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Abstract

Background: Toxoplasma gondii can invade and replicate in all nucleated cells in a wide range of host species, and
infection induces IL-13 production. IL-13 plays central roles in the stimulation of the innate immune system and
inflammation. However, little is known of the innate immune responses in human fetal small intestinal epithelial
cells (FHs 74 Int cells) after T. gondii infection.

Methods: FHs 74 Int cells were infected with the T. gondii GFP-RH strain. Then, IL-1(3 production and its mechanisms of
action were evaluated using ELISA, MTT cell viability assays, Western blotting, immunofluorescence, quantitative real-time
polymerase chain reaction (QRT-PCR), and gene-specific small interfering RNA (siRNA) transfection.

Results: Infection of FHs 74 Int cells by T. gondii triggered significant time- and dose-dependent IL-13 production.
Although T. gondii activated NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in FHs 74 Int cells, NLRP3 levels
were consistently and significantly time-dependently increased, while the other inflammasomes were not.
Transfection with siRNA targeting NLRP3, cleaved caspase-1 (Casp-1) or ASC significantly reduced T. gondii-induced IL-1(3
production, whereas T. gondii proliferation was markedly increased. Toxoplasma gondii infection activated P2X7 receptor
(P2X7R) levels in FHs 74 Int cells in a time-dependent manner; however, transfection with siRNA targeting
P2X7R significantly reduced T. gondii-induced IL-1{3 secretion and substantially increased T. gondii proliferation,
which is mediated by decreased protein expression levels of NLRP3, cleaved Casp-1 and ASC. Collectively,
NLRP3-dependent IL-13 secretion is mediated by P2X7R in small intestinal epithelial cells in response to T.
gondii infection, thereby controlling parasite proliferation.

Conclusions: This study revealed that the P2X7R/NLRP3 pathway plays important roles in IL-1( secretion and
inhibition of T. gondii proliferation in small intestinal epithelial cells. These results not only contribute to our
understanding of the mucosal immune mechanisms of T. gondii infection but also offer new insight into the
identification of innate resistance in the gut epithelium.
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Background
Toxoplasma gondii is an obligate intracellular protozoan
parasite that can invade and replicate in all nucleated
cells. It is prevalent in humans and animals worldwide,
and one-third of the world’s population is reportedly in-
fected with 7. gondii [1]. Human exposure to 7. gondii
typically results from the ingestion of cysts in contami-
nated food or water. Oocysts containing highly infec-
tious sporozoites are shed by infected felids, which is the
definitive host of T. gondii. A single infected cat can
shed millions of oocysts into the environment. These
cysts can be taken up by intermediate hosts, which
include virtually any warm-blooded animal, including
humans. In these infected intermediate hosts, 7. gondii
establishes a chronic infection in the form of bradyzoite-
containing tissue cysts [2]. Humans also can be infected
by consuming undercooked meat from intermediate
hosts that harbor tissue cysts, but the parasite then
breaches the intestinal epithelial barrier and spreads
from lamina propria to a variety of other organs in the
body [3]. Intestinal epithelial cells can sense and respond
to microbial stimuli to reinforce their barrier function
and to participate in the coordination of appropriate im-
mune responses [4]. Toxoplasma gondii invades the in-
testinal epithelium, where it provokes appropriate
immune responses that depend on local and systemic
conditions [1, 5, 6]. However, the exact roles of the small
intestinal epithelium in the activation of innate immun-
ity against 7. gondii infection remain poorly understood.
The innate immune system plays key roles in sensing
pathogens and triggering biological mechanisms to con-
trol infection and eliminate pathogens [7, 8]. It is acti-
vated when pattern-recognition sensor proteins, such as
Toll-like receptors (TLRs) or nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs),
detect the presence of pathogens, their products, or dan-
ger signals [7-9]. NLRs are a large group of cytosolic
receptors that are important modulators of inflammation
through their regulation of pro-inflammatory cytokines
IL-1p and IL-18 and due to their role in the pro-
inflammatory form of cell death [10-12]. Once a ligand
binds NLRs, oligomerization occurs with procaspase-1
and the adaptor molecule apoptosis-associated speck-
like protein containing carboxy-terminal caspase activa-
tion and recruitment domain (ASC) to form a multi-
meric protein complex termed an inflammasome.
Activation of inflammasomes triggers self-cleavage
and activation of pro-Casp-1 to an active protease,
which then cleaves cytosolic pro-IL-1p and pro-IL-18
into their active forms [11, 12]. There are some re-
ports regarding the activation of inflammasomes in T.
gondii-infected macrophages or monocytes [13-18].
However, the roles of inflammasomes, especially
NLRP3, and the associated regulatory pathways in T.

Page 2 of 10

gondii-infected intestinal epithelial cells have not been
studied.

The IL-1 cytokine family consists of 11 members with
different roles in inflammation. IL-1f is recognized as one
of the earliest and most potent pro-inflammatory agents
synthesized and released in response to infectious agents
and injuries [19, 20]. Under normal conditions, IL-1p is
not constitutively expressed but rather is induced by
microbial products or endogenous signals. Blood mono-
cytes, tissue macrophages and dendritic cells are the
primary sources of IL-1f production [11, 12, 18-20].

The purinergic P2X7 receptor (P2X7R) is a bi-
functional adenosine triphosphate (ATP)-gated plasma
membrane ion channel that contributes to the control of
many physiological functions, including cell death, kill-
ing infectious organisms, and regulating inflammatory
processes [21-23]. P2X7R is widely distributed in human
tissues, with the highest expression in cells of the im-
mune and inflammatory systems. Activation of P2X7R
triggers inflammasome formation, culminating in mature
IL-1p release, and participates in pro-inflammatory
events [21-23]. Some researchers have studied the
expression of P2X7R in immune cells or mice after T.
gondii infection [24-27].

Although many reports have described IL-1p produc-
tion by macrophages and dendritic cells after 7. gondii in-
fection [13, 17, 24, 25], IL-1p production and its
regulatory pathways in intestinal epithelial cells during 7.
gondii infection have not been presented. Thus, we inves-
tigated IL-1P production and its roles in human fetal small
intestinal epithelial cells (FHs 74 Int cells) after T. gondii
infection using ELISA, MTT cell viability assays, Western
blotting, immunofluorescence, quantitative real-time poly-
merase chain reaction (QRT-PCR), and gene-specific small
interfering RNA (siRNA) transfection.

Methods

Maintenance of T. gondii

Tachyzoites of the T. gondii RH strain, which expresses
transgenic green fluorescent protein (GFP-RH), were
maintained as described previously [28] with minor modi-
fications. Briefly, human retinal pigment epithelial cells
(ARPE-19 cells) (ATCC, Manassas, VA, USA) were
cultured in a 1:1 (v/v) mixture of DMEM/F12 supple-
mented with 10% (v/v) heat-inactivated fetal bovine serum
(FBS) and an antibiotic-antimycotic solution (all from
Gibco, Grand Island, NY, USA). ARPE-19 cells were in-
fected with T. gondii at a multiplicity of infection (MOI)
of 5 and incubated at 37 °C under 5% (v/v) CO, for 2—
3 days. After spontaneous host cell rupture, parasites and
cellular debris were pelleted by centrifugation and washed
in cold PBS. The final pellet was resuspended and passed
through a 26-gauge needle fitted with a 5.0 um pore-sized
filter (Millipore, Billerica, MA, USA).
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Culture of FHs 74 Int cells

A non-transformed human fetal small intestinal epithe-
lial cell line (FHs 74 Int cells) was purchased from
ATCC and cultured in DMEM with 10% (v/v) FBS, an
antibiotic-antimycotic solution, and 30 ng/ml human
epidermal growth factor (all from Gibco) at 37 °C in a
humidified atmosphere at 5% (v/v) CO,. The medium
was changed every 2-3 days.

IL-1B assay

FHs 74 Int cells were mock-infected (negative control)
or infected with the T. gondii GFP-RH strain at different
MOIs for 8 h or at an MOI of 10 for various time
periods. Triplicate supernatants from mock-infected or
T. gondii-infected cells were collected, and IL-1f levels
were measured using a commercial ELISA kit according
to the manufacturer’s instructions (eBioscience, San
Diego, CA, USA). Cytokine concentrations in the sam-
ples were calculated using standard curves based on the
known quantities of recombinant cytokines.

MTT cell viability assay

A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay was performed according to the
manufacturer’s instructions. FHs 74 Int cells were plated
in triplicate in 96-well plates at a density of 2500 cells/
well and infected at MOIs of 1, 2, 5, 10 or 20. After 8 h,
5 mg/ml MTT (Sigma-Aldrich, St. Louis, MO, USA) in
PBS was added to each well at a final concentration of
0.5 mg/ml, and the plates were incubated at 37 °C for
4 h. Subsequently, formazan was dissolved in 100 ul of
crystal dissolving buffer (0.04 N HCl in absolute isopro-
panol) and added to each well. The optical density at
490 nm was then measured using a Multiscan GO
microplate reader (Thermo Fisher Scientific, Waltham,
MA, USA).

Western blotting

Control FHs 74 Int cells or siRNA-transfected FHs 74 Int
cells were mock-infected or infected with the 7. gondii
GFP-RH strain as indicated. After the cells were washed
with ice-cold PBS, proteins were extracted with RIPA buf-
fer (Thermo Fisher Scientific, Grand Island, NY, USA).
Protein concentrations were determined using the Brad-
ford assay (Bio-Rad, Hercules, CA, USA). Total protein
(30 pg) was resolved on 10-12% SDS-PAGE gels and then
transferred to PVDF membranes (Merck Millipore,
Billerica, MA, USA). The membranes were blocked with
5% nonfat skim milk in TBS containing 0.1% Tween 20
(TBST) for 1 h and incubated with primary antibodies
against IL-1p, NLRP1, NLRP3, NLRC4, AIM2, cleaved
Casp-1 (Asp297), Casp-1, ASC, P2X7 receptor (P2X7R)
(all from Cell Signaling Technology, Danvers, MA, USA),
or a-Tubulin (Santa Cruz Biotechnology, Santa Cruz, CA,
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USA) overnight at 4 °C. Subsequently, the membranes
were incubated with HRP-conjugated secondary antibody
(Santa Cruz Biotechnology) for 2 h at room temperature.
Blots were developed using a commercially available en-
hanced chemiluminescence (ECL) detection kit (GE
Healthcare, Little Chalfont, UK). These experiments were
repeated at least three times with similar results. Quantifi-
cation of band intensity was performed using Image] soft-
ware (NIH, Bethesda, Maryland, USA). The results were
normalized to a-Tubulin protein levels and are expressed
as fold changes over the mock-infection control group.

Quantitative real-time polymerase chain reaction
(qRT-PCR)

FHs 74 Int cells were mock-infected or infected with the
GFP-RH strain of T. gondii at an MOI of 10 for 4 or 8 h.
Total cellular RNA was extracted using TRIzol Reagent
(Invitrogen Life Technologies, Carlsbad, CA, USA), and
3 pg RNA was reverse-transcribed in a final volume of
20 pl using Superscript II reverse transcriptase (Invitro-
gen Life Technologies) as described by the manufacturer.
qRT-PCR was performed using SYBR Premix Ex Taq II
reagent (Takara Bio Inc., Dalian, China) as described
previously [3]. Each reaction included 1 pl of cDNA
(100 ng/ul), 10 ul of SYBR Premix Ex Taq II (2X), 0.8 pl
of forward and reverse primers (10 pM), 0.4 pl of ROX
reference Dye II and 7 pl of DNase-/RNase-free PCR
water to a final volume of 20 pl. The primers used in
this study are summarized in Additional file 1: Table S1.
All reactions were performed with an ABI 7500 Fast
Real-Time PCR system (Applied Biosystems, Carlsbad,
CA, USA) under the following conditions: 95 °C for
30 s, followed by 40 cycles of 95 °C for 5 s and 60 °C for
34 s. Relative gene expression levels were quantified
based on the cycle threshold (Ct) values and were nor-
malized to the reference gene hypoxanthine phosphori-
bosyltransferase 1 (HPRT1). Each sample was measured
in triplicate, and the gene expression levels were calcu-
lated using the 272" method.

siRNA transfection

Scrambled negative-control siRNA and siRNAs specific
for NLRP3, Casp-1, ASC and P2X7R were purchased
from Santa Cruz Biotechnology. FHs 74 Int cells were
transfected with the siRNAs using Lipofectamine RNAi-
MAX (Invitrogen Life Technologies) according to the
manufacturer’s instructions. Briefly, cells were seeded in
6-well plates and grown for 24 h (70% confluence) prior
to transfection. Nine microliters of Lipofectamine RNAi-
MAX Reagent was diluted with 150 pl of Opti-MEM
and 3 pl of siRNA in 150 pl of Opti-MEMR from a
10 puM stock solution. Diluted siRNA was added to
diluted Lipofectamine RNAIMAX Reagent and incu-
bated at RT for 5 min. Finally, the siRNA-lipid complex



Quan et al. Parasites & Vectors (2018) 11:1

was added to the cells, and the cells were incubated for
72 h at 37 °C in a humidified atmosphere at 5% (v/v)
CO,. The knockdown efficiency was determined by
Western blotting. All experiments were repeated inde-
pendently three times.

Immunofluorescence assay

To measure T. gondii infection and replication rates,
monolayers of siRNA-transfected FHs 74 Int cells on
glass coverslips were infected with parasites at an MOI
of 10 for 2 or 8 h. The cells were then washed several
times with PBS, fixed with 4% (v/v) paraformaldehyde,
and permeabilized with 0.1% (v/v) Triton X-100 in PBS
(PBST) for 10 min. The coverslips were then washed
with PBST and stained with Texas Red-X phalloidin (Life
Technologies) to label F-actin. Finally, the coverslips
were washed and mounted onto microscopy slides using
a mounting medium containing DAPI (to detect nuclei)
(Vector Laboratories, Burlingame, CA, USA), and the
cells were imaged using fluorescence microscopy. All
experiments were performed on triplicate samples.

Statistical analysis

All results are presented as the means + standard devia-
tions (SDs) of at least three independent experiments,
unless otherwise indicated. Statistical significance was de-
termined using an unpaired Students t-test or one-way
ANOVA. A P-value < 0.05 was considered significant.

Results

Toxoplasma gondii induces IL-1B secretion in small
intestinal epithelial cells

To evaluate the capacity of small intestinal epithelial
cells to produce IL-1B in response to T. gondii, FHs 74
Int cells were infected with live T. gondii at different
MOIs for 8 h, and IL-1p levels in the cell culture super-
natants were measured by ELISA. As shown in Fig. 1a, T.
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gondii significantly enhanced IL-1B secretion in an MOI-
dependent manner (MOI 1: £y =4.78, P=0.009; MOI 2:
tay = 6.756, P = 0.0025; MOI 5: £ = 11.72, P = 0.0003; MOI
10: t4y = 11.52, P = 0.0003; MOI 20: ¢4y = 20.36, P < 0.0001).
However, the cell viability of FHs 74 Int cells infected with
T. gondii at an MOI of 20 was slightly reduced compared
with that of uninfected control cells (Additional file 2:
Figure S1). Thus, we chose an MOI of 10 to establish the T.
gondii infection model of FHs 74 Int cells. We then
assessed the time course of IL-1fB secretion from FHs 74
Int cells after T. gondii infection. We found that IL-1B
secretion was significantly increased 1-12 h post-infection
compared with that of the mock-infection control; IL-1B
levels peaked at 8 h and then gradually decreased
(1 h: t4) = 2.887, P=0.045; 2 h: £ =8.039, P=0.0013;
4 h: tuy=1106, P=00004 8 h: f4=2669, P<
0.0001; 12 h: fy4)=11.69, P=0.0003) (Fig. 1b). Simi-
larly, pro-IL-1PB protein levels significantly increased
after T. gondii infection in a time-dependent manner,
peaking at 8 h post-infection (2 h: f4) =4.067, P =0.015;
4 h: tgy=10.67, P=00004; 8 h: f4 =13.39, P=0.0002;
12 h: ¢4y = 8.333, P = 0.0011) (Additional file 2: Figure S2).
Thus, T. gondii infection of FHs 74 Int cells induced
significant IL-1p production and secretion in time- and
dose-dependent manners.

The NLRP3 inflammasome was consistently and
significantly increased with time in T. gondii-infected
small intestinal epithelial cells

We next explored the involvement of specific inflamma-
somes in IL-1B secretion after T. gondii infection.
According to previous reports, NLRP1, NLRP3, NLRC4
and AIM2 inflammasomes are activated in T. gondii-in-
fected DC or macrophages [13, 14, 17, 18]. Thus, we se-
lected these 4 inflammasomes (NLRP1, NLRP3, NLRC4%
and AIM2) and investigated the expression of each
inflammasome in FHs 74 Int cells after 7. gondii
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infection using qRT-PCR and Western blotting. As
shown in Fig. 2, both the mRNA and proteins levels of
NLRP3 inflammasomes were significantly increased in a
time-dependent manner in 7. gondii-infected FHs 74 Int
cells. However, NLPR1 expression was not significantly
changed after infection. NLRC4 mRNA levels were sig-
nificantly upregulated 4 h after T. gondii infection but
decreased slightly after 8 h (4 h: #4) =3.998, P=0.016).
In addition, AIM2 mRNA levels were significantly
decreased at 8 h post-infection (t)=4.213, P =0.014).
According to the mRNA and protein expression levels of
4 inflammasomes in T. gondii-infected FHs 74 Int cells,
NLRP3 expression was consistently and significantly
increased with time, while the others were not (4 h: £,
=3.047, P=0.038; 8 h: t(4) =4.509, P =0.011). Therefore,
we focused on the NLRP3 inflammasome. We next eval-
uated whether NLRP3 inflammasome is involved in T.
gondii-induced IL-1p production and whether they exert
protective effects in FHs 74 Int cells. In future studies,
we plan to evaluate the roles of other inflammasomes.

Toxoplasma gondii induces IL-1B secretion from small

intestinal epithelial cells via the NLRP3 inflammasome

The NLRP3 inflammasome complex consists of the NLRP3
sensor, the adaptor bipartite protein known as ASC, and
pro-caspase-1 [6, 7]. To better understand the kinetics of
the NLRP3 inflammasome activation, we investigated each
component of NLRP3 inflammasome at different time-
points after infection with 7. gondii. As shown in Fig. 3a, b,
T. gondii significantly upregulated NLRP3 (4 h: ¢4 = 6411,
P=0003; 8 h: ty)="7.124, P=0.002) and cleaved Casp-1
(4 h: 4y =8.112, P =0.0013; 8 h: £y =13.71, P =0.0002) and
ASC (4 h: tg)=5.494, P=0.005; 8 h: 4y = 8471, P=0.0011)
protein levels in a time-dependent manner (from 2 to 8 h).
To determine whether 7. gondii mediates IL-1p release via
the NLRP3 inflammasome, we transfected cells with siRNAs
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specific to NLRP3, Casp-1 or ASC for 72 h and then
infected the cells with 7. gondii GFP-RH at an MOI of 10
for 8 h. Cell extracts were subjected to Western blotting to
detect the knockdown efficiencies of NLRP3, Casp-1 and
ASC. As shown in Fig. 3¢, siRNA transfection markedly
inhibited NLRP3, Casp-1 and ASC protein levels. ELISA of
the supernatants confirmed that NLRP3 siRNA significantly
suppressed T. gondii-induced IL-1B secretion compared
with secretion in 7. gondii-infected control siRNA
cells (¢4)=6.219, P=0.003). Similarly, Casp-1 (f4) =
4.649, P =0.0097) and ASC (t(4)=3.193, P=0.033) siR-
NAs also significantly reduced T. gondii-induced IL-
1B secretion, although IL-1p levels were not drastic-
ally attenuated (Fig. 3d). Taken together, these results
suggest that the NLRP3 inflammasome is important
for T. gondii-induced IL-1B production and secretion
in FHs 74 Int cells and that each component of the
NLRP3 inflammasome is involved in IL-1f production.

The NLRP3 inflammasome inhibits T. gondii proliferation
in intestinal epithelial cells

To evaluate the roles of the NLRP3 inflammasome in pro-
tection against infection, we measured parasite infection
and proliferation rates in transfected FHs 74 Int cells. We
transfected FHs 74 Int cells with siRNAs targeting NLRP3,
Casp-1 or ASC and then infected the cells with T. gondii
GFP-RH at an MOI of 10 for 2 h. The cells were stained
with Texas Red-X phalloidin (red) and DAPI (blue) to iden-
tify F-actin and nuclei, respectively. The number of 7. gon-
dii-infected cells and the total number of cells were
counted under a fluorescence microscope, and the 7. gondii
infection rate was calculated. There was no significant dif-
ference in T. gondii infection rate in cells transfected with
NLRP3, Casp-1 or ASC siRNA compared with those in
control siRNA-transfected cells (Fig. 4a). To evaluate the ef-
fect of NLRP3 inflammasome activation on 7. gondii
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Fig. 2 Toxoplasma gondii significantly increased NLRP3 expression levels in a time-dependent manner. FHs Int 74 cells were mock-infected or
infected with the T. gondii GFP-RH strain at an MOI of 10. Cells were harvested 4 or 8 h post-infection. a NLRP1, NLRP3, NLRC4 and AIM2
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proliferation, siRNA-transfected FHs 74 Int cells were in-
fected with T. gondii at an MOI of 10 for 8 h, and intracel-
lular parasite numbers were evaluated. Transfection with
NLRP3, Casp-1 or ASC siRNA significantly increased intra-
cellular parasite numbers compared with control siRNA-
transfected T. gondii-infected by fluorescence microscopy
(NLRP3: t4)=20.92, P<0.0001; Casp-1: tu)=7.525 P=
0.0017; ASC: ty)=4.504, P=0.011) (Fig. 4b). Taken to-
gether, these data strongly suggest that the NLRP3 inflam-
masome inhibits parasite proliferation in 7. gondii-infected
FHs 74 Int cells.

P2X7R is required for T. gondii-induced NLRP3
inflammasome activation

We next explored the activation mechanism of the
NLRP3 inflammasome in response to 7. gondii. A recent
study reported that P2X7R, a powerful activator of the
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NLRP3 inflammasome, is responsible for both NLRP3
recruitment and activation [29]. To determine whether
T. gondii-induced P2X7R is involved in NLRP3 inflam-
masome activation, we transfected cells with P2X7R
siRNA prior to T. gondii infection. Western blotting re-
sults showed that transfection with P2X7R siRNA sig-
nificantly reduced T. gondii-induced NLRP3, cleaved
Casp-1 and ASC protein levels (Fig. 5a). Similar results
were also observed for IL-1p production using ELISA;
P2X7R siRNA significantly reduced IL-1p secretion but
did not entirely eliminate T. gondii-induced IL-1f secre-
tion () =4.07, P=0.0152) (Fig. 5b). To evaluate the
effect of P2X7R on intracellular parasite proliferation,
P2X7R siRNA-transfected FHs 74 Int cells were infected
with T. gondii, and the intracellular parasite load was ex-
amined by fluorescence microscopy. Interestingly, trans-
fection with P2X7R siRNA significantly increased the

FHs 74 Int

Ctrl siRNA+T. gondii

independent experiments. Scale-bars: 20 um

a T. gondii - + + + b
CliIsiRNA - — 2507
*
P2X7R SiRNA - - - + = 500 4
£ 200 |
o
o
p2x7R | === D - < 150 -
S
© |
2 aly
NLRP3 —— 8 1007 = =
5 e
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Cleaved Casp-1 e —— "
o | — , , SR
ASC - — — T gondii B . . .
Cti siRNA - - +
a-Tubulin | - P2X7R siRNA - - - +
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T. gondii

"
P2X7R siRNA+T. gondii

Fig. 5 The P2X7R pathway is required for T. gondii-induced NLRP3 activation. P2X7R or control siRNA was transfected into FHs 74 Int cells that
were then infected with the T. gondii GFP-RH strain at an MOI of 10 for 8 h. a Cell extracts were subjected to Western blotting to detect P2X7R,
NLRP3, cleaved Casp-1 and ASC expression levels. b IL-1(3 levels in the cell culture supernatants were measured by ELISA. *P < 0.05 compared with
control siRNA-transfected T. gondii-infected cells. ¢ Cells were fixed and stained with Texas Red-X phalloidin to label F-actin (red), and the nuclei
were stained with DAPI (blue). Intracellular parasites were revealed by fluorescence microscopy. All data shown are representative of three
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intracellular parasite burden compared with control
siRNA-transfected 7. gondii-infected cells (£ =4.421, P =
0.0115) (Fig. 5¢). Thus, activation of the NLRP3 inflamma-
some requires the 7. gondii-induced P2X7R pathway and
inhibits parasite proliferation in FHs 74 Int cells.

Discussion

Toxoplasma gondii can invade and replicate in the epi-
thelial lining of the gastrointestinal tract and induce an
immune response. IL-1p is a crucial factor of host
defense in response to infections and injuries. Many
studies have reported that T. gondii infection produces a
significant amount of IL-1f in DCs, macrophages or
monocytes but not in the intestinal epithelial lining
[13-17, 25, 27]. Our data indicate that IL-1p produc-
tion requires activation of the NLRP3 inflammasome
in T. gondii-infected small intestinal epithelial cells,
which is subsequently regulated by P2X7R and in-
hibits T. gondii proliferation (Fig. 6). To our know-
ledge, the present study for the first time suggests
that P2X7R mediates NLRP3-dependent IL-1f secre-
tion and parasite proliferation in 7. gondii-infected
human small intestinal epithelial cells.

IL-1 is recognized as one of the earliest and most po-
tent pro-inflammatory agents, which is synthesized and
released in response to infectious agents and injuries
[19, 20, 23]. IL-1 was shown to be produced in murine
bone marrow-derived macrophages, rat macrophages,
and THP-1 macrophages after 7. gondii infection

FHs74 Int cell Live T.gondii ~ =\ by

Cell Membrane
Cytoplasm i

NLRP3 7

e

¢ 2
v

o
Pro-Casp-1 { "
o0

'

Pro-IL-18 IL-1B
— Qo=» —— 0

ASC

T.gondii prol\i'f/eration

awosewwe|ul 49N

Nucleus
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Fig. 6 The proposed pathway of NLRP3 inflammasome activation in
FHs 74 Int cells infected with T. gondii. P2X7R mediates activation of
the NLRP3 inflammasome by forming a complex with the adaptor
protein ASC and pro-Casp-1. Activation of the inflammasome induces
IL-13 maturation and secretion. In addition, activation of the NLRP3
inflammasome inhibits T. gondii proliferation
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through activation of inflammasomes [14, 15]. Interest-
ingly, we show that T. gondii tachyzoites triggered sig-
nificant IL-1B production by FHs 74 Int cells in time-
and dose-dependent manners, indicating that the small
intestinal epithelium has appropriate pattern-recognition
sensor proteins to trigger inflammatory responses
against the parasite. However, in vitro infection of mouse
colonic epithelial CMT-93 cells by T. gondii PRU strain
did not trigger inflammasome-associated IL-1p secretion
[30]. These differences in IL-1p production may be the
result of differences in cell types, host cell microenviron-
ments, or the virulence of the T. gondii strain chosen.
Inflammasomes restrict microbial replication and trig-
ger an inflammatory form of cell death, thus accounting
for the genesis of inflammatory processes [11, 12, 18]. T.
gondii induces the activation of NLRP1 and NLRP3 in
macrophages and DCs [13-16], and T. gondii infection
also activates NLRC4, NLRP6, NLRP8, NLRP13, AIM2,
and NAIP in THP-1 macrophages [17]. Similarly,
NLRP1, NLPR3, NLRC4 and AIM2 are four types of
inflammasomes that were activated in 7. gondii-infected
intestinal epithelial cells, which is consistent with THP-1
macrophages [17]. However, their activation patterns dif-
fered. Among these four types of inflammasomes, the
NLRP3 inflammasome was consistently and time-
dependently activated. Moreover, the NLRP3 inflamma-
some is closely associated with P2X7 receptors [29, 31].
In the present study, 7. gondii-induced IL-1f production
was significantly reduced in the NLRP3 inflammasome
component in siRNA-transfected FHs 74 Int cells, indi-
cating that NLRP3 is involved in IL-1p production in T.
gondii-infected human small intestinal epithelial cells.
We explored the activation mechanism and protective
roles of the NLRP3 inflammasome in response to 7. gon-
dii. Under pathophysiological conditions of the cells,
ATP released from dying cells enhances P2X7R activa-
tion to upregulate the NLRP3 inflammasome, subse-
quently promoting IL-1p secretion [21, 23]. P2X7R
mediates NLRP3 inflammasome activation, cytokine and
chemokine release, T lymphocyte survival and differenti-
ation, transcription factor activation, and cell death [29].
Here, we found that transfection with P2X7R siRNA sig-
nificantly reduced T. gondii-induced NLRP3, cleaved
Casp-1 and ASC protein levels and IL-1 production in
FHs 74 Int cells, whereas parasite proliferation was in-
creased in T. gondii-infected NLRP3 or P2X7R siRNA-
transfected FHs 74 Int cells. These results indicate that
P2X7R and NLRP3 inflammasomes are important in the
regulation of IL-1B production and control the resist-
ance to this parasite. These findings were consistent with
previous studies reporting that P2X7R-dependent re-
sponses play critical roles in the host control of T. gondii
[24, 25]. However, in the present study, although the ex-
pression levels of the NLRP3 inflammasome and P2X7R
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were blocked by siRNA in host cells, 7. gondii-induced
IL-1B production was not dramatically suppressed. Re-
garding this phenomenon, increases in iNOS expression,
NO production, and ROS generation may participate in
the activation of the NLRP3 inflammasome and the sub-
sequent regulation of IL-1p production [32]. In addition,
a previous study shown that inflammatory caspases (cas-
pases 1, 4, 5 and 11) are activated in response to micro-
bial infection and danger signals. This process is
followed by cleavage of gasdermin D (GSDMD) and the
generation of an N-terminal cleavage product (GSDMD-
NT) that triggers IL-1p inflammatory cytokine release
[33]. A previous study and our results indicate that
P2X7R-dependent NLRP3 inflammasome activation is
required but not sufficient for 7. gndii-induced IL-1p se-
cretion in FHs 74 Int cells.

Conclusions

Our findings reveal the role of P2XR in the induction of
NLRP3 inflammasome activation in 7. gondii-induced
small intestinal epithelial cells. Furthermore, we found
that the P2X7R/NLRP3 pathway plays an important role
in IL-1P secretion and in the inhibition of T. gondii pro-
liferation in infected cells (Fig. 6). These results may not
only contribute to our understanding of the mucosal im-
mune mechanism of 7. gondii infection but also offer
new insight into the identification of innate resistance in
the gut epithelium.
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