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Abstract

transmitted by these arthropods.

Background: The cat flea, Ctenocephalides felis, is the most prevalent flea species detected on dogs and cats in
Europe and other world regions. The status of flea infestation today is an evident public health concern because of
their cosmopolitan distribution and the flea-borne diseases transmission. This study determines the spatial
distribution of the cat flea C. felis infesting dogs in Spain. Using geospatial tools, models were constructed based on
entomological data collected from dogs during the period 2013-2015. Bioclimatic zones, covering broad climate
and vegetation ranges, were surveyed in relation to their size.

Results: The models builded were obtained by negative binomial regression of several environmental variables to
show impacts on C. felis infestation prevalence: land cover, bioclimatic zone, mean summer and autumn temperature,
mean summer rainfall, distance to urban settlement and normalized difference vegetation index. In the face of climate
change, we also simulated the future distributions of C. felis for the global climate model (GCM) “GFDL-CM3" and for
the representative concentration pathway RCP45, which predicts their spread in the country.

Conclusions: Predictive models for current climate conditions indicated the widespread distribution of C. felis throughout
Spain, mainly across the central northernmost zone of the mainland. Under predicted conditions of climate change, the
risk of spread was slightly greater, especially in the north and central peninsula, than for the current situation. The data
provided will be useful for local veterinarians to design effective strategies against flea infestation and the pathogens
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Background

The cat flea, Ctenocephalides felis, is the most preva-
lent flea species detected on dogs and cats in Europe
and other world regions [1-4]. The cosmopolitan dis-
tribution of C. felis and its tolerance to a broad range
of environmental conditions ensure its success and
survival [5, 6]. Recently, a need for flea control has
been identified because of their worldwide distribu-
tion and transmission of flea-borne diseases, as well
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as flea allergy dermatitis (FAD) affecting companion ani-
mals [7, 8]. Most flea-borne pathogens are bacteria and
some of them (e.g. Bartonella spp. and Rickettsia spp.)
may cause important zoonoses [9]. Ctenocephalides felis
can serve as the intermediate host for the tapeworm
Dipylidium caninum and the filarial parasite Acanthochei-
lonema reconditum, both of which can parasitize humans
[10, 11]. However, FAD remains as the major side effect of
C. felis infestations in both dogs and cats. Flea saliva
allergens on susceptible animals cause this allergic derma-
titis, which is characterized by the presence of numerous
papules and scabs on the back and around the neck [12].
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Entomological surveillance and vector species occur-
rence data are essential to generate distribution models
for arthropod vectors. This type of information is readily
available from several web sites, such as FleaTickRisk
(http://www.fleatickrisk.com) and VectorMap (http://
vectormap.si.edu) [13, 14]. With the introduction of
geographic information systems (GIS) and other geospa-
tial tools, there is now growing interest in modelling
vector distributions based on climate and environmental
drivers for epidemiology studies and follow-up of
arthropod vectors [15-17]. Statistical models help to
determine the relative contribution of drivers to map
vector occurrence or predict future vector distributions
based on expected climate change [18]. In East Africa,
scientists have had ample experience in surveying the
bacterium Yersinia pestis, the causative agent of the
plague, through GIS and Remote Sensing (RS) proce-
dures [19-23]. However, so far only Beugnet et al. [14]
have modelled the distribution of the cat flea affecting
pets based on climate forecasts for a large geographical
area [14].

In Spain, geo-environmental models have been
recently established and validated for canine dirofilario-
sis (a mosquito-borne disease) [24, 25]. Also in Spain,
vector occurrences and their future projections have
been modelled for three tick species (Dermacentor
marginatus, Rhipicephalus turanicus and Hyalomma
marginatum) [26]; the bluetongue vector Culicoides
imicola [27]; and the vectors of canine leishmaniosis,
Phlebotomus perniciosus and Phlebotomus ariasi [28].

Flea distribution patterns may be more related to habitat
than to host, since these insects are not very host-specific.
Different geographical areas show a different spectrum of
flea species. Predicting vector occurrence in specific re-
gions will provide useful information on which to base the
design of appropriate and focused control interventions
[2, 29]. Hence, knowledge of the factors affecting flea
species distributions in a given region is essential for the
design of effective control protocols.

As part of our ongoing research, we recently described
the spatial and temporal distributions of three flea spe-
cies of the family Pulicidae infesting dogs in Spain [4].
As C. felis emerged as the most frequently detected and
widely distributed throughout Spain, in the present
study we used these data to map and model the current
distribution and predicted spread of this flea species ac-
cording to environmental variables and expected climate
change.

Methods

Study design, dog sampling and entomological
procedures

The study area, mainland Spain and the Balearic and
Canary Islands, has been described in detail in
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Gélvez et al. [4]. A non-random sample of 1084 dogs
was examined from late May 2013 to mid July 2015 for
flea infestation at 42 sites covering six of the fourteen bio-
climatic zones [30] listed in Table 1. The number of dogs
surveyed in each bioclimatic belt was proportional to the
surface area of each zone (Table 2), as explained in Gélvez
et al. [4]. The sites surveyed covered a wide latitudinal and
longitudinal range of the country, from south (Cadiz, 36°)
to north (Lugo, 43°), and from west (Lugo, -7°) to east
(Ibiza, 1°). The two sites sampled on the Canary Islands
were the westernmost (Tenerife, -16°) and southernmost
points surveyed (Gran Canaria, 27°).

The dogs examined were hunting dogs living in ken-
nels, stray dogs living in animal protection shelters and
shepherd dogs living on farms. Adult flea counts were
conducted as described in the WAAVP guidelines [31].
Each dog was inspected for fleas and combed for 5 min
over the whole body with a fine-toothed comb. Captured
fleas from each infested dog were transferred to a small
plastic tube containing 70% ethanol until processing.
Fleas were sexed and identified to species under a
binocular magnifier according to taxonomic keys [5]. A
description of the entomological methodology has been
published elsewhere [4].

Ctenocephalides felis was the most frequent and widely
distributed flea species (82.8% of the surveyed dogs were
infested with this species at 71.4% of the surveyed sites)
[4]. The data used here for model construction were
prevalences (%) of C. felis infestation for each collection
site, calculated as the number of infested dogs divided
by the number of surveyed dogs. Detailed information of

Table 1 The bioclimatic zones of Spain and their altitude
(minimum, maximum and mean)

Bioclimatic zones of Spain Surface Altitude
area (ha) (metres above sea level)

Minimum  Maximum  Mean
A (Alpine) 74,972 1490 3153 239
B (Subalpine) 426,884 739 3149 1882
C (Temperate oceanic) 3,788382 112 2668 967
D (Temperate hyperoceanic) 3,018,127 0 1815 333
E (Cryoromediterranean) 9059 1792 3450 2548
F (Oromediterranean) 456,908 1008 3296 1757
G (Supramediterranean) 14,595,852 88 2427 961
H (Mesomediterranean) 21239216 0 1860 560
| (Thermomediterranean) 4170835 0 1391 173
K (Oromacaronesic) 1016 2721 3656 3177
L (Supramacaronesic) 21,756 1562 3149 2223
M (Mesomacaronesic) 111,752 127 2474 1275
N (Thermomacaronesic) 273,008 0 1637 560
O (Inframacaronesic) 326,940 0 1000 153
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Table 2 Collection sites (n = 42) and C. felis infestation prevalences (dependent variable) by bioclimatic zone
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Collection site  Locality/ Province Bioclimatic zone Latitude  Longitude  Dogs Prevalence (%)
n Positive
1 Guitiriz/ Lugo Temperate oceanic (n = 93) 43.18 -7.89 35 7 114
2 Lugo/ Lugo 43.05 753 50 0 0
3 Laracha/ A Corufa 4320 -855 8 4 500
4 Artziniega 1/ Alava Temperate hyperoceanic (n = 67) 43.14 =311 3 0 0
5 Artziniega 2/ Alava 43.12 -3.12 6 4 66.7
6 Izoria/ Alava 43.06 -3.03 10 10 70.0
7 Madaria/ Alava 43.04 -3.09 5 5 80.0
8 Marofio/ Alava 43.05 -3.06 6 3 0
9 Menagarai/ Alava 43.09 -3.08 5 4 80.0
10 Menoio/ Alava 43.07 -3.07 10 9 70.0
1 Respaldiza 1/ Alava 43.08 -3.09 4 0 0
12 Respaldiza 2/ Alava 43.08 -3.04 3 0 0
13 Respaldiza 3/Alava 43.08 -3.04 5 4 80.0
14 Respaldiza 4/ Alava 43.08 -3.05 1 1 100
15 Sojo/ Alava 43.09 -3.13 4 4 100
16 Soxoguti/ Alava 43.11 -3.12 5 3 60.0
17 El Casar 1/ Guadalajara Supramediterranean (n = 164) 40.69 -343 12 6 50.0
18 El Casar 2/ Guadalajara 40.70 -343 21 21 100
19 Codos/ Zaragoza 41.30 -1.39 25 6 0
20 Alcarras/ Lleida 41.58 -0.49 38 7 53
21 Allariz/ Orense 4222 -7.81 51 23 176
22 Navalcarnero/ Madrid 40.29 -4.00 17 1 588
23 Canamero/ Caceres Mesomediterranean (n = 496) 39.38 -540 50 21 420
24 Madrigal de la Vera/ Caceres 40.17 -541 41 2 0
25 Espinosa de Henares/ Guadalajara 40.89 -3.08 35 0 0
26 Achivel/ Murcia 38.07 -2.00 14 5 214
27 Morataya/ Murcia 38.21 -1.80 32 26 719
28 Utiel/ Valencia 39.59 -1.23 41 8 17.1
29 Puertollano/ Ciudad Real 3867 -4.08 53 53 100
30 Arnedo 1/ La Rioja 4222 =211 7 0 0
31 Arnedo 2/ La Rioja 4222 -2.10 19 1" 0
32 Herce/ La Rioja 42.22 -2.12 18 0 0
33 Prejano/ La Rioja 42.19 -2.18 22 21 95.5
34 Valverde del Camino/ Huelva 3757 -6.74 97 7 7.2
35 Meco/ Madrid 40.56 -3.30 67 26 0
36 Los Barrios/ Cadiz Thermomediterranean (n = 126) 36.22 -5.55 36 10 278
37 Castilblanco de los Arroyos/ Sevilla 37.69 -6.00 35 25 714
38 Molina de Segura/ Murcia 38.07 -1.20 15 2 6.7
39 Sant Antoni/ Ibiza 3894 141 6 2 333
40 Sant Juan/ Ibiza 39.02 149 34 25 64.7
41 Fasnia/ Tenerife Infra-Macaronesian (n = 138) 2822 -1643 32 15 46.9
42 Arguineguin/ Gran Canaria 27.76 -15.68 106 65 61.3

Abbreviation: n, number of dogs examined
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the 42 collection sites and C. felis prevalences are pro-
vided in Table 2.

Geographical information system. Environmental and
climate variables

A geographical information system (GIS) was developed
with Arc-GIS 10.4 software using the coordinate reference
system ETRS 1989 L Azimuthal Equal Area-LAEA.
Within this GIS, each collection site was assigned a set of
environmental and climate variables: bioclimatic zone,
normalized difference vegetation index (NDVI), altitude,
aspect, slope, land cover, distance to urban settlement
(UrS), and rainfall and temperature means recorded over
the four seasons. The spatial analyst application (SAA) of
the GIS software was used to extract the topographical
variables (altitude, slope, aspect, land cover) as described
below. Altitude was obtained from a 900 m resolution
digital elevation model (DEM) from GTOPO30, provided
by the U.S. Geological Survey (EROS Data Center, Sioux
Falls, South Dakota, USA). Aspect and slope layers were
derived from this DEM using the SAA Surface Tool. The
aspect identifies the downslope direction of the maximum
rate of change in value from each raster cell to its neigh-
bors. The slope is the gradient, or rate of maximum
change from each cell of a raster surface. Land cover
values were extracted from the 100 m resolution Corine
Land Cover (CLC) 2006 raster map of the European En-
vironment Agency (http://www.eea.europa.eu/data-and-
maps/data/clc-2006-raster). These data are organised at 3
hierarchical levels, but only the higher level was used to
define the following land use categories: artificial surfaces,
agricultural areas and forest and semi natural areas.
Through the SAA, land cover values for each site were ob-
tained by corresponding land cover extractions. A distance
to UrS layer (250 m resolution raster) was built by calcu-
lating the Euclidean distance from each cell to the urban
settlement feature layer prepared from the 111 and 112
CLC codes (artificial and urban surfaces).

The index NDVI describes the vegetation visualized
through a specific combination of two bands, near-
infrared (NIR, which is strongly reflected by vegetation)
and visible red light (VRL, which is absorbed by vegeta-
tion) according to the equation: NDVI = (NIR — VRL)/
(NIR + VRL). From the Visualization Viewer (GloVis:
http://glovis.usgs.gov/) we downloaded both NIR and
VRL bands from 36 different scenes of the Landsat 8
Collection: L8 OLI/TIRS data set with 5 min of spatial
resolution. We have chosen scenes from June 2015 to
January 2016 and with less than 10% cloud cover. The
NDVI raster layer was then created with the image ana-
lysis toolbar in ArcGis v.10.4.

Average temperature and precipitation data layers
were obtained from WorldClim 1.4 (http://www.world-
clim.org). These are based on interpolated climate data
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from weather stations for 1960—1990 with 5 min of reso-
lution [32]. Temperature and precipitation values were
those recorded for autumn (September-November), win-
ter (December-February), spring (March-May) and sum-
mer (June-August).

Modelling the distribution of C. felis

A statistical approach was used to model the predicted
prevalence of C. felis in dogs in Spain. Generalized linear
models were used to estimate prevalences for the bino-
mial family with a logit link, in which environmental
and climate factors were used as explanatory variables.
The model building strategy was: first, all factors were
analyzed by bivariate analysis using odds ratios (together
with 95% confidence interval) and then, starting with all
variables showing a P-value lower than 0.2 in the bivari-
ate analysis, multivariate backward stepwise regression
was conducted. The likelihood ratio test was used to
compare nested models. To assess the predictive per-
formance of the model, bootstrapping was performed
with a 1000 replicates to predict the prevalence of C.
felis as the number of infested dogs out of the number
of surveyed dogs. R-squared was used to compare
observed versus expected values. All statistical analyses
were performed using Stata v.14 software (StataCorp LP,
College Station, Texas, USA). Moran’s I global index of
spatial autocorrelation was also calculated to test the
null hypothesis of no global spatial autocorrelation. Sig-
nificance was set at P < 0.05.

Predictive maps for mainland Spain and its islands
were drawn using the Raster Calculator of the GIS soft-
ware through modelling on chartable raster layers.
Models were constructed based on distance to UrS
(100 m resolution Euclidean distances), land cover
(100 m resolution), bioclimatic zone shapefile turned
into low resolution raster layers, climate layers (5 min
spatial resolution rainfall and temperature) and NDVI
(30 m resolution).

Climate projections

Future climate projections were estimated from seasonal
mean temperature and rainfall data expected for Spain in
2050 under the IPPC5 climate projections of the global cli-
mate model (GCM) known as GFDL-CM3. The represen-
tative concentration pathway chosen was RCP45, which
represents a moderate-forcing stabilization scenario. This is
the most recent GCM climate projection used in the Fifth
Assessment IPCC report. The GCM output was down-
scaled and calibrated (bias corrected) using WorldClim 1.4
(http://www.worldclim.org/cmip5_10m) as the baseline
‘current’ climate. Maps of future C. felis prevalences under
the premise of the climate change scenario were modelled
by incorporating future climate projections.


http://www.eea.europa.eu/data-and-maps/data/clc-2006-raster
http://www.eea.europa.eu/data-and-maps/data/clc-2006-raster
http://glovis.usgs.gov
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org/cmip5_10m

Galvez et al. Parasites & Vectors (2017) 10:428

Results

Prevalence of C. felis

Moran’s I test showed no evidence of spatial autocorrel-
ation (Z = -0.970, P = 0.166), so C. felis infestation preva-
lence was estimated using the data collected from the
sampling sites (Table 3). The model obtained for preva-
lence using generalized linear models revealed an effect
on C. felis prevalences of land cover, bioclimatic zone,
mean summer temperature, mean autumn temperature,
mean summer rainfall, distance to UrS and NDVIL The
coefficients of the regression and the steps to predict the
prevalence are described by the following probability
equation:

1

Probability = T exp (Step 2)
Step2 = -1 X Step 1
Step 1 = -(CLC agricultural areas x 0.8323046)

-(CLC forest and seminatural areas x 2.81585)

—(zones C and D x 1.955472)

—(zone H x 2.062617)-(zone I x 0.045719)

+(zone O x 1.728136)

+(Tmean summer X 0.390032)
—(Tmean autumm X 0.4751731)
—(Prec.summer x 0.5966327)

+(distance to UrS x 0.0137522)
~(NDVI 2.290345).

These results indicate the factors Inframacaronesic
zone, mean summer temperature and distance to UrS
were positively correlated with C. felis infestation preva-
lence. In contrast, two CLC classes (agricultural areas,
forest and seminatural areas), four bioclimatic zones
(Temperate oceanic, Temperate hyperoceanic, Mesome-
diterranean and Thermomediterranean), NDVI, mean
autumm temperature and mean summer rainfall were
negatively correlated with C. felis prevalence.

Projections of C. felis distribution using current climate
estimates

Based on the prevalence model, 17 km resolution
maps were constructed to predict C. felis infestation
prevalences in Spain using the environmental and
climate risk factors identified. The probability was
estimated on a scale of 0-1, representing C. felis
probability of occurrence under the current climate
conditions (Fig. 1la). Distributions of pixels in this
model approached a multimodal distribution pattern
in which several processes showing normal symmet-
rical distributions are combined (Fig. 2a).
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Table 3 Bivariate and multivariate factors related to C. felis
infestation prevalence in dogs

Bivariate OR (95% Cl)

Adjusted OR
(95% Cl)

Corine, level 1

Artificial surfaces Ref Ref
0.53 (0.38-0.73)*** 044 (0.24-0.79)**
0.12 (0.07-0.19)*** 0.06 (0.03-0.13)***

Agricultural areas

Forest and semi
natural areas

Spring rainfall 0.76 (0.66-0.87)*** -
0.65 (0.52-0.8)*** 0.55 (0.36-0.83)**
0.77 (0.68-0.88)*** -

(
(
(
0.89 (0.82-0.98)* -
(
7011
501
(

Summer rainfall

Autumm rainfall

Winter rainfall

0.76 (0.66-0.87)*** -

p 25y 148 (1.27-1.72)%*
i 0.62 (0.51-0.75)***

0.89 (0.82-0.98)* -

Spring rainfall
Summer rainfall
Autumm temperature
Winter temperature

Bioclimatic belt

Bioclimatic zone G Ref Ref
Bioclimatic zones C, D 3 (0.63-1.66) 0.14 (0.05-0.36)***
Bioclimatic zone H 0.93 (0.62-1.38) 0.13 (0.05-0.31)***
Bioclimatic zone | 2.25 (1.38-3.68)*** 0.96 (0.35-2.64)
Bioclimatic zone O 342 (2.11-5.53)*** 563 (1.50-21.14)*

Elevation in km 0.49 (0.29-0.81)** -

Aspect 0.83 (0.73-0.94)** -

Slope 2 (0.96-1.09) -

Distance to UrS 0.99 (0.99-1) 1.01 (1.00-1.02)***

NDVI 47.24 (13.12-170.10)**  0.10 (0.01-1.15)

Abbreviations: OR odds ratio, C/ confidence interval, Ref Reference category,
UrS urban settlement, NDVI normalized difference vegetation index
*P < 0.05, **P < 0.01, ***P < 0.001

Projections of C. felis distribution using predicted climate
change effects

Through simulated climate change expected for Spain in
the IPPC5, the predicted spread of C. felis prevalences
was computed using the GIS software (Fig. 1b).
Predicted C. felis probability was assumed only on shifts
in summer temperature, autumm temperature and sum-
mer rainfall. Although other risk factors such as land
use will obviously intervene, these are hard to predict
with confidence and the complex methods needed are
beyond the scope of this study. Figure 1b shows that the
risk of spread is slightly greater for the predicted climate
change, especially in the north and central part of the
country, compared to the current situation. Moreover,
the data distribution of pixels in this model shows a left-
skewed pattern. The skewed distribution is asymmetrical
with a natural limit that prevents outcomes on the right
side (Fig. 2b).
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Fig. 1 Spatial distributions of the probability of C. felis infesting dogs in Spain based on predictive models for current climate conditions (a) and

Discussion

In this study, we explored the effects of chartable envir-
onmental and climate variables on the spatial distribu-
tion of the probability of C. felis infesting dogs in Spain,
based on predictive models for current climate condi-
tions and future climate scenarios. Some host and
habitat variables have been previously identified to affect
the flea infestation of dogs in this region [4].

Highest C. felis infestation probabilities were detected
in the Supramediterranean belt in mainland Spain, cor-
responding to the central northernmost zone of the
mainland part of the country. The Inframacaronesian

bioclimatic belt emerged as the most likely zone of C.
felis infestation out of the six bioclimatic levels analysed.
Bioclimatics is an important determinant of habitat suit-
ability for the cat flea and its hosts because it encom-
passes the effects of both climate and vegetation factors
[20, 33]. However, as a limitation for a more in-depth
knowledge of a whole bioclimatic area, more sample
points are required.

When we considered land cover preferences, the two
more natural CLC classes (agricultural areas, forest and
seminatural areas) were less correlated with C. felis in-
festation probability than the CLC artificial surfaces.
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probability raster models for Spain based on current climate
conditions (a) and future climate scenarios (b)

Hence, the cat flea seems to show a preference for more
anthropogenic environments which are more populated
by reservoir hosts. However, higher C. felis infestation
probabilities were recorded at sites far from urban areas.
Thus, while anthropogenic environments seem to help
maintain fleas in peak condition, it could be that densely
populated zones are detrimental for these insects.

Higher mean temperatures and lower rainfall in sum-
mer increased the likelihood of C. felis infestation, while
lower autumn temperatures favoured cat flea infesta-
tions. When faced with unfavourable climate conditions
(too cold, too hot or too dry), flea populations enter a
state of diapause as cocoons and wait for these condi-
tions to improve [14]. Owing to the preference shown
by the cat flea for the non-green land cover classes and
lower rainfall values, a higher NDVI index was nega-
tively correlated with C. felis infestation probability.
Several studies have positively correlated NDVI with
precipitation and observed it is influenced by many fac-
tors, especially land cover and climate [19].

The current situation map generated reflects the wide-
spread distribution of the cat flea in Spain, mainly across
the central and northernmost belts of mainland Spain.
The risk of spread under-predicted conditions of climate
changes was found to be slightly higher compared to the
current situation, especially in the north and central part
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of the mainland. The probability of C. felis occurrence was
scored from 0 to 1, where values close to 0 could indicate
diapause rather than absence. As far as we are aware, the
literature describes only one climate model (FleaTickRisk)
developed to monitor and predict the activity and density
of three tick species and the cat flea in Europe, according
mainly to temperature and humidity data [14].

Predicting the risk of flea infestation may help in the
design of control measures (e.g. to set the frequency of
treatments). However, the results provided by our model
will need to be adjusted by clinicians to local conditions.

Conclusions

Under the premise of continued climate change, it is
predicted that distributions of fleas and other arthropod
vectors will spread because of improved habitat suitabil-
ity. Data supplied by predictive models, such as those
described here, are useful epidemiological tools for vet-
erinarians and other healthcare professionals. Besides
improving the advice given to animal owners, these tools
serve to design effective programs, based on environ-
ment management and the use of insecticides, to control
and prevent flea infestations and related diseases caused
by flea borne pathogens.
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