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Palaearctic
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Abstract

unknown.

epidemiological role warrants further investigation.

Background: Uranotaenia unguiculata is a Palaearctic mosquito species with poorly known distribution and ecology.
This study is aimed at filling the gap in our understanding of the species potential distribution and its environmental
requirements through a species distribution modelling (SDM) exercise. Furthermore, aspects of the mosquito ecology that
may be relevant to the epidemiology of certain zoonotic vector-borne diseases in Europe are discussed.

Results: A maximum entropy (Maxent) modelling approach has been applied to predict the potential distribution of Ur.
unguiculata in the Western Palaearctic. Along with the high accuracy and predictive power, the model reflects well the
known species distribution and predicts as highly suitable some areas where the occurrence of the species is hitherto

Conclusions: To our knowledge, the potential distribution of a mosquito species from the genus Uranotaenia is modelled
for the first time. Provided that Ur. unguiculata is a widely-distributed species, and some pathogens of zoonotic concern
have been detected in this mosquito on several occasions, the question regarding its host associations and possible
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Background

Uranotaenia unguiculata is the only species of the tribe
Uranotaeniini Lahille, 1904 presently known to occur in
Europe. Originally described from the Lake Kinneret
area in Israel [1], the species for a long time was consid-
ered as a single representative of the genus in the entire
Palaearctic region. More recently, Harbach & Schnur [2]
reported the presence of another species, Ur. (Pseudoficalbia)
mashonaensis Theobald, 1901, in the same area in Israel.
Interestingly, this finding highlights that this group of
mosquitoes is grossly understudied in the region.
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Compared with the other, better-studied species of
the Culicidae, very little is known about bionomics of
Ur. unguiculata throughout its range. Immature stages
of the species can be found from May to October
across a variety of habitats, both in natural and urban-
ized areas [3-5]. Thus, larvae occur mostly in stagnant
permanent, fresh or slightly brackish (up to 1000-
1100 mg/l) water bodies, often overgrown with higher
aquatic vegetation [5-8]; occasionally, they have also
been found in more ephemeral environments such as
rice paddies, puddles, hoof prints, and artificial con-
tainers [3, 9, 10]. Associations with instars of the
following mosquito species have been recorded in the
literature: Anopheles algeriensis, An. hyrcanus, An.
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maculipennis (s.l.), An. sacharovi, An. sergentii, An.
superpictus, Culex antennatus, Cx. judaicus, Cx. laticinc-
tus, Cx. mimeticus, Cx. modestus, Cx. pipiens pipiens,
Cx. perexiguus, Cx. theileri, Cx. univittatus, Culiseta
alaskaensis, Cs. longiareolata, Cs. subochrea, and
Ochlerotatus caspius [3, 5-8, 11-16], which evidently
suggest a broad ecological plasticity of Ur. unguiculata.

Even less is known regarding the ecology of adult
stages, including the preferred host range, seasonal and
daily activity patterns, and dispersal capabilities. Thus,
Ur. unguiculata has repeatedly been referred to as an
ornithophilic mosquito [17, 18] or feeding on amphibian
and reptilian hosts has been suggested for the species,
largely by the analogy with its congeners [5]. From this
point of view, it is interesting to note that the females
are attracted to light traps, which are routinely supple-
mented with carbon dioxide as a bait under the current
mosquito surveillance schemes in Europe (e.g. [19, 20]).
Although these data are rather inconclusive, with regard
to the nature of this attraction, as for example, both
sexes can be attracted to black light alone (SF, unpub-
lished observations), at least in two instances female
specimens of Ur. unguiculata were collected in traps
using CO, only [20, 21]. Independently from the used
methods, the species is rarely collected in sufficient
quantities, which usually leads authors to exclude it from
any further ecological analysis (e.g. [22]). According to
limited field observations, Ur. unguiculata presumably is
a multivoltine mosquito [23], overwintering as unfed,
inseminated, nulliparous females, usually in human-made
shelters such as cellars, or in reed (Phragmites spp.) piles
and under dense marsh vegetation in natural conditions
[24-26]. Autogenous egg production has also been
observed in some populations of this species [27, 28].

Although it has been widely recognized that Uranotaenia
spp. are challenging to sample, especially in the adult stage
[29-32], the lack of knowledge regarding ecology and dis-
tribution of these mosquitoes might have its consequences
for our understanding of some vector-borne diseases that
pose a threat to animal and human health. Namely, several
strains of West Nile virus (WNV) (Flaviviridae: Flavivirus)
have been repeatedly isolated from Ur. unguiculata in dif-
ferent parts of Europe [33-36] and a hypothesis regarding
the possible role of the species in the virus overwintering
has been suggested [26].

Modelling suitable habitats for arthropod vectors of hu-
man and animal diseases is a growing application of species
distribution modelling (SDM) which helps in elucidating
species-environment relationships and therefore can be
used to support epidemiological studies or target disease
surveillance [37-40]. A variety of methods such as
Maximum Entropy (Maxent), Boosted Regression Trees
(BRT), and Genetic Algorithm for Rule-set Production
(GARP) have been widely explored and implemented to
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construct SDMs for mosquito vectors over the last decade
[41-48]. Given the scarcity of information regarding the
distribution and ecology of Ur. unguiculata across its range,
it has been decided to model a potential distribution of the
species with the aid of Maxent, which is a popular, user-
friendly tool for predicting species distributions. Moreover,
other aspects of the species fundamental niche such as
trophic interactions and their potential consequences for
the epidemiology of vector-borne diseases are being dis-
cussed in the present communication.

Methods

Study area and distributional data

Contrary to the geographical extent accepted by some of
the recent works on the zoogeography of the Western
Palaearctic Culicidae (e.g. Porretta et al. [49]), in the
scope of this study borders of the region are defined as
reported by De Lattin [50]. This area encompasses
Europe, North Africa and the Eastern Mediterranean,
and a vast area of South-Central Asia that lies west of
China and is relatively well delimited by high Central
Asian mountain ranges such as the Tien Shan and
Karakoram mountains from the south. Moreover, as the
exact borders between the Palaearctic and neighbouring
biogeographical realms are often considered arbitrary,
and for the sake of utility, the broad rectangular area
lying between latitude 20-60°N and longitude 20°W to
80°E has been chosen for the modelling exercise. Hence
the study area encompasses the entire species range
reported in the literature [5, 7, 51].

Presence records for Ur. unguiculata unguiculata were
compiled from a variety of sources, including review of
the major literature on ecology and faunistics of
Palaearctic Culicidae (see Additional file 1 for the literature
search protocol); records held in Zoological Institute of the
Russian Academy of Sciences, Saint Petersburg (A.V. Khalin,
pers. comm.), Walter Reed Biosystematics Unit, Smithsonian
Institution, Washington DC (accessed through the
VectorMap data portal: http://www.vectormap.org, on 27
October 2015); through personal communications from a
number of mosquito experts (see the Acknowledgements);
as well as from the author’s own findings of the species in
eastern and southern regions of Ukraine. For a substantial
proportion of the data (mostly literature records) the exact
presence points were unavailable and geographical coordi-
nates were assigned using GeoLocate Web Application
(http://www.museum.tulane.edu/geolocate/web/WebGeore-
faspx). Only localities that could be determined unambigu-
ously were used for the georeferencing and included in the
dataset, which consists of 308 spatially unique occurrence
points (Fig. 1), spanning the period between 1913 and 2015.
To augment availability of the distributional information, the
data are provided as Additional file 2: Table S1.
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Fig. 1 Distributional records of Uranotaenia unguiculata in the Western Palaearctic

SDM development procedure

Maxent is a dedicated software based on the maximum-
entropy approach for modelling species niches and dis-
tributions using their occurrence records together with a
set of user-defined environmental predictor variables
(i.e. temperature, precipitation) for a surrounding study
area [52, 53]. This method was chosen because of its
high performance, robustness, and, importantly, because
of its ability to accurately predict species distributions
from small numbers of occurrences [37, 54—56]. Briefly,
Maxent predicts habitat suitability for a given species by
comparing environmental predictors at sites where it
has been recorded with background sites across the
study area. The resulting (default) logistic output is
visualized and interpreted as a habitat suitability index
ranging from O (unsuitable) to 1 (highly suitable habitat)
per grid cell [56—58].

Predictor variables used in the process of the model
building must be ecologically relevant and ideally, as prox-
imal as possible to the factors limiting the modelled species’
distribution [59]. A multitude of different environmental
predictors has been used in SDM development for mosqui-
toes with temperature and precipitation variables (Bioclim)
being the most widespread [41-47, 60—63]. Along with the
climatic predictors, other types of variables such as eleva-
tion, land-cover, land use, and host population density
have been complementary explored in some of these
studies and found to be important contributors to the
models [41, 45, 62]. However, as some of these variables
(e.g. elevation) are distal to the true limiting factors [64]

or largely are not available at broad spatial and temporal
scales, it has been decided to use only Bioclim data as pre-
dictor variables in the present study. This dataset gener-
ated through interpolation of average monthly data from
numerous meteorological stations over a 50-year period
(1950-2000) [65] is available on a worldwide scale and
broadly matches the temporal extent of the occurrence
dataset for Ur. unguiculata.

Nineteen bioclimatic variables at a spatial resolution of
30 arc-seconds (~1 x 1 km? grid cells) were downloaded
from the WorldClim database (http://www.worldclim.org/
bioclim), clipped to the study area extent and prepared for
use in Maxent with the aid of the ArcMap 10.3.1 free
extension toolkit SDM toolbox v.1.1c [66]. Subsequently,
to be able to make inferences on the predictor variable
importance, the environmental layers were checked for
collinearity using the “Explore Climate: Correlations and
Summary Stats tool” within the same toolkit and highly
correlated (Pearson’s correlation coefficient > 0.80, see
Additional file 3: Table S2) were removed from the list. A
decision on whether to remove or retrieve a variable was
also made on the basis of their percent contribution to the
model obtained during a preliminary run in Maxent 3.3.k
with the full set of environmental layers and presence re-
cords. The resulted list of predictors used for the final
model development consisted of 11 variables (Table 1).

Spatial clustering of occurrence points in some areas
was evident in our dataset; and therefore, in order to
avoid problems related to uneven sampling efforts and
spatially autocorrelated records, which pertain to most if
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Table 1 Nineteen environmental variables obtained from the
WorldClim dataset (http://worldclim.org)

Variable Description

bio1 Annual mean temperature

bio2 Mean diurnal range®

bio3 Isothermality

bio4 Temperature seasonality

bio5 Maximum temperature of warmest month
bio6 Minimum temperature of coldest month?
bio7 Temperature annual range®

bio8 Mean temperature of wettest quarter®
bio9 Mean temperature of driest quarter
bio10 Mean temperature of warmest quarter®
bio11 Mean temperature of coldest quarter®
bio12 Annual precipitation®

bio13 Precipitation of wettest month

bio14 Precipitation of driest month

bio15 Precipitation seasonality

bio16 Precipitation of wettest quarter

bio17 Precipitation of driest quarter®

bio18 Precipitation of warmest quarter®

bio19 Precipitation of coldest quarter®

Variables used in the analysis

not all presence-only data gathered from museum re-
cords, online databases, etc. [67, 68], the original occur-
rence dataset was reduced within a specified Euclidean
distance of 50 km (a distance exceeding the average
maximum flight distance reported for the Culicidae [69])
using the “Spatially Rarefy Occurrence Data for SDMs”
tool in the SDM toolbox. This resulted in a spatially rar-
efied dataset consisting of 151 occurrences, which was
subsequently used for the modelling exercise.

For the final model run Maxent was set-up with the
default settings except for the following: the regularization
multiplier of 2, as the higher regularization parameter limits
model complexity and reduce overfitting [70], and the
random test percentage of 25 has been chosen as a simple
test of model fit previously used by number of SDM studies
for hematophagous vectors in the absence of independent
data for model validation [40]. The resulted SDM was
processed and visualized in the ArcMap 10.3.1.

As a measure of a model’s discriminative power Maxent
calculates the area under the curve (AUC) for the receiver
operation characteristic (ROC) score, which typically ranges
between 0.5 (indicates no better than random prediction)
and 1.0 (ie. a perfect fit) [52, 71]. Additionally, to allow
users to explore the importance of predictors, Maxent per-
forms variable jackknifing, a procedure which builds mul-
tiple models excluding different variables and compares the
models’ performance with and without each variable [72].
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Results

Figure 2 shows model predictions for the potential dis-
tribution of Ur. unguiculata in the Western Palaearctic
with the resulting area under the receiver operating
characteristic (AUC) values of 0.913 and 0.882 + 0.026
SD for the training and test data, respectively, which in-
dicate high accuracy and predictive power of the model.
Furthermore, the minimum training presence binomial
probability of P<0.001 shows that the model perform-
ance was better than random [73].

Summary data on the percent contribution and permuta-
tion importance for each environmental variable used in the
analysis are presented in Table 2. Mean temperature of the
warmest quarter (biol0) was a variable with highest percent
contribution, followed by precipitation of the coldest quarter
(bio19), and min temperature of the coldest month (bio6).

According to the jackknife test (Fig. 3), mean temperature
of the coldest quarter (bioll) was the variable having the
highest training gain when used alone, which indicates that
it has the most useful information by itself; whereas mean
temperature of warmest quarter (bio 10) decreased training
gain the most when was excluded from the analysis and
therefore has the most information that is not present in
other variables.

Discussion

Although this study has several limitations resulting
from the spatial and temporal biases and inaccuracies in-
herent in the types of data used in the analysis [74—76],
the model is an appropriate first step to increase our
understanding of the distribution of Ur. unguiculata (77, 78].
The known distribution of the species is well reflected by the
model with only a few occurrence points falling outside the
predicted range (Fig. 2). Moreover, most of the observed mis-
matches fall within the Saharo-Arabian subregion, a well-
recognized biogeographical transition zone [79, 80] where at
least two other Uranotaenia species have been reported to
occur sympatrically with Ur. unguiculata [2, 81]. From this
perspective, it is important to note that although the species
is usually considered as immediately recognizable and easily
identifiable throughout its range, it took some additional
effort to realize that, for example, the specimens of
Uranotaenia collected in Morocco belonged in the two
separate taxa, a common Palaearctic Ur. unguiculata
and an Afrotropical Ur. balfouri [81]. Hence, care
should be taken when considering the records from
areas with a strong influence of neighbouring biogeo-
graphical realms, which might represent misidentifica-
tions. The situation is further complicated by the fact
that the subspecies Ur. unguiculata pefflyi has been
described from the Arabian Peninsula [82], which ren-
ders the species polytypic. Given that the actual nature
of this variability is essentially unknown, distributional
data for Ur. unguiculata pefflyi were not included in
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Fig. 2 Model predictions for the potential distribution of Uranotaenia unguiculata in the Western Palaearctic together with the species occurrence
records. The value of predicted environmental suitability was classified into five categories including very high suitability (red), high suitability
(orange), moderate suitability (vellow), low suitability (green), and unsuitable (white)

Table 2 Summary of the average percent contribution and
permutation importance for each of the environmental variables

Variable

Percent contribution Permutation importance

bio10 354 280
bio19 347 18.8
bio6 12.8 8.1
bio2 80 72
bio8 29 36
bio11 2.2 29.1
bio7 22 1.8
bio18 1.0 25
bio13 0.5 0.6
bio12 0.2 03
bio17 0.1 0

the present analysis. The subspecific status of the
Arabian populations could imply either classic allopatric
speciation with niche conservatism, which would result in
predicting these localities as suitable in the present model
or intraspecific niche differentiation with poor habitat
suitability predicted for the area [83, 84]. Albeit the data
scarcity did not allow to model the distribution of this
subspecies directly, the potential distribution of the nom-
inal subspecies observed in the present study suggests the
latter scenario. More information on the occurrence and
preferably molecular data on the genetic variability of both
subspecies in the region are needed to solve this problem.

The predicted areas of high habitat suitability within
the European part of the range are in good agreement
with known species records. At the same time, some
areas in central and western Europe where occurrences
for Ur. unguiculata are hitherto unknown surprisingly
received a relatively high suitability index in the model.
Thus, some areas in Poland (e.g. lower part of the River
Oder basin in the Lubusz and Lower Silesian voivode-
ships, or even small coastal stretches on the Baltic
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shores near Kolobrzeg and Ustka located at some 54°N
latitude!) represent suitable habitats according to the
model results. Although it is unlikely that the species
occurs so far north as the 54° latitude, it is reasonable to
assume that the observed prediction reflects species’ true
environmental requirements as inferred from the
climatic variables, while it does not account for the array
of other factors such as biotic interactions, climate equi-
librium, and historical dispersal constraints [78, 85].
Similarly, the Canary Islands that have relatively poor
mosquito fauna with only 11 species recorded so far [86]
have been predicted by the model as largely suitable for
Ur. unguiculata, although the archipelago is apparently
unoccupied by the species, possibly as the result of its
remoteness and recent volcanic origin.

Conversely, it has been conjectured that records of
Ur. unguiculata from the Upper Rhine Valley in Germany
[87] and the South Moravian Region of the Czech Republic
[19] might represent a recent range expansion due to the
global warming. However, as predicted by the model, these
regions represent highly suitable areas and more likely serve
as thermophilic refugia persisting at least since the Holocene
climatic optimum [88], or even represent much older
Pleistocenic extra-Mediterranean refugia, which have been
increasingly recognized for various plant and animal taxa in
Europe [89]. This should be unveiled with the new methods
such as phylogenetic analysis of mtDNA sequencing data
coupled with the species distribution models, which show
great promise for understanding the patterns of biodiversity.

Although a full assessment of the species environmen-
tal requirements was behind the scope of the present
study, the results of the jackknife test reveal interesting
relationships between the mean temperatures of coldest
(biol1l) and warmest (biol0) quarters. The importance
of winter temperatures as a factor limiting northerly
distribution of temperate mosquitoes and expressed as a

mean January isotherm has been elucidated for Aedes
albopictus (reviewed in [90]), whereas sufficient summer
temperatures are thought to be critical for immature
development and the growth rates of mosquito popula-
tions [91]. It is possible that an interplay between the
two variables is a factor that partially determines the
presence of many thermophilic species in temperate lati-
tudes, which is further supported by the notion that in
areas “where 'summer’ temperatures are high the effect
of harsh 'winter' temperatures is less damaging” [92].
Interestingly, many of the species records utilized in
the present analysis came from extensive wetland areas
suggesting that the mosquito’s ecological niche might be
overlapping with that of WNV in Europe [93]. Thus, the
lineage 4 WNV has been detected in Ur. unguiculata
pools from the Lower Volga region in Russia [33] and
from mosquitoes collected in the Danube Delta,
Romania [36]. Although the pathogenicity of the WNV
strains isolated from Ur. unguiculata remains to be fully
characterized and the species does not meet the classical
criteria used to define a competent disease vector [94],
further inquiries into the vector-pathogen-host interac-
tions might prove useful for a better understanding of
WNV evolution, routes of emergence and circulation in
Europe. It is worth mentioning that currently Ur. unguiculata
is rather perceived as an entomological curiosity among most
European vector-borne disease specialists. However, this
point of view is based on the species obscurity and a poor
empirical knowledge of its ecology. One of the critical gaps is
the lack of information regarding host preference and feeding
behavior of the species. Indeed, although there is limited evi-
dence in the literature that supports the notion that Ur.
unguiculata feeds on the blood of poikilothermic animals
[95-97], several field observations point out that the species
do occasionally feed on mammalian hosts, including humans
[98-100]. Together with the recent detection of canine
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parasitic nematodes Dirofilaria repens in pools of
Ur. unguiculata from Moldova [101], this strongly
suggests much broader host range for this mosquito
species and its possible relevance to the circulation
of zoonotic pathogens in Europe.

Conclusions

To the best of the author’s knowledge, this study reports
the first species distribution model for any of the
representatives of the genus Uranotaenia. The results of
the species distribution modelling exercise provide first
insights into potential distribution and ecological require-
ments of Ur. unguiculata across the Western Palaearctic
region. Provided that the species has a wide distribution
and some pathogens of zoonotic concern have been
detected in this mosquito on several occasions, the question
regarding its host associations and possible epidemiological
role warrants further investigation.
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