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Abstract

Background: The emergence and spread of insecticide resistance in the major African malaria vectors Anopheles
gambiae (s.s.) and An. arabiensis may compromise the current vector control interventions and threatens the global
malaria control and elimination efforts.

Methods: Insecticide resistance was monitored in several study sites in Ethiopia from 2013 to 2015 using papers
impregnated with discriminating concentrations of DDT, deltamethrin, bendiocarb, propoxur, malathion, fenitrothion
and pirimiphos-methyl, following the WHO insecticide susceptibility test procedure. Mosquitoes sampled from different
localities for WHO bioassay were morphologically identified as An. gambiae (s.) using standard taxonomic keys.
Samples were identified to species using species-specific polymerase chain reaction (PCR) and screened for the
presence of target site mutations L1014F, L1014S and N1575Y in the voltage gated sodium channel (VGSC) gene and
G119S in the acethylcholinesterase (AChE) gene using allele-specific PCR. Biochemical assays were performed to
assess elevated levels of acetylcholinesterases, carboxylcholinesterases, glutathione-S-transferases (GSTs) and
cytochrome P450s monooxygenases in wild populations of An. arabiensis, compared to the fully susceptible
Sekoru An. arabiensis laboratory strain.

Results: Populations of An. arabiensis were resistant to DDT and deltamethrin but were susceptible to fenitrothion in
all the study sites. Reduced susceptibility to malathion, pirimiphos-methyl, propoxur and bendiocarb was observed in
some of the study sites. Knockdown resistance (kdr L1014F) was detected in all mosquito populations with allele
frequency ranging from 42 to 91%. Elevated levels of glutathione-S-transferases (GSTs) were detected in some of the
mosquito populations. However, no elevated levels of monooxygenases and esterases were detected in any of the
populations assessed.

Conclusions: Anopheles arabiensis populations from all surveyed sites in Ethiopia exhibited resistance against DDT and
pyrethroids. Moreover, some mosquito populations exhibited resistance to propoxur and possible resistance to bendiocarb.
Target site mutation kdr L1014F was detected in all mosquito populations while elevated levels of glutathione-S-
transferases (GSTs) was detected in some mosquito populations. The reduced susceptibility of An. arabiensis to
propoxur and bendiocarb, which are currently used for indoor residual spraying (IRS) in Ethiopia, calls for continuous
resistance monitoring, in order to plan and implement evidence based insecticide resistance management.
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Background

Malaria is endemic in 97 countries, mostly in sub-
Saharan Africa, and over 200 million people worldwide
are estimated to be infected, with over half a million
deaths worldwide [1, 2]. Globally, there are 472 de-
scribed species, and over 50 unnamed members of spe-
cies complexes, in the genus Anopheles [3], of which 70
species are known to be major malaria vectors [4]. Of
the over 140 described species of the genus Anopheles in
Africa, eight species are known to be efficient vectors of
malaria [5, 6]. Anopheles gambiae Giles (s.s.), An. coluz-
zii Coetzee & Wilkerson, An. arabiensis Patton and An.
funestus Giles are the most important and widely distri-
buted vectors in the region [5, 6].

Vector control is one of the main approaches to combat
malaria. Several interventions are being implemented by
malaria endemic countries, of which chemical insecticides
remain the mainstay [7, 8]. The contribution of indoor re-
sidual spraying (IRS) and long-lasting insecticidal nets
(LLINS) are instrumental in protecting people from mal-
aria. However, the emergence and spread of insecticide re-
sistance in the major African malaria vectors, An. gambiae
(s.s.) and An. arabiensis, may compromise the current IRS
or LLINs based malaria control interventions and thus
threaten malaria control and elimination efforts [1, 9-18].
Moreover, the poor understanding of the geographical dis-
tribution of the underlying insecticide resistance mecha-
nisms makes it difficult to plan and implement efficient
insecticide resistance management strategies, insecticide
choice and insecticide use in time and space [19]. In most
cases, resistance is attributed to two major mechanisms:
(i) target-site insensitivity, where mutations in the target-
site of the insecticide alter binding; and (ii) metabolic-
based resistance, where the insecticide is degraded,
sequestered or transported/excreted out of the cell before
it can bind to its target [19].

In many malaria endemic African countries, both
target-site and metabolic resistance mechanisms have
been reported in malaria vectors. Target site resistance to
pyrethroids and DDT is associated with mutations in the
voltage-gated sodium channel in mosquito nerve mem-
branes [20-22], which cause knockdown resistance (kdr).
In Anopheles, this involves the substitution of leucine
(TTA) to phenylalanine (TTT) (kdr L1014F) or to serine
(TCA) (kdr 11014S) [20, 21]. In addition, substitution of
asparagine to tyrosine (N1575Y) is associated with resist-
ance in An. gambiae [23]. There is also an acetylcholin-
esterase gene (ace-1%) mutation, where a glycine (GGC) is
substituted to a serine (AGC) which confers resistance to
organophosphates and carbamates [24].

Metabolic resistance mediated by detoxifying enzymes
also plays a significant role in insecticide resistance in
malaria vectors [25]. Elevated levels of cytochrome P450
monooxygenases (P450s), carboxylcholinesterases (CCEs)
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and glutathione S-transferases (GSTs) in mosquitoes may
confer resistance to different classes of insecticides. These
enzymes detoxify or sequester insecticides before reaching
the target site of action. The role of detoxification based
resistance alone or in combination with target-site resist-
ance in the major malaria vectors has been reported in
scientific literature [26—30].

In Ethiopia, over 60% of the population lives in malari-
ous areas [31]. Plasmodium vivax and P. falciparum are
responsible for the majority of malaria cases and both
species coexist in the country with a prevalence that var-
ies according to season and locality. In most parts of the
country, malaria transmission is seasonal and unstable,
which leads to outbreaks or cyclic epidemics [1, 32].
Forty two species of Anopheles have been reported in
Ethiopia and, of these, An. arabiensis, a member of the
An. gambiae complex, is the main malaria vector in the
country. Secondary vectors, such as An. funestus group,
An. pharoensis and An. nili, occur more sporadically and
with limited distribution in the country [32].

The number of malaria cases has declined in Ethiopia
since 2006 due to a high coverage of IRS and scaling up of
LLINs [1, 33]. This initiated the development of the na-
tional malaria elimination road map by the national mal-
aria control and elimination program to eliminate malaria
from Ethiopia by 2030 [34]. However, the emergence and
spread of insecticide resistance in An. arabiensis could
threaten such elimination efforts in the country [1, 12-17].

In Ethiopia, target site resistance mechanism in popula-
tions of An. arabiensis was first reported from areas
around the Gilgel Gibe hydro-electric dam, southwestern
Ethiopia. The kdr allele frequency of the L1014F mutation
in the Gilgel Gibe region was the highest ever reported in
An. arabiensis [12]. Subsequent studies have also docu-
mented the same mutation in this species in other parts of
the country [15-17]. However, the frequency of kdr allele
in some other malarious areas of the country is not yet
documented, as only few and scattered reports are avail-
able. Moreover, it is unclear whether mechanisms, other
than kdr, are involved in conferring resistance to insecti-
cides in populations of An. arabiensis from Ethiopia.
Thus, this study aimed to investigate the distribution of
insecticide resistance in some selected malarious areas
and characterize target site and metabolic resistance
mechanisms in malaria vectors in Ethiopia.

Methods

Study sites and mosquito sampling

Nine study sites were selected from malarious regions of
Ethiopia (Fig. 1). The sites were selected to represent the
most important malaria endemic areas from central, west-
ern, south-western and southern parts of the country. The
study sites were Mankush, Chewaka, Tolay, Asendabo,
Bako, Sodore, Shellemele, Goro and Guba Hora. Insecticide
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Fig. 1 Map of Ethiopia showing the study sites
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resistance was monitored for three years (2013-2015) in
Mankush, Chewaka and Shellemele, whereas in Asendabo,
Tolay and Sodore resistance was monitored for two years
(2014-2015). The insecticide resistance survey in Bako site
was conducted in 2013 while in Goro and Guba Hora sites
the resistance survey was conducted in 2015. In each study
site, anopheline mosquito larvae were collected during the
wet season (July—September) by dipping from a range of
breeding sites: road puddles, brick pits, pools, marshes,
streams, ditches, pits dug for plastering traditional tukuls,
and pits dug for pot making. The collected larvae were
reared to adults in the respective study sites under field-
testing conditions. Temperature and relative humidity in all
field-testing rooms in each study sites were within the
range of 25 + 2 °C and 80 + 10%, respectively. The larvae
were fed with dog biscuit and brewery yeast [35]. Mosqui-
toes were initially identified morphologically as An. gam-
biae (s.1.) using a taxonomic key [5].

Insecticide susceptibility tests
Non blood-fed adult female mosquitoes (2-3 day-old),
were exposed to insecticide impregnated papers with

discriminating concentrations of DDT (4%), malathion
(5%), deltamethrin (0.05%), bendiocarb (0.1%), pirimiphos-
methyl (0.25%), fenitrothion (1%) and propoxur (0.1%), fol-
lowing the WHO insecticide susceptibility test procedure
[36]. Insecticides were selected based on their current op-
erational significance in the national malaria control pro-
gram. Pirimiphos-methyl, propoxur and bendiocarb are
currently used for IRS in Ethiopia and deltamethrin is in-
corporated in LLINSs. Insecticide impregnated papers were
obtained from the WHO Collaboration Centre, Vector
Control Research Unit, School of Biological Sciences,
Penang, Malaysia. Batches of 20-25 mosquitoes in four
replicates were exposed to insecticide impregnated pa-
pers for 1 h in WHO test tubes for all bioassays (except
for fenitrothion for which there was 2 h exposure) and
knockdown was recorded at 10, 15, 20, 30, 40, 50 and
60 min [36]. A control in two replicates, each with
equal number of mosquitoes, exposed to papers im-
pregnated with oil was run in parallel. After the expos-
ure period, mosquitoes were transferred into holding
tubes and provided with 10% sucrose solution soaked
into cotton pads. Mortality was recorded 24 h post-
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exposure. Mosquitoes, both dead and alive, were indi-
vidually preserved in Eppendorf tubes over silica-gel for
molecular assays.

DNA extraction

The DNA of individual mosquitoes was extracted using
DNAzol reagent (MRCgene, USA) [37]. Extraction of
DNA was carried out from 320 surviving mosquitoes
(160 DDT survivors and 160 deltamethrin survivors) fol-
lowing WHO bioassays from each study site. Similarly,
DNA was extracted from 73 and 64 dead mosquitoes
following DDT and deltamethrin bioassays, respectively.
Extraction of DNA was also done from 20 bendiocarb
and propoxur surviving mosquito specimens and 20 un-
exposed mosquitoes.

Molecular identification of An. gambiae complex and
detection of target site mutations

Molecular identification of the An. gambiae complex
was carried out by species-specific polymerase chain re-
action (PCR) following an established protocol [38] and
detection of the kdr allele was carried out using allele-
specific PCR [20, 21]. To assess the validity of the kdr
assays, some specimens were directly sequenced (LGC
genomics, Berlin, Germany) and sequenced chromato-
graphs were visually inspected to detect both homozy-
gotes and heterozygotes. The genomic DNA of 20
mosquitoes unexposed to any of the insecticides were
pooled and amplified to detect N1575Y mutation [23].
PCR amplicons were sequenced by LGC genomics
(Berlin, Germany) and chromatographs were visually
inspected to detect the N1575Y mutation (numbering
according to Musca domestica para sequence GenBank,
NCBI). Genomic DNA was amplified from 20 survived
mosquitoes following bendiocarb and propoxur bioas-
says in populations of An. arabiensis [39] and then the
resulting PCR amplicons were sequenced by LGC gen-
omics (Berlin, Germany). Sequencing chromatographs
were visually inspected to detect the G119S mutation in
mosquito specimens.

Biochemical assays

Mosquito larvae were collected from a range of breeding
sites and reared to adults in field testing rooms
(temperature 25 + 2 °C and relative humidity 80 + 10%)
in all the study sites. Female adult mosquitoes (1-3 day-
old) unexposed to insecticides were transported and fro-
zen in a -80 °C freezer in the laboratory. Batches of fifty,
1-3 day old frozen female mosquitoes were individually
homogenized to assess levels of carboxylcholinesterases,
glutathione S-transferases and cytochrome P450 mono-
oxygenases activities using the acetylcholinesterase,
gluthathion  S-transferase, protein and TMBZ-
peroxidation assays, respectively [40, 41]. In these assays,
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25 mosquitoes from Sekoru susceptible An. arabiensis
laboratory strain were used as a control. This susceptible
An. arabiensis strain has been maintained for over
35 years in the WHO Malaria Training Center Insectary,
Adama, Central Ethiopia. The strain is susceptible to all
the tested insecticides. The colony used in the assay has
been maintained at Sekoru Tropical and Infectious Dis-
eases Research Centre (TIDRC) Mosquito Insectary,
Jimma University, since 2012.

Data analysis

Differences in mean mosquito mortality rates were ana-
lysed for each insecticide separately by a Kruskal-Wallis
test, with study site as factor to assess whether mortality
rates differ between the study sites (Additional file 1:
Table S1). Mean percentage mosquito mortality was pre-
sented with 95% confidence intervals based on the Clop-
per Pearson method.

Knockdown allele frequencies were determined and
compared between surviving and dead mosquitoes fol-
lowing deltamethrin and DDT bioassays using the
Mantel-Haenszel-Cochran test, with study site as stratifi-
cation factor to assess whether there is a difference be-
tween the phenotype and genotype resistance over the
different populations. Furthermore, a Breslow-day test
was employed to assess whether the effect is the same
over different populations, i.e. test the interaction be-
tween the study sites and the kdr allele frequency differ-
ences. The levels of enzyme activity were compared
between the wild populations of An. arabiensis and the
susceptible An. arabiensis laboratory strain using a fixed
effects model and F-test. Dunnett’s multiple comparison
adjustment was employed to compare levels of enzyme
activities of the An. arabiensis populations from different
study sites against the susceptible An. arabiensis labora-
tory strain. To assess spatial variation, we used the same
model to compare the difference among wild popula-
tions of An. arabiensis (excluding the reference strain)
and compare the study sites pairwise using Tukey’s mul-
tiple comparison. A 5% significance level was used dur-
ing the analysis. Mosquito susceptibility test raw data
set, the program used and output of the analysis are pre-
sented in Additional file 1: Table S1, Additional file 2:
Table S2, Additional file 3: Table S3.

Results

Insecticide susceptibility tests

The results of the susceptibility status of populations of
An. arabiensis from 2013 to 2015 in Ethiopia are pre-
sented in Fig. 2. Populations of An. arabiensis from all
sites were resistant to DDT and deltamethrin, according
to the WHO criterion. Mean percent mortality rates of
mosquito populations of An. arabiensis against DDT and
deltamethrin ranged between 3 and 36% and 9-75%,
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respectively. The populations of An. arabiensis from the
different study sites were susceptible to fenitrothion.
However, few mosquito populations showed reduced
susceptibility to malathion, pirimiphos-methyl, propoxur
and bendiocarb. Mosquito mortality rates for bendiocarb
and propoxur in Goro were 93% and 82%, respectively
which, in latter case populations, were resistant to pro-
poxur. Similarly, in 2015 mosquito populations from
Mankush, Chewaka and Shellemele showed suspected
resistance to propoxur with mortality rates of 94%, 96%
and 96%, respectively (Fig. 2). Populations of An. ara-
biensis differed significantly for DDT, deltamethrin,
bendiocarb and propoxur, whereas no significant differ-
ence was observed for fenitrothion, pirimiphos-methyl
and malathion (Table 1).

Molecular identification of An. gambiae complex and
detection of resistance mutations

Of the 160 An. gambiae complex samples assayed using
species-specific PCR, 159 (99.4%) of the specimens were
successfully amplified and all identified as An. arabiensis.
The results of the kdr PCR revealed the presence of the
kdr L1014F allele in all mosquito populations with allele
frequency ranging between 42.4-90.6% (Table 2). The
kdr 11014S allele was absent in all tested mosquito
specimens.

Overall, the kdr L1014F allele frequency was signifi-
cantly higher in mosquitoes surviving the deltamethrin
exposure, compared to the mosquitoes that died upon
exposure (y* = 126.11, df = 1, P < 0.0001), and this effect
was not differing significantly from population to

population (y* = 8.00, df = 7, P = 0.3326). Similarly, the
kdr L1014F allele frequency was significantly higher in
mosquitoes surviving the DDT exposure, compared to
the mosquitoes that died upon exposure (}* = 13.10,
df =1, P < 0.0001) over the different study sites, and this
effect was not differing significantly from population to
population (y* = 12.19, df = 7, P = 0.0945).

The G119S (ace-1¥) mutation was not detected in
mosquito specimens surviving propoxur and bendiocarb
exposure. Further sequencing of PCR products of pooled
mosquito specimens from each population also con-
firmed the absence of the ace-1% mutation. Similarly, the
N1575Y mutation was not detected in all the assayed
mosquito specimens.

Biochemical assays

The mean percentage of propoxur inhibition in popula-
tions of An. arabiensis ranged from 90.4-94.9% (data
not shown here). General esterase assays using o-
naphtyl and B-naphtyl acetate as substrates did not re-
veal elevated levels of esterase activity in all the popula-
tions tested, compared to the Sekoru susceptible An.
arabiensis laboratory strain (Table 3). Similar levels of
mixed function monooxygenases (MFOs) activities were
observed in mosquito samples from all populations,
compared to the Sekoru An. arabiensis laboratory strain.
No elevated level of specific esterase activities of pNPA
was observed compared to the control. The levels of
GSTs activity of the susceptible An. arabiensis laboratory
population were significantly different from the popula-
tions of An. arabiensis from Mankush (¢ = 3.26, df = 341,
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Table 1 Mean percentage mosquito mortality rates by population

and insecticide

Insecticide Population ~ Mean  95% Cl P-value
DDT Mankush 15.7 117 203 P =0.02
Chewaka 203 159 253
Sodore 270 210 337
Asendabo 20.5 151 268
Shellemele 240 193 292
Tolay 260 200 327
Goro 30 0.6 85
Gubahora 9.0 4.2 164
Bako 11.0 56 188
Deltamethrin Mankush 40.7 351 465 P < 0.001
Chewaka 292 242 347
Sodore 47.0 399 542
Asendabo 390 322 461
Shellemele 333 280 390
Tolay 594 523 662
Goro 250 169 347
Gubahora 9.0 4.2 164
Bako 180 110 270
Bendiocarb Mankush 99.7 982 999 P < 0.001
Chewaka 96.0 93.1 979
Sodore 99.0 964 999
Asendabo 99.0 964 999
Shellemele 990 971 9938
Tolay 1000 964 1000
Goro 93.0 86.1 97.1
Gubahora 99.0 946 999
Bako 920 848 965
Propoxur Mankush 97.3 948 988 P < 0.001
Chewaka 95.0 919 972
Sodore 99.5 973 1000
Asendabo 1000 982 1000
Shellemele 987 9.6 996
Tolay 1000 964 1000
Goro 820 731 890
Gubahora 100.0 9.4 1000
Bako 920 848 965
Pirimiphos-methyl ~ Mankush 1000 988 1000 P =0058
Chewaka 96.0 93.1 979
Sodore 98.5 957 997
Asendabo 99.5 973 999
Shellemele 987 9%.6 996
Tolay 98.0 929 998
Goro 98.0 930 998
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Table 1 Mean percentage mosquito mortality rates by population
and insecticide (Continued)

Guba Hora 970 915 994
Bako 100.0 96.4 100.0
Fenitrothion Mankush 1000 988 1000 P=0.062
Chewaka 97.3 948 988
Sodore 99.5 972 1000
Asendabo 1000 982 1000
Shellemele 1000 988  100.0

Tolay 1000 964 1000
Goro 99.0 946 1000
Guba Hora ~ 100.0 %4 1000
Bako 1000 964 1000
Malathion Mankush 825 765 875 P =0.056

Chewaka 920 848 965
Sodore 780 686 857
Asendabo 700 600 788
Shellemele  93.0 885 9.1
Tolay 880 804 956
Goro 94.0 800 936

Abbreviation: Cl confidence interval

P = 0.0064) and Sodore (¢t = 2.88, df = 341, P = 0.0204).
Moreover, there was significant difference in levels of
GSTs activities among populations of An. arabiensis
from Asendabo and Mankush (¢ = 3.18, df = 320,
P = 0.0016) (Table 3).

Figure 3 presents the overall distribution of insecticide
resistance and the underlying resistance mechanisms in
the study area. DDT and deltamethrin resistance is widely
distributed in populations of An. arabiensis across the
study sites. In contrast propoxur resistance was observed
in one locality. There was also widespread of kdr L1014F
allele. Moreover, elevated levels of GSTs were detected in
mosquito populations from two study sites.

Discussion

Anopheles arabiensis was the only member species of the
gambiae complex recorded from all study areas which is
in line with earlier reports from other localities in Ethiopia
[12-17]. Previous studies from Gilgel Gibe hydroelectric
dam area and other localities in central and western parts
of Ethiopia have shown that An. arabiensis exhibited re-
sistance to DDT and deltamethrin [12—17]. Results from
the first insecticide resistance survey (2013) conducted in
four study sites and surveys conducted in additional sites
from 2014 to 2015 clearly indicated the occurrence of
DDT and deltamethrin resistance in this species. This
finding was in agreement with the results reported previ-
ously from other areas in Ethiopia [12—-17] and from many
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Table 2 Genotypic and kdr allele frequency in populations of An. arabiensis from Ethiopia

Population Insecticide Number Bioassay Genotype Allele frequency
assayed phenotype <s RS RR R S
Chewaka Deltamethrin 20 Survived 3 6 11 0.70 030
10 Dead 8 1 1 0.15 0.85
DOT 20 Survived 3 7 10 0.68 032
9 Dead 1 7 1 0.50 0.50
Asendabo Deltamethrin 20 Survived 0 1 19 098 0.02
9 Dead 5 2 2 033 067
DDT 20 Survived 1 5 14 0.83 0.17
9 Dead 3 4 2 044 0.56
Tolay Deltamethrin 20 Survived 1 0 19 0.95 0.05
10 Dead 4 3 3 045 0.55
DDT 20 Survived 1 7 12 0.78 0.22
10 Dead 0 7 3 0.65 035
Mankush Deltamethrin 20 Survived 3 2 15 0.80 020
8 Dead 2 6 0 0.38 0.62
DDT 19 Survived 2 7 10 0.71 0.29
9 Dead 0 4 5 0.78 022
Shellemele Deltamethrin 19 Survived 3 4 12 0.74 0.26
9 Dead 7 2 0 0.11 0.89
DDT 19 Survived 4 7 8 061 039
10 Dead 4 4 2 040 0.60
Sodore Deltamethrin 20 Survived 0 7 13 0.85 0.15
10 Dead 3 7 0 0.35 0.65
DDT 19 Survived 5 5 9 061 0.39
5 Dead 0 4 1 0.60 040
Goro Deltamethrin 20 Survived 0 0 20 1 0
9 Dead 2 4 3 0.56 044
DOT 20 Survived 2 6 12 0.79 021
3 Dead 1 2 0 033 067
Guba Hora Deltamethrin 20 Survived 0 0 20 1 0
8 Dead 0 3 5 0.81 0.19
DDT 18 Survived 0 0 18 1 0
9 Dead 1 2 6 0.77 0.23

Abbreviations: SS homozygous wild type, RS heterozygous, RR homozygous resistant

African countries (Chad, Sudan, Tanzania, Uganda and
South Africa), where malaria vectors developed resistance
to DDT and pyrethroids [9-11, 42—44].

Populations of An. arabiensis were found to be fully
susceptible to bendiocarb, fenitrothion, pirimiphos-
methyl and propoxur at most of the surveyed sites. Simi-
lar studies from other parts of Ethiopia showed suscepti-
bility of An. arabiensis populations to these insecticides
[14, 17]. Reports from Sudan, Burkina Faso and Chad
also showed that An. arabiensis was susceptible to bend-
iocarb and fenitrothion [30, 44]. The exhibited resistance

in population of An. arabiensis from Goro to propoxur
could threaten the existing vector control interventions
by the National Malaria Control Programme (NMCP) of
Ethiopia, as propoxur and bendiocarb are currently in
use for IRS [34]. Therefore, the emergence of propoxur
resistant An. arabiensis populations is a concern in the
use of carbamates for IRS in Ethiopia. The observed re-
sistance to propoxur and suspected resistance to bendio-
carb in mosquito populations in Ethiopia calls to
implement insecticide resistance management strategy
either to delay or slowdown resistance.
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Table 3 Levels of esterases (alpha esterases, beta esterases, pNPA), GSTs and MFOs activities (mean + standard error of the mean) in

populations of An. arabiensis from Ethiopia

ESTs GSTs MFOs
Mosquito population Alpha naphthyl acetate Beta naphthyl acetate pNPA CDNB Heme peroxidase
Lab strain 0.024 + 0.002 0.02 £ 0.008 0.06 £ 0.009 0.023 + 0.002 0.0012 £ 0.0013
Mankush 0.011 £ 0.005 0.011 = 0.004 0.049 = 0.024 0.043 + 0.005* 0.00092 + 0.001
Chewaka 0.022 + 0.008 0.021 + 0.007 0.067 + 0.034 0.029 + 0.002 0.00076 + 0.0009
Tolay 0.015 + 0.004 0.012 + 0.003 0.050 + 0.09 0.036 + 0.002 0.00033 + 0.0004
Asendabo 0.023 + 0.006 0.022 = 0.006 0.075 = 0.036 0.027 = 0.002 0.00056 + 0.0006
Shellemele 0.014 + 0.003 0.013 + 0.003 0.051 + 0.027 0.030 + 0.001 0.00055 + 0.0006
Goro 0.018 + 0.008 0.017 + 0.007 0.06 £ 0.081 0.038 + 0.005 0.00073 + 0.0009
Sodore 0.017 + 0.006 0.015 = 0.005 0.045 = 0.047 0.041 + 0.003* 0.0004 + 0.0005

* Significant at P < 0.05

DDT and pyrethroid resistance is associated with the pres-
ence of kdr allele [22]. High frequency of the kdr L1014F al-
lele in malaria vectors was first documented and reported
some six years back from Gilgel Gibe dam area, southwest-
ern Ethiopia [12]. Later, similar findings were reported from
northern, central and south western Ethiopia [16, 17]. The

findings of the current study indicated the widespread and
high frequency of the kdr L1014F allele in many areas. Fix-
ation of this mutation was also recorded in mosquito popu-
lations from few localities (Guba Hora and Goro).

The frequency and distribution of ace-1% mutation in
An. gambiae (s.s.) has been reported from several
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African countries [43, 45-47]. The presence of ace-1%
mutation in populations of An. arabiensis was reported
for the first time from Burkina Faso, West Africa [43],
but this finding has yet to be replicated elsewhere. In the
current study, this mutation was not detected by PCR
based molecular diagnostics, nor biochemical assays, in
mosquito specimens from all sites. The absence of this
mutation was also documented in An. arabiensis from
Gilgel Gibe area, southwestern Ethiopia [14]. However,
the reduced susceptibility of mosquito populations to
propoxur in the absence of ace-1% mutation in few sites
warrants further investigation.

In this study, N1575Y mutation was not detected in
populations of An. arabiensis from any of study sites.
Similarly, this mutation has not been reported yet from
An. arabiensis [23].

To our knowledge, we report here for the first time a
mechanism of metabolic-based resistance operating in
populations of An. arabiensis from Ethiopia. Despite ele-
vated levels of mixed function oxidases and non-specific
esterases activities reported in malaria vectors from differ-
ent African countries [27-29, 47-49], elevated levels of
these enzymes were not observed in populations of An.
arabiensis from all study sites. However, studies showed
that pre-exposure of mosquitoes to the synergist pipero-
nylbutoxide (PBO) for 1 h before exposure to WHO in-
secticide impregnated papers increased the susceptibility
of An. arabiensis to deltamethrin [50], which could be at-
tributed to the possible involvement of elevated mixed
function oxidases in An. arabiensis. Interestingly, elevated
levels of GSTs were observed in populations of An. ara-
biensis from few surveyed sites, suggesting that GSTs
might have a role in conferring DDT resistance. Elevated
levels of GSTs in Aedes aegypti has been reported to con-
fer resistance to DDT [51]. Moreover, upregulation of
genes of GSTs in mosquitoes was responsible for DDT
metabolism [48, 49]. Therefore, multiple resistance mech-
anisms (kdr L1014F and GSTs) might play a role in the
observed resistance in populations of An. arabiensis to
DDT [52-54]. The occurrence of elevated levels of GSTs
in few mosquito populations could also affect the current
use of pirimiphos-methyl for IRS by the NMCP, as cross-
resistance between DDT and organophosphate is often
caused by GSTs [55, 56]. Furthermore, the involvement of
GSTs in mosquitoes may also have implication on the use
of organophosphates in insecticide resistance management
strategy in Ethiopia.

Conclusion

Target site resistance due to the kdr L1014F allele and
metabolic-based resistance due to GSTs appear to be as-
sociated with the resistance phenomenon in populations
of An. arabiensis from Ethiopia. The occurrence of GSTs
in mosquito populations warrants further investigation
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as GSTs might confer cross-resistance to many classes of
insecticides. The observed elevated levels of GSTs,
coupled with high frequency and widely distributed kdr
L1014F allele in these mosquito populations, could fur-
ther complicate the current malaria elimination efforts
in the country. The reduced susceptibility of some mos-
quito populations to bendiocarb and propoxur also calls
for continuous resistance monitoring, as these insecti-
cides are currently in use for IRS in Ethiopia.
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