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Abstract

Background: Culex pipiens is the major vector of West Nile virus in Europe, and is causing frequent outbreaks
throughout the southern part of the continent. Proper empirical modelling of the population dynamics of this
species can help in understanding West Nile virus epidemiology, optimizing vector surveillance and mosquito
control efforts. But modelling results may differ from place to place. In this study we look at which type of models
and weather variables can be consistently used across different locations.

Methods: Weekly mosquito trap collections from eight functional units located in France, Greece, Italy and Serbia
for several years were combined. Additionally, rainfall, relative humidity and temperature were recorded.
Correlations between lagged weather conditions and Cx. pipiens dynamics were analysed. Also seasonal
autoregressive integrated moving-average (SARIMA) models were fitted to describe the temporal dynamics of Cx.
pipiens and to check whether the weather variables could improve these models.

Results: Correlations were strongest between mean temperatures at short time lags, followed by relative humidity,
most likely due to collinearity. Precipitation alone had weak correlations and inconsistent patterns across sites.
SARIMA models could also make reasonable predictions, especially when longer time series of Cx. pipiens
observations are available.

Conclusions: Average temperature was a consistently good predictor across sites. When only short time series

(~ < 4 years) of observations are available, average temperature can therefore be used to model Cx. pipiens
dynamics. When longer time series (~ > 4 years) are available, SARIMAs can provide better statistical descriptions of
Cx. pipiens dynamics, without the need for further weather variables. This suggests that density dependence is also
an important determinant of Cx. pipiens dynamics.
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Background

Culex pipiens is the major vector for West Nile virus
(WNV) in Europe [1, 2]. Because of WNV outbreaks in
several places in southern Europe, vector control pro-
grammes have been set-up or are under evaluation to
control Cx. pipiens populations [3]. The efficacy of these
programmes in reducing the WNV infection risk re-
mains unclear. A major problem in assessing the efficacy
of these control programmes is that the incidence of
WNV cases and the population dynamics of Cx. pipiens
show large variation over regions and years [4]. What
can be considered as a high density of Cx. pipiens in one
region can be considered as a low density in another re-
gion. This can be influenced by a number of factors, in-
cluding landscape characteristics and the weather
conditions [5, 6]. It is well known that weather condi-
tions, such as temperature, precipitation and relative hu-
midity affect the population dynamics of mosquito
species such as Cx. pipiens [4], but landscape uses also
have an influence [6]. How landscape and weather fac-
tors interact on population dynamics and how this af-
fects the generality of statistical descriptions of Cx.
pipiens dynamics is, however, somewhat unclear. Never-
theless, standardized statistical descriptions of vector dy-
namics can be useful to serve as a benchmark against
which population reductions resulting from control pro-
grammes can be compared. This is, for example, how
control efficacy in mathematically designed models is
tested [7].

Time series analyses based on integrated autoregres-
sive moving-average models (or ARIMA models [8])
offer a powerful tool to analyse dynamics in time series
and to attribute possible covariates (such as treatment
effects or meteorological conditions) to the observed dy-
namics in an empirical way. Previous studies that looked
into forecasting the dynamics of virus incidences [9-11]
or vector dynamics [12] found promising results when
applying ARIMA models. These studies managed to
make reasonable forecasts of up to a year [10]. However,
such models require long time series of high frequency
(e.g. weekly) observations of incidence of a virus or its
vector and this is not always available. Therefore, many
studies rather look at correlations with other variables
that might be able to explain fluctuations in vector dy-
namics (e.g. [13—15]). Moreover, model studies that look
at internal dynamics of vector populations (e.g. [4]), can
still be improved by including weather conditions as co-
variates [4, 12].

All empirical modelling studies of vector populations
like Cx. pipiens vary from each other, and it is hard to
find a general pattern. For example, Trawinski & Mackay
[12] found for Cx. pipiens and Cx. restuans populations
in Erie County (New York State, USA), that the most
significant predictive weather variables were cooling
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degree-days base 63 (the absolute difference in Fahren-
heit degrees between the average temperature of a week
and a base temperature) with a negative coefficient and
a ponding index with a positive coefficient both at vari-
ous time lags. Similarly, Chuang et al. [13] found that
Cx. pipiens abundance was positively influenced by the
preceding minimum temperature in the early season and
negatively by precipitation during summer and max-
imum temperature in July and August in Saginaw
County (Michigan, USA). But Lebl et al. [14] found that
Cx. pipiens in Cook County (Illinois, USA) were posi-
tively correlated with daytime length of 4 to 5 weeks
prior to the observation and temperature 2 weeks prior
to the observation, while they were negatively correlated
with wind speed averaged over 3 weeks prior to the ob-
servation. So the effect of temperature on Cx. pipiens
dynamics can be either positive or negative, depending
on how temperature was quantified, at which location
the study was performed, how the temporal aspect was
included and which other variables were taken into con-
sideration. Similarly for European populations of Cx.
pipiens, temperature, daylight hours and soil moisture
were found to be most influential on their dynamics [4]
but that the dominant land cover influences these dy-
namics as well [5]. Therefore, Jiang et al. [4] concluded
that “Large rates of change of population abundance re-
main difficult to predict pointing to gaps in understand-
ing of the mechanisms regulating mosquito dynamics”.
Therefore, we aim in this study to fit models, based on
time series analysis (ARIMA) and on cross-correlation
analyses with meteorological data, to describe Cx.
pipiens dynamics for a number of different sites (Fig. 1)
across southern Europe. We tested which types of
models perform best to explain these variations, and de-
termined what the commonalities between models fitted
for the different sites are. The sites stem from an earlier
inventory by Chaskopoulou et al. [3], and we refer to
them as functional units (or FUs). These regions vary in
climate, size and the way Cx. pipiens was monitored.

Methods

Data

Data were collected over a number of years for 8 FUs as
shown in Table 1 and Fig. 1. An extensive description of
the dataset can be found in [3] except for the River Po
Delta, for which a description can be found in [16]. For
each FU, Cx. pipiens density data was collected on a
weekly basis, except for Evros and the Camargue, where
data was collected bi-weekly (Table 1). For these FUs,
data were mapped to weekly by filling gaps in between
observations by averaging of those two observations.
Culex pipiens numbers were collected by several traps
per FU. In Greece, CDC light traps baited with CO,
were used, while in France, Serbia and Italy traps with
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Fig. 1 Location of the functional units (FUs) across Europe (see Chaskopoulou et al. [3], for the FU description). Black stars indicate the weather

CO, only (and no light) were used. In all the cases female
mosquitoes were trapped overnight, counted and identified
to the species level per trap. To make the dynamics across
FUs comparable, Cx. pipiens density was expressed as a frac-
tion of the maximum density of Cx. pipiens recorded for
each trap across the entire time series. Then for each FU,
the average relative Cx. pipiens density over all traps was cal-
culated. Data on temperature, rainfall, and relative humidity

Table 1 The functional units (FUs) and the data available per FU

were collected from the weather station nearest to each FU
except for the Italian FUs, where data were provided by the
regional agency for the environmental protection in Emilia-
Romagna region (ARPA-ER) in a gridded format, as listed
in Table 1. Data were collected on a daily basis and aggre-
gated to a weekly resolution to match with the mosquito
trap data. For the Camargue data on relative humidity were
missing, and hence this is not analysed for this FU.

Functional unit No. of Frequency Years of data collection Land cover ~ Weather data Weather station

traps
France: Camargue 3 Bi-weekly ~ 2011-2014 (4 years) Rural (Rice) Prec, T Arles, Tour du Valat (43°30'32.04"N, 4°40'03.25"E)
Greece: Evros 8 Bi-weekly ~ 2013-2014 (2 years) Rural RH, Prec, T Alexandroupolis (40°51'09.69"N, 25°57'22.53"EF)
Greece: Thessaloniki 14 Weekly 2011-2014 (4 years) Rural (Rice) ~ RH, Prec, T Thessaloniki (40°33'59.04"N, 22°5923.13"F)
ltaly: Emilia-Romagna 25 Weekly 2009-2014 (6 years) Rural RH, Prec, T Daily weather data at 5 x 5 km grid resolution
Italy: River Po Delta 15 Weekly 2005-2014 (10 years) Coastal misss;ivv\/igv\e/irzégizﬁzA ER-SIM
Serbia: Novi Sad 29 Weekly 2000-2007 (8 years) Mixed urban  RH, Prec, T Rimski Sancevi (45°19'19.04"N, 19°49'46.75"E)
and surroundings and rural

Abbreviations: Prec, precipitation; RH, relative humidity; T, temperature


https://www.arpae.it/sim
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Empirical modelling

Cross-correlation matrices

To find out how correlations between weather condi-
tions and Cx. pipiens dynamics vary over time-lags,
cross-correlation matrices (CCMs) can provide insights
[14]. CCMs give the correlation between the average
weather conditions for a given period at a given lag and
the number of Cx. pipiens. CCMs can be displayed as
maps, which indicate the correlations with colours, and
the positions (lagl, lag2) in the matrix indicate lag and
period (= lagl — lag2) considered (Fig. 2). We fitted
CCMs for all FUs based on average temperature, relative
humidity (except for the Camargue) and on cumulative
rainfall for the considered period, with lags expressed in
weeks. In addition, we fitted a CCM on the interaction
between temperature and cumulated precipitation as
such interactions have been found relevant for explain-
ing the cases of vector-borne diseases like dengue [17].
All CCMs were generated in R [18] using the corrplot
package (version 0.77).

ARIMA models

Autoregressive integrated moving-average (ARIMA [8])
models estimate the value of an observation (relative Cx.
pipiens density in this case) at a given time step as a
function of earlier observations (i.e. autoregression), the
random error of previous observations (the moving aver-
age) and a given level of integration (differencing
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between consecutive time steps). ARIMA models have
an order that indicates how many previous time steps
are included in the autoregression (p) and the moving
average (q). The autoregression order (p) indicates how
many previous moments of mosquito density measure-
ments are needed to make a prediction of the next mos-
quito density. The moving average order (q) indicates
how many past deviations from the mean influence the
predicted mosquito density at the next time step. Also
the integration term comes with an order (d), where 0
stands for no differencing, 1 for a first order differencing
etc. The order of an ARIMA model is normally indicated
between brackets as (p, d, q). Apart from the effect of
previous time steps, the effect of a previous season can
be included in what is called a seasonal ARIMA (or
SARIMA). In a SARIMA the effects of observations at
the same time in the previous year (or years) are taken
into account. SARIMA models also have an order indi-
cated by (P, D, Q) analogously to ARIMA models. In our
analyses we did not specify the order of our (S)ARIMA
models a priory, but had an optimal search algorithm
(search.arima) as implemented in the forecast package
[19] in R [18] to make an optimal selection. An optimal
selection was defined by finding a model where the AIC
(Akaike’s information criterion; see section on model
comparison below) was lowest.

After fitting an ARIMA model on the mosquito time
series of each FU, these models were extended by

Time
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Fig. 2 Explanation of the cross-correlation matrices (CCM's). In cross-correlation matrices, the correlation between the time series of a response
variable (mosquito counts from traps in this case) and a time series of the average (or cumulative in the case of precipitation) value for a given
period (= lag1 - lag2) at a given lag of an explanatory variable (a weather parameter in this case) is displayed for all possible combinations of
periods and lags. Lags are expressed in weeks in line with the used data. When lags are the same, it means only that week is used for calculating
a correlation
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including information on weather conditions as covari-
ates into the model. Because in these models there can
be also a time lag in the impact of weather conditions
on mosquito densities, we fitted CCMs using the resid-
uals of the ARIMA model predictions as a response vari-
able and the weather conditions as explanatory variables.
We included the weather conditions in the ARIMA
models, averaged over a period and lag that provided the
highest correlation according to these CCMs.

Model comparison

How these different models compared to each other was
tested by looking at improvements in the AIC [8] and
the mean absolute error (MAE [19]). AIC is used often
to test improvements in fit of a model, as it provides a
method to correct possible overfitting of models. Lower
values of AIC in absolute sense indicate better fitting
models [20]. A difficulty is that AIC cannot be compared
for models fitted on different datasets. Therefore AIC
was only used to compare goodness-of-fit of models fit-
ted on the same datasets (i.e. the different models fitted
per FU). To compare between models fitted on different
datasets (so compare across FUs) MAE was used. MAE
is a common goodness-of-fit indicator for ARIMA
models, when the response variable has been standard-
ized as in our case. An advantage is that MAE is imme-
diately comparable with the original input values, i.e.
relative Cx. pipiens density. The MAE might be artifi-
cially low given the many zero counts outside the Cx.
pipiens season. Therefore MAE calculations were based
only on model predictions in the Cx. pipiens season.
That season is defined as the period between the first
and last “non-zero” observations of Cx. pipiens each
year.

Results and discussion

Maximum (absolute) correlations between lagged wea-
ther conditions and relative adult mosquito densities
ranged between 0.11-0.85 (Fig. 3). Correlations were
fairly strong for temperature and relative humidity, but
less strong for precipitation. Also there is a clear gradi-
ent across the tested time lags and averaging periods for
these two weather conditions, where correlations at lon-
ger lags are opposite to correlations at shorter lags. This
is not so much the case for precipitation. Because nega-
tive correlations can indicate equally relevant relation-
ships in data as positive correlations, we initially
determined the strongest correlation as the absolute cor-
relation maximum. Given the gradient for temperature
and relative humidity, sometimes the correlation at a
very large lag was slightly stronger than the oppositely
signed correlation at a shorter lag. For example, the
strongest correlation between relative mosquito density
and relative humidity in Evros was 048 at a
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lagl = lag2 = 25 weeks (ie. the relative humidity of
25 weeks ago only was supposed to have an effect). But
at a lagl of 5 weeks and lag2 of 0 there was a correlation
of -0.46. Therefore, we selected the highest correlation
(either the most negative or the most positive) that had
the shortest lag distance. This also yielded the most con-
sistent results, in the sense that only positive and nega-
tive correlations were found with temperature and
relative humidity respectively, across FUs (Fig. 3).

The positive correlations with temperature and simul-
taneously negative correlations with relative humidity
can be partly attributed to the negative correlations be-
tween temperature and relative humidity (between -0.63
and -0.77, see Additional file 1: Figure S1). Due to this
collinearity it is difficult to say which variable is the main
determinant of Cx. pipiens dynamics. Nevertheless, the
maximum correlations with temperature were higher
than those for relative humidity. These maximum corre-
lations were also at relatively short lags of up to 4 weeks,
but with the majority having no lag (i.e. lagl = 0 and
lag2 = 0; meaning only temperature at the time of the
observation has an effect), while those for relative hu-
midity were often longer. This suggests that temperature
has a direct positive effect on the number of mosquitoes
that are trapped, and that this effect is systematic across
FUs. We cannot exclude here a possible bias of
temperature on the performance of the traps, rather
than that it represents the size of the mosquito popula-
tion. Nevertheless, we do recognize that high tempera-
tures stimulate the flight activity of Cx. pipiens which
therefore may enhance the probability to be trapped.

Precipitation showed much less consistent results, and
generally weaker correlations. The highest absolute cor-
relation was -0.39, but also positive correlations were
found (Serbia). For these maximum correlations, lagl
was generally long (7 up to 25 weeks), while lag2 was
consistently 0. A lag2 of 0 means that the cumulative
precipitation from lagl up to the moment considered is
calculated. This is suggesting that accumulating precipi-
tation over longer periods before mosquitoes are ob-
served is a better predictor for their dynamics. This
might make sense, given the, sometimes erratic, nature
of precipitation.

The interaction between temperature and precipitation
was generally positive and weak to moderate in correl-
ation with mosquito dynamics; the highest absolute cor-
relation was 0.67.

The ARIMA models fitted to the time series data
(Table 2) had the smallest error values (MAE) for FUs
that had relatively long time series (roughly > 4 years of
data) (Fig. 4a) such as the time series for the River Po
Delta, Emilia-Romagna and Serbia. For really short time
series (< 4 years), like Evros, the error could reach up to
almost 10%. To compare the goodness-of-fit for models
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Table 2 Fitted (S)ARIMA models with associated order (p, d, g) (P, D, Q) and coefficients

Functional unit (FU) p q P Q Intercept
Order Coefficient Order Coefficient Order Coefficient Order Coefficient
France: Camargue 1 0.875 1 -0.316 1 -0311 1 0.080 0.068
Greece: Evros 1 -0.040 0.044
2 0.650
Greece:Thessaloniki 1 -0.872 1 1.096 1 0.212
2 0.264 2 0.840
3 0.794
4 0407
[taly: Emilia-Romagna 1 0.0095 1 0317 1 0.162 0.031
2 0.759 2 0.164
3 -0.102
Italy: River Po Delta 1 -0.074 1 0911 1 0.340 0.037
2 0.671
Serbia: Novi Sad and surroundings 1 1.682 1 -0.936 0.035
2 -0.536
3 -0.169

None of the models included a “d” or “D” term. For each FU, the maximum values of p and q correspond to the order “n” of fitted AR (autoregressive) and MA
(moving average) models, respectively, and likewise for P and Qin the seasonal models. A model of order “n” is described with n coefficients

of one FU, AIC can be better compared than MAE, be-
cause it corrects for the number of parameters included
in a model. Lower AIC values indicate a better fit. For
all FUs, the simple (S)ARIMA, without addition of wea-
ther conditions provided the best explanatory power for
the dynamics of Cx. pipiens (Fig. 4b). This was even the
case in the FUs with really short time series, such as
Evros and the Camargue. However, the difference in AIC
between (S)ARIMA models and linear models was much
smaller than for the FUs with longer time series. This
can also be seen in Fig. 5, where the match between fit-
ted and observed is much less evident for short time
series than for the FUs where longer time series were
available. That suggests that when only short time series
of mosquito observations are available, modelling the dy-
namics based solely on climatic conditions can be nearly
as good as fitting the more complex (S)ARIMA models,
but that when longer time series are available, fitting an
(S)ARIMA becomes more advantageous. The longer
time series in Fig. 5 shows less erratic fluctuations dur-
ing the mosquito season and also the timing of peak
relative densities and their amplitude is better matched
for longer time series than for short time series. The
most promising weather condition to model Cx. pipiens
dynamics directly (by means of a linear model) seems to
be temperature at fairly short time lags. Precipitation
showed a very inconsistent pattern across the FUs con-
sidered in this study. Relative humidity does seem to
have a consistent effect on Cx. pipiens dynamics as well,
although less strong than temperature and of opposite
sign (i.e. a negative correlation at short time lags). Given

the negative correlation between temperature and rela-
tive humidity, part of this explained variation in Cx.
pipiens dynamics by relative humidity, might be actually
explained by temperature, or vice versa. This is a clear
case of collinearity, and given the observational nature
of this study (as opposed to experimental), it is impos-
sible to separate these two effects totally.

Jian et al. [4] investigated to what extent Cx. pipiens
dynamics was determined by internal dynamics, and to
what extent external factors could explain variations in
these dynamics. They concluded that Cx. pipiens abun-
dance has a significant density dependence at the scale
of one week. This matches with our observations. We
noticed that all (S)ARIMAS were based on short lag
models (in terms of p, d, g, order, see Table 2) and not
all models included seasonal effects (P, D, Q order).
Partly, this short lag-correlation might have been intro-
duced by the gap-filling for FUs where only bi-weekly
data were available (Camargue and Evros). But we also
found short lags for other FUs suggesting that the effect
of the gap filling is not substantial, compared to the
autocorrelation already present in the data. This is, con-
versely, suggesting that there are density dependent ef-
fects. Similarly, Mulatti et al. [21] concluded that
including density dependence in combination with key
parameters will improve model predictions of mosquito
dynamics. As pointed out by Marini et al. [22] such key
parameters could be temperatures and precipitation.
Nevertheless, Marini et al. [22] also stressed the import-
ance of density dependence in making accurate predic-
tions. We have to note though that long time series of
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observations (as was also used in [4].) are needed to cre-
ate models that can make a good prediction based on
density dependence.

Jian et al. [4] also found that apart from weather condi-
tions, landscape characteristics (distance to rice fields and
satellite based greenness indicators) have an impact on the
absolute number of Cx. pipiens that can be expected. Be-
cause we standardized the dynamics for all the FUs, we
cannot make similar inferences. But Carrieri et al. [5]
showed that landscape characteristics can also have an ef-
fect on the type of dynamics, because in rural areas in the
River Po Delta they found a bimodal pattern in seasonal
Cx. pipiens dynamics, while in urban areas, there was a
unimodal pattern. This bimodal pattern was not apparent
in the data of our FUs (Fig. 5, see also [3]), but it should
be noted that these were aggregated time series across sta-
tions. The most likely case would be the Serbian case,
where traps were distributed across the city of Novi Sad,
but also in the outer regions around the city. In a separate
analysis (results not shown) no differences were found in

patterns for traps located in the city centre and traps lo-
cated in the rural periphery of the city.

The aggregation of station data across a spatial unit (re-
ferred to as FU in our study) is an approach that averages
out fluctuations between stations and gives a more holistic
view of mosquito dynamics over an entire area. By stand-
ardizing the dynamics relative to the maximum density of
mosquitoes trapped, the dynamics have become relative
and better comparable across FUs. But at the same time,
models fitted to such data have lost their ability to provide
absolute predictions of mosquito abundance. But that was
also not the main aim of this study. We tried to find com-
monalities in modelling approaches that would work
across FUs. Many studies have made empirical models of
Cx. pipiens dynamics (e.g. [4, 12, 14, 21-23]), but each
study was focussed on one single FU and one particular
modelling approach. In this study we tried to identify how
well methods applied across different sites. We had vari-
ability in site characteristics, including the spatial extent of
sites (Fig. 1) number of traps per site (Table 1) and
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duration of recordings. This allowed us to make inferences
about the effect of these site characteristics on modelling
Cx. pipiens dynamics.

Previous studies on Cx. pipiens dynamics looked at
many more factors than weather variables alone. For ex-
ample, land cover variables [4, 5], soil related variables
[12], and daytime length [14] have also been identified to
explain partly the Cx. pipiens dynamics. In this study, we
tried to find out how consistent the explanatory power of
various conditions would be, and for the presented vari-
ables (temperature, relative humidity and rainfall) such
data were available across all FUs. Also, these variables
can be derived from more generic observation platforms,
such as satellites. As was demonstrated in earlier studies
[4, 11], satellite-based indicators can play a role in explain-
ing the dynamics of vector populations. This could also be
the case for satellite-based weather parameters that can be
collected in a standardized way across regions.

However, there are also land use differences between
our FUs. The Camargue in France, and the areas around
Thessaloniki in Greece are dominantly rural with large ex-
tents of flooded rice fields, while the River Po Delta is
mainly coastal and the Serbian area around Novi Sad is
mainly urban (although traps were scattered across the
city as well as the outer areas that are more rural). Precipi-
tation seems to have a negative effect in the more rural
areas, but a positive effect in more urban areas (Novi Sad,
Serbia), and really very low effects in coastal areas (the Po
Delta, Italy). These findings do not allow simply ruling out
a relationship between precipitation (or the temperature-
precipitation interaction) and mosquito dynamics in urban
versus rural areas. Indeed, it is usually considered that
containers or artificial habitats where water is stored are
independent or weakly dependent on rainfall while
ground-fed wetland habitats are more governed by rainfall
over the previous few weeks, rather than the instant im-
pact of precipitation. The apparent absence of a clear pat-
tern between precipitation and mosquito dynamics across
FUs may be indicative of the heterogeneity of the studied
FUs in terms of habitats content and artificial vs ground-
fed wetland, regardless their urban or rural land use.

Conclusions

This study showed that temperature is the most consistent
weather variable to predict Cx. pipiens dynamics in south-
ern Europe, directly with simple linear models. To a lesser
extent relative humidity explains variation as well, al-
though this partly overlaps with temperature due to col-
linearity. Furthermore, we show that when long time
series are available, (S)ARIMA models could be very use-
ful. They can make slightly better predictions of Cx.
pipiens dynamics, compared to simple linear models based
on lagged weather variables. When dynamics are modelled
by (S)ARIMAS, lagged weather conditions hardly make
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any further contribution. This is suggesting that weather
dynamics is only relevant to predict Cx. pipiens adult dy-
namics directly, but not to improve more complex models
based on time series analysis. The relatively good perform-
ance of the (S)ARIMAS also suggests that density
dependent mechanisms form an important part of the
population dynamics of Cx. pipiens.

Additional file

Additional file 1: AIC (Table S1) and MAE (Table S2) scores for the
different models and correlations between weather variables per
functional unit (Fig. S1). (PDF 478 kb)
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