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Abstract

Background: Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory
cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well
characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis
are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in
mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis
lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown.

Methods: A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members
of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and
immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell
activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining.
Migration was analyzed in transwell plates.

Results: Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and
ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells.
The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated
ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In
addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including
a-smooth muscle actin (a-SMA) and collagen type | (Collagen-l), and promoted cell migration.

Conclusions: CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent
B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.
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Background

Clonorchiasis, a food-borne zoonosis, is caused by
Clonorchis sinensis infection [1-3]. Adults of C. sinensis
parasitize the intra-hepatic bile ducts of their hosts. Long-
term infection by C. sinensis results in chronic liver injury
leading to liver fibrosis [4, 5]. Mechanical damage caused
by the adult C. sinensis worm and excretory/secretory
proteins (ESPs) as well as the interplay between worms
and the host immune system are responsible for patho-
logical changes [6, 7]. However, the exact molecular
mechanisms involved in C. sinensis-induced liver fibrosis
remain unclear.

IL-25 (also known as IL-17E) is a member of the IL-17
cytokine family and is considered a T helper type 2
(Th2) cell-derived cytokine [8]. IL-25 is also expressed
in alveolar macrophages, mast cells and eosinophils
[9-11]. Unlike the proinflammatory effects exerted by
other members of the IL-17 family, IL-25 promotes
type 2 inflammation by locally upregulating IL-4, IL-5
and IL-13 [8, 9]. In mice, the intranasal administration
or forced expression of IL-25 induces pulmonary in-
flammation similar to asthma [12, 13]. Administration
of an IL-25 blocking antibody in allergen-exposed mice re-
sults in a moderate reduction in airway inflammation [14].
IL-25 also has the ability to modulate tumor pathogenesis.
IL-25 administration in mouse xenograft models of hu-
man melanoma, breast, lung, colon, and pancreatic can-
cers induces antitumor activity that requires the presence
of B cells and eosinophil infiltration [15]. In addition,
IL-25, which is essential for host defense, is induced at
high levels following helminth infection [16, 17].

Liver fibrosis is an excessive wound-healing reaction
associated with chronic injury to the liver, such as that
caused by virus and parasite infections, alcohol abuse,
and metabolic and autoimmune diseases [18, 19]. When
the liver is subjected to chronic injury, hepatic stellate
cells (HSCs) are exposed to autocrine or paracrine signals,
including oxidative stress, apoptotic bodies, and cytokines
such as TGF-P1 and PDGE and transform into activated
myofibroblast-like cells [20]. Activated HSCs not only gen-
erate extracellular matrix (ECM) but also secrete cytokines
and growth factors to promote the development of liver
fibrosis [21]. Liver fibrosis is a sequela of various inflam-
matory processes comprising both innate and adaptive
immune responses [22, 23]. Infection with C. sinensis is
characterized by a Th2-dominant immune response,
which is vital for the development of liver fibrosis [24—26],
and hepatic macrophages also reportedly play a critical
role [27]. Supporting this link, macrophages were shown
to produce IL-25 in a rat model of particle-induced airway
inflammation [9]. IL-25 is a Th2 cytokine, and according
to the same study investigating rat airway inflammation,
hepatic macrophages overexpress IL-25 and may contrib-
ute to liver fibrosis caused by C. sinensis.
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Lysophospholipase A (LysoPLA) is a member of the
phospholipase family and has been identified in many
mammalian tissues and cells. This enzyme deacylates
lysophospholipids and likely plays a pivotal role in the
virulence and pathogenesis of parasites and fungi [28-30].
Previously, we expressed and characterized C. sinensis
lysophospholipase A (CsLysoPLA) and observed that it
upregulated the expression of pro-fibrotic genes in a
hepatic stellate cell line (LX-2) [30, 31]. In the present
study, we detected IL-25 levels in a macrophage cell
line (RAW264.7) treated with CsLysoPLA in vitro and
analyzed levels of signaling molecules. Furthermore, we
evaluated cell migration and mRNA expression levels
in LX-2 cells after IL-25 administration.

Methods

Expression and purification of recombinant CsLysoPLA

As previously described [30, 31], the CsLysoPLA coding
region was amplified by polymerase chain reaction (PCR)
using a cDNA plasmid library derived from adult C. sinensis
worms as a template. The PCR product was cloned into the
Hisg-tagged expression vector pET-28a(+) after digestion
with BamH I/Xho I (Thermo Fisher Scientific, Waltham,
MA, USA). The recombinant plasmid was then trans-
formed into Escherichia coli BL21 (DE3) for overexpression
induced by isopropyl-B-D-thiogalactoside (IPTG). Escheri-
chia coli were harvested by centrifugation and resuspended
in phosphate-buffered saline (PBS), sonicated on ice, and
centrifuged to collect the supernatant. The recombinant
protein was purified using a His Bind Purification Kit
(Novagen, Darmstadt, Germany), eluted with 150 mM
imidazole and dialyzed in PBS to remove the imidazole.

Culture and treatment of RAW264.7 and LX-2 cells

RAW?264.7 cells (2.5 x 10° cells/well) were seeded in
24-well plates in Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco, Carlsbad, USA) containing 10% heat-
inactivated fetal bovine serum (FBS), 100 U/ml penicil-
lin, and 100 pg/ml streptomycin. Cells were cultured at
37 °C in an atmosphere containing 5% CO, until they
reached 80% confluence. The cells were then exposed
to CsLysoPLA (1, 5, 10 or 20 pg/ml) for 12 h, 24 h and
48 h, C. sinensis fructose-1,6-bisphosphatase (CsFBPase)
(20 pg/ml) and mouse serum albumin (MSA, 20 pg/ml)
(Fitzgerald, MA, USA) as control proteins, or equal vol-
umes of PBS as blank controls. To investigate the effects
of signaling inhibitors or activators, RAW264.7 cells were
treated with CsLysoPLA (10 pg/ml) in the presence or ab-
sence of H-89 (a PKA inhibitor) (20 pM) (Beyotime,
Shanghai, China) or SC79 (an AKT activator) (4 pg/ml)
(Sigma-Aldrich, Steinheim, Germany) for 15 min, 30 min,
60 min and 90 min as previously described [32—34]. LX-2
cells (2 x 10° cells/well) were seeded in 6-well plates and
grown to 70% confluence at 37 °C in an atmosphere
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containing 5% CO, followed by serum starvation for 24 h.
The cells were then stimulated with IL-25 (20 ng/ml)
(R&D, Minneapolis, USA) with or without BAY 11-7083
(an NF-«B inhibitor) (0.1 pg/ml) (Beyotime, Shanghai,
China) for 24 h; TGF-B1 (5 ng/ml) (Peprotech, Rocky Hill,
USA) was used as a positive control.

Reverse transcription and quantitative real-time PCR
Total cellular RNA was extracted from RAW264.7 or
LX-2 cells using TRIzol reagent according to the man-
ufacturer’s protocol. cDNA was synthesized using a
RevertAid First Strand ¢cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and amplified
on a Bio-Rad CFX96 Real-Time system (Bio-Rad,
Hercules, CA, USA) with SYBR Green I (Takara, Dalian,
China) and specific primers for quantitative analysis.
Briefly, the cDNA was pre-denatured at 95 °C for 30 s,
followed by 40 cycles at 95 °C for 5 s and 60 °C for
30 s. B-actin was amplified as a house-keeping gene for
each sample. Relative fold-changes in mRNA expression
were determined by calculating 24*“", Primer sequences
are listed in Table 1.

Table 1 Primer sequences for quantitative real-time PCR

Gene Sequence (5’-3') Accession number

a-SMA Forward: CCAGGGCTGTTTTCCCATCC NM_001613.2
Reverse: GCTCTGTGCTTCGTCACCCA

IL-25 Forward: TCTACCGAGTCTCCTTGGCT NM_080729.3
Reverse: ATTGTACACCTGGCCCTCTC

TNF-a Forward: GACAGTGACCTGGACTGTGG NM_013693.3
Reverse: TGAGACAGAGGCAACCTGAC

iNOS Forward: ACCTTGTTCAGCTACGCCTT NM_010927.3
Reverse: CATTCCCAAATGTGCTTGTC

IL-6 Forward: AGTCCGGAGAGGAGACTTCA ~ NM_031168.1
Reverse: ATTTCCACGATTTCCCAGAG

PKA Forward: CCTGTTCCCACCCTATCACT NM_001277898.1
Reverse: TGGAAGCCATCACTCAGTCT

B-Raf Forward: TCCACGTTGGCATTGTTAGT XM_006505358.2

Reverse: TCACTCCTGTAAGCGTCCTG
ERK1 Forward: TCCCAGGAGGACCTTAATTG
Reverse: AAGGTTAACATCCGGTCCAG

NM_011952.2

ERK2 Forward: TGAGGATGTTAGGCTTCGTCT NM_001038663.1
Reverse: AAAGTCCACTCCCACAATGC

B-actin® Forward: TGGACTTCGAGCAAGAGATG NM_001101.3
Reverse: GAAGGAAGGCTGGAAGAGTG

B-actin® Forward: GGAATGGGTCAGAAGGACTC NM_007393.5

Reverse: CATGTCGTCCCAGTTGGTAA

#Homo sapiens
EMus musculus
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Immunofluorescent staining

RAW?264.7 or LX-2 cells were cultured on slides. The
cells were fixed with 4% paraformaldehyde for 20 min at
room temperature (RT), then washed with PBS and
permeabilized in PBS containing 0.3% Triton X-100 for
10 min. The slides were blocked with PBS containing 1%
bovine serum albumin for 30 min and incubated with
a primary monoclonal antibody against IL-25 (R&D,
Minneapolis, USA) or collagen type I (Collagen-I)
(Abcam, London, UK) overnight at 4 °C. The slides
were then incubated with a Cy3-conjugated or FITC-
conjugated secondary antibody (Proteintech, Chicago,
USA) for 1 h in darkness. Finally, the slides were stained
with 4',6-diamidino-2-phenylindole (DAPI) and mounted
with antifade reagent (Beyotime, Shanghai, China). Images
were obtained using an Olympus BX63 microscope
and cellSens Dimension (Versionl.8) software (Olym-
pus, Tokyo, Japan). The intensity of IL-25 and collagen
type I staining was analyzed with Image-Pro Plus v6.0
software.

Western blotting

Protein lysates from cells receiving different treatments
were prepared using RIPA buffer (Beyotime, Shanghai,
China) containing protease and phosphatase inhibitors
(KeyGEN, Nanjing, China). Equal amounts of total
protein (30 pg of protein per lane) were loaded onto
gels for electrophoresis and then transferred onto
PVDF membranes (Millipore, Billerica, USA), followed
by incubation in blocking buffer (25 mM Tris, pH 7.4,
0.15 M NaCl, 0.1% Tween-20, 5% nonfat milk) for 1 h
at RT. The membranes were incubated with primary
antibodies against a-smooth muscle actin (a-SMA)
(Proteintech, Chicago, USA), IL-25 (R&D, Minneap-
olis, USA), total ERK1/2, phospho-ERK1/2, total AKT,
phospho-AKT, phospho-B-Raf (Cell Signaling Technol-
ogy, Boston, USA) or GADPH (Proteintech, Chicago,
USA) at 4 °C overnight. After washing, the membranes
were incubated with HRP-conjugated secondary anti-
bodies for 1 h at RT. Proteins were visualized with an ECL
kit (Advansta, CA, USA). GADPH was used as a loading
control. The intensity of Western blotting bands was ana-
lyzed with Quantity One v4.6.2 software.

Cell migration assays

Cell migration assays were performed as previously
described [35]. Briefly, the upper wells of transwells
with 8.0-um pore polycarbonate membrane inserts in
a 24-well plate (Corning, NY, USA) were filled with
100 pl of serum-free medium containing 5 x 10* LX-2
cells, and the lower wells contained IL-25 (20 ng/ml)
in 600 pl of serum-free medium. The plate was
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incubated for 12 h at 37 °C. Migrated cells adhering
to the undersides of inserts were fixed with 100%
methanol for 30 min and then stained with 0.1% crys-
tal violet (Leagene, Beijing, China) for 15 min. Mi-
grated cells were counted by enumerating the number
of stained cells in five independent fields for each ex-
periment under a light microscope (Leica, Wetzlar,
Germany).

Statistical analysis

All data are presented as the mean + SEM. Data were
analyzed by performing independent Student’s t-tests
and ANOVA followed by Bonferroni’s post-hoc multiple
comparisons test using SPSS software for Windows (ver-
sion 16.0; SPSS, Inc., IL, USA). A P value <0.05 was con-
sidered statistically significant.
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Results

CsLysoPLA upregulated IL-25 expression in the RAW264.7
macrophage cell line

CsLysoPLA stimulation increased IL-25 transcription
levels in a time-dependent manner in RAW264.7 cells
(Fazg) = 27.805, P < 0.0001) (Fig. 1a). To confirm the
specificity of this CsLysoPLA-induced IL-25 transcrip-
tion, CsFBPase, a member of the C. sinensis excretory/
secretory proteins (CsESPs), and MSA were applied as
controls. Unlike CsLysoPLA, incubation with CsFBPase
or MSA did not elicit significant changes in IL-25
mRNA levels (Fig. 1a). Furthermore, the levels of other
cytokines associated with macrophage function, such as
TNF-q, iNOS, IL-6, IL-4, IL-13, IL-10 and IL-33, did not
change significantly in RAW264.7 cells (Fig. 1b). West-
ern blotting also revealed an increase in IL-25 protein
expression compared with the expression in PBS-treated
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Fig. 1 IL-25 is highly expressed in CsLysoPLA-stimulated RAW264.7 cells. a Quantitative real-time PCR analysis of IL-25 in RAW264.7 cells
treated with CsLysoPLA (1, 5, 10 and 20 pg/ml) and PBS (0 ug/ml, negative control) for 12, 24 and 48 h. CsFBPase (20 pug/ml) and MSA

(20 pg/ml) were used as control proteins. Data are shown as mean + SEM. b Quantitative real-time PCR analysis of TNF-q, iNOS, IL-6, IL-13,
IL-10 and IL-33 in RAW264.7 cells treated with CsLysoPLA (1, 5, 10 and 20 pg/ml) and PBS (0 pg/ml, negative control) for 24 h. ¢ Western
blot analysis of IL-25 in RAW264.7 cells treated with CsLysoPLA (10 pg/ml) and the equal volume of PBS for 24 h. GADPH was used as a
loading control. d Quantification of western blot data in Fig. 1c. Data are shown as mean + SEM. ** P < 0.01, ***P < 0.001. e Immunofluorescence
staining analysis of IL-25 (green) in RAW264.7 cells treated with CsLysoPLA (10 ug/ml) and the equal volume of PBS for 24 h. Nuclei were
stained with DAPI (blue). Original magnification x100. Scale-bars: 200 um. f Quantification of immunofluorescence data in Fig. 1e. Data are
shown as mean + SEM. ***P < 0.001
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RAW?264.7 cells (Fig. 1c, d). Similarly, stronger green
fluorescence emitted by an anti-IL-25 monoclonal anti-
body was observed in RAW264.7 cells incubated with
CsLysoPLA compared with the PBS group (Fig. le, f).

CsLysoPLA stimulated IL-25 expression in RAW264.7 cells
via the PKA-dependent B-Raf-ERK1/2 signaling pathway
After 24 h, increased mRNA levels of protein kinase A
(PKA) (Fp6) = 19.815, P = 0.002), B-Raf (Fip) = 17.593,
P = 0.003), extracellular signal-regulated kinase 1 (ERK1)
(Fpe = 61.151, P < 0.0001) and extracellular signal-
regulated kinase 2 (ERK2) (F(o,6) = 14.275, P = 0.005) were
detected in CsLysoPLA-stimulated RAW264.7 cells
(Fig. 2a). Western blotting showed that CsLysoPLA induced
both B-Raf and downstream ERK1/2 phosphorylation
15 min after stimulation, and phosphorylation gradually
increased until 90 min after stimulation (Fig. 2b, c). By
contrast, CsLysoPLA inhibited AKT phosphorylation. The
PKA inhibitor H-89 attenuated B-Raf and ERK1/2 phos-
phorylation from 15 min to 90 min (Fig. 2b, c). The AKT
activator SC79 also reduced the levels of phosphorylated
ERK1/2 in RAW264.7 cells (Fig. 2d, e). Moreover, both
H-89 (¢4 = 3.933, P = 0.017) and SC79 ({4 = 4.480,
P = 0.011) inhibited IL-25 expression induced by CsLy-
soPLA (Fig. 2f).

IL-25-induced activation and migration of LX-2 cells

Both a-SMA and Collagen-1 are markers of activated
HSCs [19]. a-SMA mRNA levels in LX-2 cells were sig-
nificantly upregulated (4, = 4.634, P = 0.010) following
stimulation with IL-25 for 24 h (Fig. 3a), and a-SMA
protein levels exhibited the same change (Fig. 3b, c).
Furthermore, LX-2 cells were pretreated with an NF-xB
inhibitor (BAY 11-7083) before stimulation with IL-25.
BAY 11-7083 blockade resulted in a reduction in a-SMA
protein expression compared with IL-25 treatment
(Fig. 3d, e). Red fluorescence from a Cy3-conjugated
anti-collagen-I monoclonal antibody was markedly
stronger in IL-25-treated LX-2 cells compared with cells
that underwent PBS treatment (Fig. 3f, g). In addition,
much greater amounts of LX-2 cells migrated to the lower
well following IL-25 treatment compared with PBS-
treated cells (¢4 = 2.984, P = 0.017) (Fig. 3h, i).

Discussion

Liver fibrosis caused by C. sinensis infection affects pa-
tient quality of life, but the underlying mechanisms have
yet to be clarified. Liver fibrosis is a well-known repair
response during liver injury, and HSCs and many cyto-
kines take part in its progression [19-21]. In the current
study, treatment with CsLysoPLA induced IL-25 expres-
sion in RAW264.7 cells. PKA, B-Raf, and ERK1/2
mRNA levels in CsLysoPLA-stimulated RAW264.7 cells
increased. CsLysoPLA induced the phosphorylation of
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both B-Raf and ERK1/2, whereas the PKA inhibitor H-
89 attenuated B-Raf and ERK1/2 phosphorylation, con-
firming the role of CsLysoPLA. The AKT activator
SC79 reduced the levels of phosphorylated ERK1/2 in
RAW?264.7 cells. Both H-89 and SC79 inhibited IL-25
upregulation induced by CsLysoPLA. In addition, IL-25
upregulated the expression of a-SMA and Collagen-I in
LX-2 cells and promoted cell migration.

The host immune response to C. sinemsis infection
tends to be Th2-dominant [24, 25]. IL-25 is a Th2 cyto-
kine regulator, and previous reports revealed an associ-
ation between IL-25 and pulmonary disorders such as
pulmonary fibrosis and airway remodeling [14, 36]. Ac-
cording to a previous study investigating a rat model of
particle-induced airway inflammation, macrophages are
potential sources of IL-25 [9]. Additionally, CsLysoPLA
was proposed to play a role in C. sinensis-induced liver
fibrosis. Therefore, we stimulated RAW264.7 cells with
CsLysoPLA and observed that CsLysoPLA significantly
promoted the expression of IL-25 but not TNF-a,
iNOS, IL-6, IL-4, IL-13, IL-10 or IL-33, which mediate
macrophage functions [37, 38]. Thus, CsLysoPLA may
interfere with macrophage function by upregulating IL-
25 expression. An excretory/secretory protein from C.
sinensis, CsFBPase, did not elevate IL-25 expression in
RAW?264.7 cells when applied as a control, which sug-
gests a specific function for CsLysoPLA in RAW264.7
cells.

Rat lysophospholipase removes palmitate from G, sub-
units, accelerating the cycling of G, subunits between
palmitoylation and depalmitoylation and resulting in in-
creased G protein signaling efficacy [39]. The ERK sig-
naling cascade plays an important role in regulating
gene expression, cell proliferation and differentiation,
and apoptosis [40—42]. ERK1/2 activation is modulated
by G, via the cAMP/PKA signaling cascade, which ul-
timately activates the B-Raf-MEK-ERK module [43-45].
In addition, the AKT and ERK pathways undergo nega-
tive crosstalk to induce AKT-mediated ERK signaling
pathway inactivation [46—48]. In the present study, we
observed PKA, B-Raf and ERK1/2 activation and AKT
inhibition. Blocking PKA and activating AKT with the
chemical inhibitors H-89 and SC79, respectively, further
confirmed the signaling pathways involved in CsLysoPLA-
induced IL-25 expression. Enhanced AKT activation,
inhibited ERK1/2 excitation and attenuated CsLysoPLA-
induced IL-25 overexpression were present in RAW?264.7
cells. These results suggested that the ERK1/2 signaling
pathway is involved in CsLysoPLA-induced IL-25 eleva-
tion in macrophages; additionally, there may be other
transcriptional mediators contributing to IL-25 produc-
tion. In summary, CsLysoPLA-mediated IL-25 production
is partially dependent on the PKA-dependent B-Raf/
ERK1/2 pathway.
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24 h. a-SMA protein expression was detected by western blotting. GADPH was used as loading control. ¢ Quantification of western blot data in
(b). d LX-2 cells were stimulated with IL-25 (20 ng/ml) in the absence or presence of BAY 11-7083 (0.1 pg/ml) for 24 h. a-SMA protein expression
was detected by western blotting. GADPH was used as loading control. e Quantification of western blot data in (d). f LX-2 cells were stimulated
with IL-25 (20 ng/ml) for 24 h. Collagen-I protein expression was determined by immunofluorescence staining using Collagen-| antibody (red). Nu-
clei were stained with DAPI (blue). Original magnification x200. g Quantification of immunofluorescence data in Fig. 3f. h LX-2 cells were stimu-
lated with IL-25 (20 ng/ml) for 24 h. The migration was analyzed using a Transwell plate. Light microscopy was used to collect images of
migrated cells. Original magnification x100. The number of migration cells was counted as a mean of five independent fields for each experiment.
PBS was used as negative control and TGF-31 as the positive control. Data are shown as mean + SEM. *P < 0.05, **P < 0.01, *** P < 0.001. Scale-
bars: f, 100 um; h, 200 um

Macrophages play a major functional role in liver fibro-
sis. Both macrophage depletion in Cd11b-DTR transgenic
mice and macrophage blockade in mice via liposomal
clodronate injection in response to CCL4 resulted in
prominently reduced HSC activation and numbers as
well as attenuated fibrosis [49, 50]. To our knowledge,

macrophages take part in the development of liver fi-
brosis by secreting a diverse range of cytokines, chemo-
kines and other soluble regulators that directly act on
HSCs [23].

HSC activation represents a pivotal event in liver fibrosis
[51]. Activated HSCs convert to a myofibroblast-like
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Fig. 4 Schematic chart showing the potential role of CsLysoPLA in hepatic fibrosis. CsLysoPLA activates PKA, B-Raf and ERK1/2, and inhibits
AKT phosphorylation, upregulating IL-25 in macrophages. IL-25 enhances the expression of a-SMA and Collagen-I in LX-2 cells, promoting

phenotype, upregulate mesenchymal cell markers such as
a-SMA and Collagen-I, and migrate to sites of damage
[19, 23]. IL-25 significantly increases collagen secretion by
normal human lung fibroblasts [14]. In the present study,
we first investigated the direct interaction between IL-25
and HSCs. IL-25 enhanced the expression of a-SMA and
Collagen-I and promoted the migration of LX-2 cells.
Both of these effects likely result in the secretion and
accumulation of excessive ECM proteins and facilitate
the pathogenesis of liver fibrosis [51]. Thus, the present
findings suggest IL-25 may be a profibrotic cytokine
that regulates fibrogenesis by directly activating HSCs
and promoting their migration. Recent studies indicate
NF-kB is essential for IL-25-mediated inflammation
and hyper-responsiveness [52, 53]. We observed inhibited
a-SMA expression in LX-2 cells following the blockade of
NF-kB with a chemical inhibitor (BAY 11-7083), suggest-
ing that IL-25 may stimulate the expression of profibrotic
genes in HSCs via NF-«B signaling pathway activation.
The precise mechanism underlying IL-25 function re-
quires further investigation.

Conclusions

Our previous work showed that IL-25 is significantly ele-
vated in the serum of C. sinensis-infected mice, and this
trend correlated with the degree of liver fibrosis during
infection. Based on these results, we speculate that
CsLysoPLA infiltrates blood capillaries broken following
mechanical damage and chemical injury induced by the
adult worm and its excretory/secretory products, then

activates HSCs by upregulating IL-25 in macrophages
through the PKA-dependent B-Raf/ERK1/2 pathway,
thus promoting hepatic fibrosis during infection (Fig. 4).
This hypothesis needs further verification in vivo in
future studies. Nonetheless, our work may provide
valuable information for the development of liver fibrosis
therapies.
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