are common: two locations were at 700 m above sea
level (asl) and two at 1200 m asl (Fig. 2). Each individual
was tagged with a subcutaneous passive integrated trans-
ponder (pit-tag ID100 Trovan’, UK) to ensure that each
individual was identifiable and only sampled once. We
routinely counted ticks on hosts, represented mainly by
the larval stage, but did not remove them, so the identi-
fication with the naked eye at species level was not pos-
sible and therefore we cannot assess the proportion of
the two feeding tick species. For the presence and identi-
fication of Ixodes species on rodents, we refer to the pre-
vious study described in Bardkovd et al. [18], where
some tick specimens were randomly collected from the
animals and genetically identified, contributing to the
first record of I trianguliceps in the Province of Trento.
An ear biopsy was taken at first capture using sterile dis-
posable ear punch needles (@ 3 mm), and samples were
stored individually and frozen at -80 °C until analysis.
Since both A. flavicollis and A. sylvaticus occur in sym-
patry in the Province of Trento and are not reliably
identifiable by eye, we confirmed that all Apodemus cap-
tured were A. flavicollis following Michaux et al. [48]. Of
the 930 animals screened using an ear biopsy in this
study, 251 were previously screened for the presence of
AP in blood pellets [18].

Anaplasma phagocytophilum detection

DNA was isolated from each ear biopsy using the
DNAeasy blood and tissue kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The presence of
AP was detected by amplifying 546 bp of the 16S rRNA
gene using a nested PCR with primers ge3a/gelOr and
ge9f/ge2 after [49]. A reaction without template (water
added) served as negative control while AP-DNApositive
amplified from I ricinus was used as positive control.
Positive PCR products were purified using Pure Link
quick gel extraction and PCR purification combo kit
(Invitrogen, Thermo Fisher Scientific Baltics, Lithuania)
and sequenced using the primers listed above. A BLAST
search was performed for all sequences. For AP positive
samples, variable partial genes, msp4 and groEL were amp-
lified and sequenced as already described in [50, 51].
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Statistical and phylogenetic analysis

Fisher’s exact test or Chi-squared tests were carried out
to determine if there were statistical differences in the
prevalence of AP between the two main rodent hosts
and among sites and altitudes.

Nucleotide sequences were verified using Sequencer
4.7, assembled using MEGAG6 software and further
aligned with ClustalW [52]. The alignment showed that
all samples from this study were 100% identical. There-
fore only one representative sequence was used for sub-
sequent phylogenetic analysis. MEGA version 6 was used
to construct a phylogenetic tree for each gene fragment
(Fig. 1) [52]. The maximum-likelihood algorithm [53] with
Tamura-Nei model [54] were used with Felsenstein’s [55]
bootstrap test of 1000 iterations. The analysis involved 59
nucleotide sequences of groEl and 64 nucleotide sequences
of msp4 downloaded from NCBI and 1 representative groEL
and msp4 nucleotide sequence from this study (GenBank
Accession nos. KX517839 and KX517840, respectively).

Abbreviations
AP: Anaplasma phagocytophilum; Asl: above sea level; HGA: human
granulocytic anaplasmosis
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