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Abstract

Background: Paratetraonchoides inermis (Monogenea: Tetraonchoididae) is a flatworm parasitising the gills of
uranoscopid fishes. Its morphological characteristics are ambiguous, and molecular data have never been used to
study its phylogenetic relationships, which makes its taxonomic classification controversial. Also, several decades
of unsuccessful attempts to resolve the relationships within the Monogenea present a strong indication that
morphological datasets may not be robust enough to be used to infer evolutionary histories. As the use of molecular
data is currently severely limited by their scarcity, we have sequenced and characterized the complete mitochondrial
(mt) genome of P. inermis. To investigate its phylogenetic position, we performed phylogenetic analyses using Bayesian
inference and maximum likelihood approaches using concatenated amino acid sequences of all 12 protein-coding
genes on a dataset containing all available monogenean mt genomes.

Results: The circular mt genome of P. inermis (14,654 bp) contains the standard 36 genes: 22 tRNAs, two rRNAs, 12
protein-encoding genes (PCGs; Atp8 is missing) and a major non-coding region (mNCR). All genes are transcribed from
the same strand. The A + T content of the whole genome (82.6%), as well as its elements, is the highest reported
among the monogeneans thus far. Three tRNA-like cloverleaf structures were found in mNCR. Several results of the
phylogenomic analysis are in disagreement with previously proposed relationships: instead of being closely related to
the Gyrodactylidea, Tetraonchidea exhibit a phylogenetic affinity with the Dactylogyridea + Capsalidea clade; and the
order Capsalidea is neither basal within the subclass Monopisthocotylea, nor groups with the Gyrodactylidea, but
instead forms a sister clade with the Dactylogyridea. The mt genome of P. inermis exhibits a unique gene order, with
an extensive reorganization of tRNAs. Monogenea exhibit exceptional gene order plasticity within the Neodermata.

Conclusions: This study shows that gene order within monopisthocotylid mt genomes is evolving at uneven rates,
which creates misleading evolutionary signals. Furthermore, our results indicate that all previous attempts to resolve
the evolutionary history of the Monogenea may have produced at least partially erroneous relationships. This further
corroborates the necessity to generate more molecular data for this group of parasitic animals.
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Background
Classification and phylogeny of the Monogenea have
been debated for decades without reaching a consensus.
Therefore, several classification systems, based on differ-
ent morphological characters, coexist (e.g. [1–7]). These
often use inconsistent terminology; e.g. Monogenea vs
Monogenoidea, Monopisthocotylea vs Polyonchoinea,
etc. (for further details see Table 1 in Mollaret et al. [8]).
To simplify comparison with previous studies and dis-
cussion of our results, we follow the naming system of
Boeger & Kritsky [4], with four exceptions: we use order
rank for Tetraonchidea (which was split into two parts
by Boeger & Kritsky: Tetraonchidae and Amphibdellati-
dae were assigned to Dactylogyridea, and the remaining
Bothitrematidae and Tetraonchoididae were assigned to
Gyrodactylidea), Monogenea instead of Monogenoidea,
Monopisthocotylea instead of Polyonchoinea, and Polyo-
pisthocotylea instead of Oligonchoinea.
Paratetraonchoides inermis Bychowsky, Gussev &

Nagibina, 1965 (Monogenea: Tetraonchoididae) is a para-
sitic flatworm usually found on gills of fishes belonging to
the family Uranoscopidae. It was originally assigned to the
Tetraonchoididae (Tetraonchidea) based on several mor-
phological characteristics: a considerably extended ribbon-
shaped body, absence of eyes and middle hooks, and a
digestive system typical for this family [9]. However, as the
parasite uses 16 marginal gyrodactylid-type (hinged) edge
hooks to attach itself to the gills of its host, later it was
reassigned to Gyrodactylidea by Boeger & Kritsky [4].
Concerning relationships among the orders Dactylo-
gyridea, Tetraonchidea, Capsalidea and Gyrodactylidea
(DTCG group henceforth), Bychowsky [1] argued that the
ancestors of the Tetraonchidea were morphologically
closer to the Gyrodactylidea than to the Dactylogyridea
(note that capsalids were assigned to the Dactylogyridea in
this classification). In contrast, in taxonomic classification
presented by Lebedev [2] includes the Tetraonchidea, to-
gether with the Dactylogyridea and Capsalidea, into the
superorder Dactylogyria, whereas the Gyrodactylidea was
elevated to the superorder level (Gyrodactylia). This classi-
fication was partly supported by Justine [5], based on sper-
matology data: sperm pattern four was found in the
orders Tetraonchidea and Dactylogyridea, whereas sperm
patterns 2a and 2c were found in the Capsalidea and
Gyrodactylidea, respectively. The fact that these traits pro-
duce incongruent results, and that several decades of
research have failed to produce a consensus on the phyl-
ogeny of DTCG group, presents a strong indication that
morphological datasets may not provide a sufficiently ro-
bust method to establish a comprehensive phylogenetic
hypothesis for DTCG group and the Monogenea.
With rapid advances in sequencing techniques, accom-

panied by exponentially increasing the availability of mo-
lecular data, molecular phylogenetics is becoming the

tool of choice for resolving the evolutionary relationships
within this group of animals [10, 11]. Despite this, the avail-
ability of molecular data for DTCG remains limited and un-
balanced (some orders are underrepresented) to infer their
phylogenetic relationships with high resolution. For ex-
ample, currently (July 2017), only 12 molecular records are
available in the GenBank database for the Tetraonchidea.
The only molecular marker used so far to study the phyloge-
netics of DTCG was 18S ribosomal RNA [11]. This marker
produced a topology somewhat similar to Justine’s results
[5]: (Dactylogyridea + Tetraonchidea) + (Monocotylidea +
(Capsalidea + Gyrodactylidea)). However, as single-gene
markers may not carry a sufficient amount of information
to provide high phylogenetic resolution, future studies
shall probably increasingly rely on much more powerful
phylogenomic approaches [12, 13].
Owing to the abundance of mitochondria in animal tis-

sues, maternal inheritance, the absence of introns, the
small size of genomes in metazoans, and an increasingly
large set of available orthologous sequences, metazoan
mitochondrial (mt) genomes have become a popular tool
in population genetics [14], phylogenetics [15, 16] and
diagnostics [12]. Comparisons of the arrangements of
genes have garnered much scientific attention, as they
carry a wealth of complementary resources with potential
applications in molecular systematics [17, 18]. Although
gene order within neodermatan (i.e. parasitic flatworms)
mt genomes is assumed to be remarkably conserved [16,
19, 20], several exceptions have been reported, including
African/Indian schistosomes [19, 21], polyopisthocotylids
[16, 22, 23] and a single monopisthocotylid [24].
Here, we sequenced, annotated and characterized the

first tetraonchid mt genome sequence, belonging to P.
inermis. We compared it structurally to all available (July
2017) neodermatan mt genomes and used all available
monogenean mt genome sequences to reconstruct the
phylogenetic relationships within the entire class.

Methods
Specimen collection and DNA extraction
Monogeneans were collected on 27th September 2016
from the gills of Ichthyscopus lebeck (Bloch & Schneider,
1801) obtained from Dong-He market in Zhoushan,
Zhejiang Province, China (29°56′–40°62′N; 122°18′–12°
30′E). Paratetraonchoides inermis was identified morpho-
logically by the hard parts of the haptor (dorsal and ventral
connective bars, marginal hooks) and reproductive organs
(male copulatory organ and vaginal armament) [9] under a
stereomicroscope and a light microscope. The parasites
were preserved in 99% ethanol and stored at 4 °C. Total
genomic DNA was extracted from about 120 entire
parasites using the TIANamp Micro DNA Kit (Tiangen
Biotech, Beijing, China), according to the manufacturer’s
recommended protocol, and stored at -20 °C.
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Amplification and sequencing
Conducted as described before [25], with minor modifi-
cations: partial sequences of nad5, nad1, cox1, cox3,
cox2 and rrnS genes were amplified by PCR using six de-
generate primer pairs (Additional file 1). Based on these
newly sequenced fragments, we designed specific
primers for amplification and sequencing of the whole

mitogenome (Additional file 1: Table S1). PCR was per-
formed in a 20 μl reaction mixture, containing 7.4 μl dd
H2O, 10 μl 2× PCR buffer (Mg2+, dNTP plus, Takara,
Dalian, China), 0.6 μl of each primer, 0.4 μl rTaq poly-
merase (250 U, Takara), and 1 μl of DNA template.
Amplification was conducted under the following condi-
tions: initial denaturation at 98 °C for 2 min, followed by

Table 1 Annotated mitochondrial genome of Paratetraonchoides inermis

Gene Position Size Intergenic nucleotides Codon Anti-codon

From To Start Stop

cox3 1 651 651 ATG TAA

trnH 652 716 65 GTG

cytb 717 1820 1104 ATG TAA

nad4L 1825 2091 267 4 ATG TAG

nad4 2058 3272 1215 -34 ATG TAA

trnQ 3274 3336 63 1 TTG

trnF 3336 3400 65 -1 GAA

trnM 3394 3457 64 -7 CAT

atp6 3458 3973 516 ATG TAA

nad2 3990 4832 843 16 ATG TAA

trnA 4853 4920 68 20 TGC

trnD 4983 5050 68 62 GTC

nad1 5081 5977 897 30 ATG TAA

trnI 5989 6056 68 11 GAT

trnK 6059 6130 72 2 CTT

nad3 6131 6481 351 ATG TAA

trnW 6497 6562 66 15 TCA

trnN 6603 6670 68 40 GTT

trnP 6680 6743 64 9 TGG

trnS 6789 6849 61 45 GCT

cox1 6882 8474 1593 32 GTG TAA

trnT 8460 8523 64 -15 TGT

rrnL 8524 9460 937

rrnS 9473 10,178 706 12

cox2 10,192 10,764 573 13 ATG TAA

trnE 10,764 10,833 70 -1 TTC

nad6 10,837 11,283 447 3 ATG TAA

trnL 11,325 11,387 63 41 TAA

trnY 11,421 11,483 63 33 GTA

trnL 11,482 11,544 63 -2 TAG

trnV 11,545 11,611 67 TAC

trnG 11,612 11,673 62 TCC

trnS 11,686 11,753 68 12 TGA

trnC 11,765 11,823 59 11 GCA

trnR 11,836 11,896 61 12 TCG

nad5 11,915 13,453 1539 18 ATG TAA
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40 cycles at 98 °C for 10 s, 48–60 °C for 15 s, 68 °C for
1 min/kb, and a final extension at 68 °C for 10 min.
PCR products were sequenced bi-directionally at
Sangon Company (Shanghai, China) using the primer-
walking strategy.

Sequence annotation and analyses
After BLASTn analysis [26], the mitochondrial genomic
sequence was assembled manually in a stepwise manner.
The mt genome was aligned against the mt genomic se-
quences of other published monogeneans using MAFFT
7.149 [27] to determine approximate gene boundaries.
The annotation was further fine-tuned using Geneious
[28] adopting one capsalid mt genome, Neobenedenia
melleni (MacCallum, 1927) (JQ038228) as the reference,
and finally recorded in a Word document. Protein-
coding genes (PCGs) were found by searching for ORFs
(employing genetic code 9, echinoderm mitochondrial)
and checking nucleotide alignments against the refer-
ence genome in Geneious. All tRNAs were identified
using ARWEN [29], DOGMA [30], and MITOS [31]
web servers. The two rRNAs, rrnL and rrnS, were also
preliminarily found using MITOS, and their precise
boundaries determined by alignment with closely related
orthologs in Geneious. The NCBI submission file and ta-
bles with statistics for mt genomes were created using a
home-made GUI-based program, MitoTool [32]. A nu-
cleotide composition table was then used to make the
broken line graph of skewness and A + T content in
ggplot2 [33]. Codon usage and relative synonymous
codon usage (RSCU) for 12 protein-encoding genes
(PCGs) of seven analyzed monopisthocotylids were ini-
tially computed with MEGA 5 [34], then further sorted
using custom-made Python scripts [35], and finally
imported into ggplot2 to draw the RSCU figure. Re-
arrangement events in studied mt genomes and pairwise
comparisons of gene orders of seven monogeneans were
analyzed with CREx web tool [36] using the common
interval measurement.

Phylogenetic analyses
Phylogenetic analyses were conducted using amino acid
sequences of PCGs of the newly sequenced mt genome
(P. inermis) and all 17 monogenean mt genomes
available in the GenBank (Additional file 2: Table S2).
Two species of the order Tricladida, Crenobia alpina
(Dana, 1766) (KP208776) and Obama sp. MAP-2014
(NC_026978), were used as outgroups, as suggested in
our previous study [25]. A fasta file with nucleotide se-
quences for all 12 PCGs was extracted from GenBank files
and translated into amino acid sequences (employing gen-
etic code 9, echinoderm mitochondrial) using MitoTool.
All genes were aligned in batches with MAFFT, integrated
into another GUI-based program written by us, BioSuite

[37]. BioSuite was also used to concatenate these
alignments and generate phylip and nexus format files.
Phylogenetic analyses were conducted using maximum
likelihood (ML) and Bayesian inference (BI) methods.
Selection of the most appropriate evolutionary model for
the dataset was carried out using ProtTest [38]. Based on
the Akaike information criterion, MtArt + I + G + F was
chosen as the optimal model for ML analysis, and
LG + I + G + F for the BI analysis. ML analysis was per-
formed in RaxML GUI [39] using a ML + rapid bootstrap
(BP) algorithm with 1000 replicates. BI analysis was per-
formed in MrBayes 3.2.6 [40] with default settings, and
5 × 106 metropolis-coupled MCMC generations. Finally,
phylograms and gene orders were visualized and anno-
tated by iTOL [41] with the help of several dataset files
generated by MitoTool.

Results and discussion
Genome organization and base composition
The circular mitochondrial genome of P. inermis is
14,654 bp in size (GenBank accession number KY856918).
The mitogenome is comprised of 12 protein-encoding
genes (PCGs), 22 tRNA genes, two rRNA genes, and a
major non-coding region (mNCR) (Fig. 1). The genome
lacks the Atp8 gene, which is common for flatworms [42].
All genes are transcribed from the same strand. Six over-
laps and 22 intergenic regions were found in the genome
(Table 1). Noteworthy, the A + T content of the whole gen-
ome (82.6%), concatenated PCGs (81.9%), concatenated
rRNA genes (81.1%), concatenated tRNA genes (82.6%),
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and even individual elements (three codon positions, two
rRNAs, all 12 individual PCGs) of the genome, are the
highest reported among the monogenean mitogenomes
characterized so far (Additional file 2: Table S2; Fig. 2).
Nucleotide skewness of the mt genome (as well as its
elements) did not differ from other monogeneans (Fig. 2).

Protein-coding genes and codon usage
Coalesced PCGs were 9996 bp in size, with a notably
high A + T content of 81.9%. This was also reflected in
individual PCGs: from 75.1% (cox1) to 87.9% (nad2 and
nad3) (Table 2). Apart from cox1 (which used GTG),
ATG was the initial codon for all other PCGs. Among
the terminal codons, 11 out of 12 were TAA, whereas
nad4L used TAG. No abbreviated stop codons (T–)
were found (Table 1).
Codon usage, RSCU, and codon family proportion

(corresponding to the amino acids usage) were investi-
gated among seven monopisthocotylid representatives
(Fig. 3). Except for Tetrancistrum nebulosi (Young,
1967), the most abundant codon families were Leu2, Ile,
and Phe. This is comparable to Lepidoptera [43] and
Nemertea [44]. Noteworthy, the studied mt genome ex-
hibited a strong preference for the A + T-rich members
of these four codon families (>10%, Phe, Ile, Leu2 and

Asn in Fig. 3), whereas three codons mainly composed
of G + C (CGC, GCG and CUG) were not found at all.
This all corresponds well to the exceptionally high
A + T bias of this mt genome. Overall, A + T-rich co-
dons were favored over synonymous codons with lower
A + T content among all seven considered monopistho-
cotylids (Fig. 3). This A + T preference is notably exem-
plified by the Leu2 family (TTA and TTG), where the
TTA codon accounted for 86.92 ± 4.64%.

Transfer RNA genes
All 22 standard tRNAs were found (Table 1), and most of
them exhibited the conventional cloverleaf structure.
Exceptions were trnS1(AGN) and trnC, which lacked DHU
arms. The unorthodox trnS1(AGN) is commonplace among
all sequenced monogeneans [12, 15, 16, 22–24, 45–51], and
possibly even all flatworms [42]. The unpaired DHU-arm in
tRNAcys was also reported in most monogeneans apart
from Pseudochauhanea macrorchis, M. sebastis, Polylabris
halichoeres (Wang & Yang, 1998), T. nebulosi and N.
melleni [16, 22, 23, 45, 52]. A slight preference for the A
nucleotide (AT skewness, 0.013) was found in concatenated
tRNAs of the P. inermis mt genome, which is an exclusive
feature among the analyzed monogeneans (Fig. 2), all of
which exhibit a preference for the T nucleotide.
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Non-coding regions
The major non-coding region (mNCR), 1201 bp in size
and located between nad5 and cox3, had a slightly
higher A + T content (86%) than other parts of the gen-
ome (Table 2). Within the mNCR, there were two minor
repetitive regions, both consisting of two repeats, 19 and
16 bp in size. Three tRNA-like cloverleaf structures were
found in the mNCR (Additional file 3: Figure S1), among
which trnS1-like and trnL1-like sequences contained
modified standard anti-codons (ACT and AAG respect-
ively), whereas trnS2-like had a standard TAA anti-
codon. Average sequence similarity values between the
three tRNA-like pseudo-genes and the corresponding
functional monogenean tRNA homologs were low
(41.45 ± 4.61% trnS1-like, 37.14 ± 3.84% trnL1-like, and
40.32 ± 6.01% trnS2-like), which indicates that they may
not be functional. Such tRNA-like sequences were also
observed in mNCRs of many lepidopteran insects [53, 54].
These three tRNA-like genes could be a remnant of the
tandem-duplication-random-loss (TDRL) process, and the
associated heightened rates of substitutions and indels in
duplicated genes. A similar hypothesis was put forward by
Cameron [55] with regard to the presence of tRNA-like
sequences in the mNCRs of many lepidopteran insects
[53, 54]. However, due to the limited data we have at

disposal, functionality and presence of such tRNA-like se-
quences in other closely related species of the Tetraonchi-
dea and other monogeneans remain speculative.

Phylogeny
Both phylogenetic analysis methods (BI and ML) produced
phylograms with concordant branch topologies and high
statistical support: all bootstrap support values were ≥ 88,
and all Bayesian posterior probabilities were 1.0. Since both
phylograms had the same topology, only the latter is shown
(Fig. 4). Tree topology indicates the existence of two major
clades: subclass Monopisthocotylea (Gyrodactylidea,
Capsalidea, Tetraonchidea and Dactylogyridea) and sub-
class Polyopisthocotylea (Mazocraeidea). The Monopistho-
cotylea clade was further sub-divided into two clades,
(Tetraonchidea + (Dactylogyridea + Capsalidea)) and
Gyrodactylidea, both robustly supported (BP/BPP = 88/1
and 100/1, respectively).
Based on the topology obtained in our phylogenetic ana-

lysis, the order Tetraonchidea appears to be much more
closely related to the Dactylogyridea + Capsalidea clade
than to the order Gyrodactylidea. This result is not fully
congruent with any of the previously proposed classifica-
tions [1–5, 56]. As the entire order Tetraonchidea was
represented by a single species of the Tetraonchoididae

Table 2 Nucleotide composition and skewness of different elements of the studied mitochondrial genome

Regions Size (bp) T(U) C A G AT (%) GC (%) AT skew GC skew

PCG 9996 48.5 6.1 33.4 12 81.9 18.1 -0.185 0.329

1st codon position 3332 42.3 6.2 36.9 14.6 79.2 20.8 -0.067 0.401

2nd codon position 3332 51.3 10.2 23.2 15.3 74.5 25.5 -0.378 0.2

3rd codon position 3332 52 1.8 40 6.2 92 8 -0.13 0.556

atp6 513 50.1 7.8 31 11.1 81.1 18.9 -0.236 0.175

cox1 1590 44.8 8.6 30.3 16.3 75.1 24.9 -0.194 0.308

cox2 570 45.8 7.5 31.1 15.6 76.9 23.1 -0.192 0.348

cox3 648 50.5 5.4 32.6 11.6 83.1 17 -0.216 0.364

cytb 1101 45.9 8.4 31.7 14.1 77.6 22.5 -0.183 0.255

nad1 894 49.7 5.4 31.2 13.8 80.9 19.2 -0.228 0.439

nad2 840 52.5 2.9 35.4 9.3 87.9 12.2 -0.195 0.529

nad3 348 51.4 4.6 36.5 7.5 87.9 12.1 -0.17 0.238

nad4 1212 48.8 5.9 34.9 10.4 83.7 16.3 -0.167 0.279

nad4L 264 53.4 2.3 32.2 12.1 85.6 14.4 -0.248 0.684

nad5 1536 48.9 5 36.8 9.2 85.7 14.2 -0.14 0.297

nad6 444 51.4 4.1 35.6 9 87 13.1 -0.181 0.379

rrnL 937 41.1 6.3 41.4 11.2 82.5 17.5 0.004 0.28

rrnS 706 36.7 7.8 42.6 12.9 79.3 20.7 0.075 0.247

NCR 1201 45.5 5 40.5 8.9 86 13.9 -0.058 0.281

tRNAs 1432 40.8 6.4 41.8 11 82.6 17.4 0.013 0.269

Full genome 14,654 46.5 6 36.1 11.4 82.6 17.4 -0.126 0.312

Abbreviations: PCG protein-coding genes, NCR non-coding region
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(P. inermis) in our study, this topology should be inter-
preted with some caution. This relationship appears to be
supported by spermiogenetic and spermatozoal ultrastruc-
tural characters [5] (Tetraonchidea and Dactylogyridea
possess sperm pattern 4, exhibiting one axoneme; Fig. 4),
but as the Gyrodactylidea and Capsalidea both possess two

axonemes (patterns 2a and 2c), we can conclude that
sperm morphology and mitochondrial phylogenomics pro-
duce incongruent signals. Our results also appear to reject
the validity of taxonomic grouping of the Dactylogyridea,
Tetraonchidea and Gyrodactylidea by the possession of 16
gyrodactylid-type marginal hooks, proposed by Bychowsky
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[1]. Similarly, the Tetraonchoididae were reassigned to the
Gyrodactylidea by Boeger & Kritsky [4] mainly by hinged
‘gyrodactylid’ hooks, which is also incongruent with our re-
sults. Our results also do not support the basal phylogen-
etic position of the Capsalidea proposed by Boeger &
Kritsky [4]. Finally, the results are also in disagreement
with phylogenetic classifications based on molecular data:
18S ribosomal RNA sequences produced a topology in
which capsalids were phylogenetically closer to gyrodacty-
lids than dactylogyrids [11].
Although our phylogenetic framework failed to reach a

consensus with any of the previous studies, either those
based on morphological or on molecular data, it pro-
vides important new insights into the evolutionary his-
tory of the four monogenean orders, the Gyrodactylidea,
Dactylogyridea, Capsalidea and Tetraonchidea. Morpho-
logical traits are often believed to exhibit a high
frequency of homoplasy, especially in (parasitic) micro-
scopic animals, whether as a consequence of subjective,
or merely simplistic, definitions of a character state
(artifact) [57], or of a convergent evolution caused by
similar selection pressures on different taxonomic
groups [58]. The existence of numerous incompatible
phylogenetic hypotheses regarding DTCG group and the
entire class Monogenea [1–7, 56] presents excellent
proof that wrong conclusions are often reached when

poorly-chosen or numerically insufficient morphological
characters are invoked. Although molecular phyloge-
netics is a promising tool to address this issue [10, 11],
future studies should rely on molecular markers that
carry a sufficient amount of information to provide high
phylogenetic resolution [12, 13].

Gene order
Paratetraonchoides inermis exhibits an extensive re-
organization of tRNAs in comparison to all other se-
quenced monogenean mt genomes (Fig. 5). However,
disregarding the tRNA genes, the order of PCGs and
rRNA genes within its mt genome conforms to the com-
mon neodermatan pattern [20, 59]. A gene order simi-
larity matrix (Additional file 4: Table S3) based on all 36
genes also indicates that P. inermis was the most dis-
similar among the compared monopisthocotylids, even
including the unique order-possessing A. forficulatus
[24]. The transformational pathway from P. inermis to
the most similar gene arrangement, found in T. nebulosi
and Paragyrodactylus variegatus (You, King, Ye & Cone,
2014), required two coupled transposition events, as well
as three coupled long-range rearrangement operations,
of which two were a TDRL, and one was a transposition
(Additional file 5: Figure S2). Disregarding the two “non-
standard” mt genomes, P. inermis and A. forficulatus,
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the remaining monopisthocotylids exhibit a remarkably
conserved gene order [20, 23].
For a better comparison of gene order among neoder-

matans, we used MitoTool and iTOL to extract and
visualize all available sequences for species of the
Cestoda and Trematoda (Additional file 6: Figure S3)
and filter out all non-unique gene orders. This resulted
in a set of 21 unique gene orders: 11 for the Monogenea,
four for the Cestoda (also see our recent publication
[60]) and seven for the Trematoda (note that the
eleventh gene order in Fig. 5 was shared by the Cestoda
and Monogenea). This indicates an exceptional plasticity
in the mitochondrial gene order in the Monogenea, as
they merely represent 16.8% (18/107) of all available
neodermatan mt genomes, but account for 52.4% (11/21)
of all unique gene orders. In general, gene order within
neodermatan mt genomes is relatively conserved: all of
the Cestoda [60] and a majority of the Trematoda mt ge-
nomes exhibited only minor variations in the tRNA order
(Fig. 5; pattern 1a). Exceptions were only the African/
Indian schistosomes (pattern 2, with interchange of two
gene blocks: nad5-cox3-cytb-nad4L-nad4 and atp6-nad2,
and interchange of nad1 and nad3; Fig. 5) and the mono-
genean subtaxon Polyopisthocotylea (pattern 3). This was
also observed by Webster et al. [19], but they did not have
the latest two sequenced monopisthocotylid mitogenomes
(P. inermis and A. forficulatus) at their disposal. The major-
ity of Monopisthocotylidea species indeed do exhibit the
most common gene order pattern 1a, but these two mt ge-
nomes both exhibit extensively altered gene orders: A. forfi-
culatus exhibits pattern 4, with a transposal of an entire
gene block [24]; and the newly sequenced P. inermis is the
sole representative of the pattern 1b, exhibiting an exten-
sive reshuffling of tRNA genes (Fig. 5).

We hypothesise that the most common pattern (1a)
might be the primitive gene order (plesiomorphy) from
which patterns 1b, 2, 3 and 4 were derived. This hypoth-
esis is in agreement with previous studies [19, 21, 61],
which considered the gene order of Asian schistosoma-
tid mt genomes as the ancestral state, and the gene
order of African/Indian schistosomatids a derived trait.
Two non-standard gene patterns (4 and 1b) contradict
the two hypotheses regarding the putative monogenean
plesiomorphic gene arrangement atp6-nad2-trnV-trnA-
trnD-nad1-trnN-trnP-trnI [23], and the discriminating
markers between Monopisthocotylea and Polyopis-
thocotylea: rrnL-trnC-rrnS and trnN-trnP-trnI-trnK [48]
(Table 3).
Such rare gene arrangements are believed to be a

promising tool for molecular systematics and phylogen-
etic reconstruction because mitochondrial gene order re-
versal events are very rare, and unique orders rarely
occur independently in separate lineages [18]. However,
the latest two sequenced mt genomes (P. inermis and A.
forficulatus) show that monopisthocotylids do not pos-
sess a synapomorphic gene order, and instead suggest
that gene order within this group may be evolving at un-
even rates. This can create misleading evolutionary sig-
nals, which was observed before in some taxonomic
groups [62–65]. Thus, while taking into consideration
that our insight is curbed by the sparsity of available mt
genomes, this finding provides a strong note of caution
to researchers wishing to use gene order rearrangements
as a tool for neodermatan phylogeny.

Conclusions
Despite the limited availability of molecular data, our
analysis provides three findings particularly worth
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2 Ogmocotyle sikae OHX NC_027112
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noting. Firstly, there is no support for the sister-
group relationship between the Gyrodactylidea and
Tetraonchidea [1], nor for the allocation of the family
Tetraonchoididae to Gyrodactylidea [4]. Instead, the
Tetraonchidea exhibits a phylogenetic affinity with the
Dactylogyridea + Capsalidea clade, which indirectly
supports Lebedev’s traditional classification [2]. Sec-
ondly, the order Capsalidea is neither basal within the
subclass Monopisthocotylea [4], nor forms a sister
group with the Gyrodactylidea [10, 11]. Instead, it
forms a sister clade with the Dactylogyridea, which is
in full agreement with the two latest mitochondrial
phylogenomic studies [24, 25] and lends further sup-
port to the traditional classifications by Bychowsky
[1] and Lebedev [2]. Thirdly, the mitogenome of P.
inermis provides several interesting findings from the
genomic perspective as well: the unprecedentedly high
A + T content of the entire genome and its elements,
three tRNA-like sequences found in the mNCR, and a
unique gene order. The latter indicates that gene
order within monopisthocotylids may be evolving at
uneven rates, thus creating misleading evolutionary
signals. Heightened AT bias can confound phy-
logenetic inference [66] and the inclusion of only a
handful of representatives for three orders (one for
Tetraonchidea, two for Dactylogyridea and three for
Capsalidea) in our analyses severely limits the
phylogenetic resolution. Therefore, we are currently
not able to generate a comprehensive phylogenetic
hypothesis for the high-level phylogeny of Mono-
pisthocotylea subclass, nor to conduct tests rigorous
enough to be able to reject/accept with confidence
the hypotheses put forward by the previous studies.
Denser sampling and use of strategies alleviating po-
tential compositional biases are needed to evaluate
our phylogenetic results and resolve the phylogeny of
monogeneans. Our work offsets the scarcity of mo-
lecular data for the order Tetraonchidea to some ex-
tent, providing a base both for the future fragmentary
dataset studies (morphology data and single gene
sequence-based molecular markers), as well as the
future mitochondrial phylogenomics studies.
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Additional file 1: Table S1. Primers used to amplify and sequence the
mitochondrial genome of Paratetraonchoides inermis. NCR is non-coding
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Additional file 4: Table S3. Pairwise comparison of 21 unique
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order, where “1254” represents an identical gene order. (XLSX 13 kb)

Additional file 5: Figure S2. Rearrangement pathway from
Paratetraonchoides inermis to Tetrancistrum nebulosi. (PDF 294 kb)
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positions 11,564 to 11,635 in Orthocoelium streptocoelium NC_028071; 11,604
to 11,667 of Metorchis orientalis NC_028008; 11,606 to 11,665 of Fasciolopsis
buski NC_030528; 11,717 to 11,785 of Fischoederius elongatus NC_028001; and
7304 to 7362 of Gastrothylax crumenifer NC_027833; rrnS was absent from
Paragonimus westermani NC_002354, nad2 was absent from Fasciolopsis buski
KX449331, nad3 was absent from Artyfechinostomum sufrartyfex KX943545; a
duplicated trnS1(AGN) was found in Metagonimus yokogawai NC_023249, and
a duplicated trnC was found in Schistosoma mansoni NC_002545 and all the
Schistosoma japonicum isolates. (PDF 4935 kb)
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Table 3 Occurrence of gene blocks in the five proposed gene order patterns
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Pattern 1b Y – Y – –
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block is present in all species exhibiting the pattern 1a, except for trematodes. “Y” with a superscript letter indicates the existence of minor exceptions in the
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