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Abstract

from MODIS calculations for 348 townships in Taiwan.

limit the occurrence of Ae. aegypti.

East Asian winter monsoon.

Background: Taiwan is geographically located in a region that spans both tropical and subtropical climates (22-25°
N and 120-122°F). The Taiwan Centers for Disease Control have found that the ecological habitat of Aedes aegypti
appears only south of 23.5°N. Low temperatures may contribute to this particular habitat distribution of Ae. aegypti
under the influence of the East Asian winter monsoon. However, the threshold condition related to critically low
temperatures remains unclear because of the lack of large-scale spatial studies. This topic warrants further study,
particularly through national entomological surveillance and satellite-derived land surface temperature (LST) data.

Methods: We hypothesized that the distribution of Ae. aegypti is highly correlated with the threshold nighttime LST
and that a critical low LST limits the survival of Ae. aegypti. A mosquito dataset collected from the Taiwan Centers
for Disease Control was utilized in conjunction with image data obtained from the moderate resolution imaging
spectroradiometer (MODIS) during 2009-2011. Spatial interpolation and phi coefficient methods were used to analyze
the correlation between the distributions of immature forms of Ae. aegypti and threshold LST, which was predicted

Results: According to the evaluation of the correlation between estimated nighttime temperatures and the occurrence
of Ae. aegypti, winter had the highest peak phi coefficient, and the corresponding estimated threshold temperatures
ranged from 13.7 to 14 °C in the ordinary kriging model, which was the optimal interpolation model in terms of the root
mean square error. The mean threshold temperature was determined to be 13.8 °C, which is a critical temperature to

Conclusions: An LST of 13.8 °C was found to be the critical temperature for Ae. aegypti larvae, which results in the near
disappearance of Ae. aegypti during winter in the subtropical regions of Taiwan under the influence of the prevailing

Keywords: Aedes aegypti, Moderate resolution imaging spectroradiometer, Inverse distance weighting, Local
polynomial interpolation, Radial basis function, Ordinary kriging, Phi coefficient

Background

The mosquito Aedes aegypti (L.) is the primary urban
vector of several globally critical arboviruses, including
dengue virus (DENV) and the yellow fever virus, and is
a crucial vector of chikungunya virus in the subtropics
and tropics [1-6]. Bhatt et al. [7] estimated that up to
390 million DENV infections, including close to 100
million cases of dengue disease manifestations, occur
annually worldwide. Aedes aegypti originated in Africa,
where its ancestral form was a zoophilic tree hole
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mosquito Ae. aegypti formosus [8]. The “domesticated”
form of Ae. aegypti is genetically distinct with discrete
geographical niches [9]. A study hypothesized that harsh
conditions coupled with the slave trade resulted in the
introduction of Ae. aegypti from Africa to the New
World, from where it subsequently spread globally to
tropical and subtropical regions [8]. Dengue fever is a
travel-related disease in Taiwan because travelers can
carry DENV from endemic areas into the island [10-14].
After being transported to the island, this virus is passed
on to Aedes mosquitoes, which can result in local
dengue fever outbreaks. During 1987-2002, the epi-
demiological patterns of dengue in Taiwan cycled with
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small-scale outbreaks occurring nearly every three years
and large-scale epidemics occurring nearly every ten
years [15]. However, according to the data of the Taiwan
Centers for Disease Control (CDC), since 2002, nine
outbreaks have been recorded with over 1000 cases of
dengue fever, dengue hemorrhagic fever, and dengue
shock syndrome [15]. Aedes aegypti in Southern Taiwan
was closely associated with a high incidence of autoch-
thonous dengue [16].

The geographical range of Ae. aegypti is considered to
be approximately within low-latitude equatorward areas
with an average winter isotherm of 10 °C in the northern
and southern hemispheres [17, 18]. The core distribu-
tional areas of Ae. aegypti, where the mosquito and its
associated pathogens present a major threat to human
health, include regions of South Asia (particularly India,
Sri Lanka and Bangladesh), regions of East Asia (particu-
larly Southern China and Taiwan), Southeast Asia,
Northeastern Australia, islands in the tropical Pacific
Ocean, the subtropical and tropical parts of Africa, the
Caribbean islands, and large parts of the Americas with
cool range margins to the North and South [18]. Taiwan
is geographically located in a region that spans both
tropical and subtropical climates (22-25°N and 120-
122°E). The latitude of 23.5°N divides the island into two
climatic zones: (i) a tropical monsoon climate in the
South and (ii) a subtropical monsoon climate in the
North. The latitude, topography, ocean currents, and
prevailing East Asian summer monsoon over Taiwan
contribute to the island’s high temperature, humidity,
and rainfall, as well as tropical cyclones during summer
[19]. The magnitude of the effect of increasing tempera-
tures on the seasonality and peak abundance of mosqui-
toes would likely vary over the climate suitability
gradient across which Ae. aegypti occurs [20]. Aedes
aegypti appears only south of 23.5°N and the Penghu
Islet (i.e. Penghu County) [21]. In addition, the Taiwan
CDC reported similar results based on surveys of the
dengue vector Ae. aegypti conducted in Taiwan during
1982, 1988-1996, 2003-2005 and 2009-2011 [22]. The
temporal distribution of Ae. aegypti was positively asso-
ciated with rainfall and temperature; although summer
is a rainy season and winter is a dry season, the occur-
rence of Ae. aegypti can be observed in each season [21,
23]. Moreover, predicting the effect of changing rainfall
patterns on these mosquitoes is difficult because of the
complicating factor that immature forms of Ae. aegypti
are found in various containers, many of which are kept
filled primarily by human action rather than rainfall [24].
Therefore, in Taiwan, we consider temperature to be a
prominent and significant meteorological factor affecting
ecological distributions of Ae. aegypti.

Here, we proposed that a critical low winter
temperature prevents the expansion of Ae. aegypti. Data
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on the survival-limiting temperature and development
rate of Ae. aegypti are commonly obtained from labora-
tory experiments under artificial feeding conditions. In
Taiwan, studies have estimated the developmental zero
water temperatures for larvae to be from 13 to 13.9 °C;
studies have also indicated that Ae. aegypti immature
forms were sensitive to lower winter temperatures in the
north, resulting in their limited distribution in Taiwan
[25, 26]. However, supporting evidence based on a large-
scale field study is still insufficient, and particular
threshold temperatures for the continued absence of Ae.
aegypti in Northern Taiwan remain unclear. Therefore,
the goal of the current study was to estimate the critical
low temperature of Ae. aegypti by using data obtained
from a three-year Taiwan CDC project conducted for
national entomological surveillance and using nighttime
land surface temperatures (LSTs) obtained from moder-
ate resolution imaging spectroradiometer (MODIS)
observations throughout the main island of Taiwan.

Methods

Research flowchart

We hypothesized that a particular threshold temperature
in winter is highly correlated with the spatial distribution
of Ae. aegypti and that this low critical temperature
limits the distribution of Ae. aegypti in Taiwan.

The research flowchart is shown in Fig. 1. The mosquito
dataset was transformed and assigned as a dichotomous
dataset, which was based on the surveillance of Ae. aegypti
in each of 348 townships in Taiwan. Even in MODIS
monthly composites, 0-15% of the pixels could be missing
because of clouds or other reasons. Therefore, the
seasonal MODIS LST data in our study were processed to
fill the missing data by using four interpolation methods
[ie. inverse distance weighting (IDW), local polynomial
interpolation (LPI), radial basis function (RBF), and ordin-
ary kriging (OK)]. According to the Taiwan Central Wea-
ther Bureau, minimum air temperatures during the period
of 1981-2010 ranged between 12.4-18.1 °C in January
and 25.1-26.4 °C in July in the plain areas of the main
island of Taiwan [23]. Therefore, we assumed that the
search for the low critical temperature should include a
range from 12.4 to 26.4 °C. Consequently, we chose to
include temperatures ranging from 8 to 28 °C. The inter-
polated LSTs are continuous data and must be converted
into a dichotomous format for evaluating spatial similarity.
The degree of the correlation between the geographical
distribution of Ae. aegypti and LSTs can be evaluated by
using phi coefficient calculations. The critical low
temperature was defined by determining the highest
phi coefficient at which the assumed temperature
demonstrates a strong correlation with the spatial dis-
tribution of Ae. aegypti.
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Fig. 1 Research flowchart
A

Surveillance of Aedes mosquitoes on the main island of
Taiwan

The mosquito dataset used in this study was a part of a
national routine entomological surveillance of dengue,
and the original data were collected in a 3-year project
of the Taiwan CDC from 2009 to 2011 [22]. Briefly,
99.2% of a total of 368 townships and 91.1% of a total of
7835 villages completed this survey. The mean number
of villages per township was 21 (range, 6—42 villages).
Moreover, 3401, 2671 and 2423 villages were inspected
in 2009, 2010 and 2011, respectively. The average area in
each village was determined to be 4.6 km” (range, 0.3—
26.2 km?). A stratified cluster sampling technique was
used to sample 50 residential premises in each village by
randomly selecting and surveying the first house and
then inspecting surrounding residences, checking water-
filled containers indoors and outdoors. The containers
included water buckets, pottery pots, urns, flower vases,
flower saucers, used tires, tanks, gutters, discarded
containers, natural containers, and other water-holding
containers. Aedes larvae or pupae in containers were
collected until the number reached 100. Then, samples
were preserved in 70% alcohol and sent to the CDC for
species identification. If the number after identification
did not reach 100 due to misidentification of immature
mosquitoes on site or because of low density, additional
visits were conducted for that village. All mosquito data
from the villages were categorized into 365 townships.
In this study, we focused on the main island of Taiwan

to detect spatial contiguity and pattern consistency;
hence, townships belonging to outlying islands were
excluded, and a total 348 townships were investigated
(Wutai Township, which is located in a remote moun-
tainous area, was the only township in the main island
of Taiwan that was not investigated). We then mapped
the distribution of Ae. aegypti by using the binary
principle. A township was denoted as having “presence
of Ae. aegypti” (defined as “1”) if it had one or more than
one confirmed cases of Ae. aegypti; by contrast, a town-
ship was denoted as having the “absence of Ae. aegypti”
(defined as “0”) if it had no confirmed cases of Ae.
aegypti. Of the 7019 villages surveyed, 973 were identi-
fied as having Ae. aegypti presence. These villages were
then transformed such that they constituted 73 of the
348 townships investigated in this study (Fig. 2).

Satellite-derived LST products

The MODIS sensors onboard the Terra and Aqua satel-
lites, two Earth Observing System platforms, can provide
daily observations of terrestrial, atmospheric, and
oceanographic variables on a global scale. Thus, MODIS
products are widely used in meteorological studies
worldwide, including LST data and images from MODIS
thermal bands distributed by the Land Processes Distrib-
uted Active Archive Center of the US Geological Survey
[27]. The MODIS LST and emissivity products can pro-
vide per-pixel temperature and emissivity values in a se-
quence of swath-to-grid-based global products. Both
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Fig. 2 Map of 973 (among 7019) townships identified as having the presence of Aedes aegypti. These villages were then transformed so that they
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Aqua and Terra (MYD11 and MOD11) products contain
Level 2 and 3 LST and emissivity retrieved from MODIS
data at spatial resolutions of 0.01° [27] and 0.05° over
global land surfaces under clear-sky conditions. The
nominal accuracy of the MODIS LST product has been
reported to be *1 K. Some validation studies have
reported accuracy statistics smaller than 1 K under
clear-sky conditions within the temperature range of -10
to 50 °C [28]. In this study, nighttime LST retrievals on
a 0.05° latitude/longitude climate modeling grid were
collected and analyzed to determine covariates that were
exhaustively known over the spatial-temporal domain in
order to obtain complete prediction over a land mass. In
MODIS monthly composites, 0-15% of the pixels are
missing because of clouds or other factors. In this study,
these missing pixels were replaced using four spatial
interpolation models (ie. IDW, LPI, RBF, and OK),
which filled gaps in areas with sparse or irregularly
spaced data points. The units in the original monthly
MODIS LST images were also converted from Kelvin to
degrees Celsius. The nighttime MODIS LST data were
used to calibrate the entire study area by using spatial
interpolation models (Fig. 3).

Spatial interpolation

Spatial interpolation is the procedure of estimating the
values of an environmental variable (e.g. nighttime LST)
at locations with unknown values by using a sample of

locations with known values. We employed spatial
interpolation  involving the application of four
interpolation methods to a set of points with known
values to create a continuous surface. These points are
also known as sample points or observations.

Inverse distance weighting

IDW estimates a value of each location by taking the
distance-weighted average of the values of sample points
in its neighborhood. The closer a sample point is to the
location being estimated, the more influence or weight it
has in the averaging process [29]. Mathematically, IDW
can be expressed as follows:

Zy = Z:’:lwizi
d;
S (1/d;)

where Z, is the interpolated value of the point being es-
timated, # is the number of sample points in the neigh-
borhood, Z{i=1,...,n) is the value of the ith sample
point in the neighborhood, d;(i=1, ..., n) is the distance
from the point being estimated to the ith sample point
in the neighborhood, and y is the power.

The power parameter determines the significance of
sample points on the interpolated value. When a higher

w; =
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Fig. 3 Average nighttime land surface temperature (LST) in spring (@), summer (b), autumn (c) and winter (d) from monthly LSTs obtained using
the moderate resolution imaging spectroradiometer (MYD11C3) during the study period (unit in K)
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power is defined, more emphasis is placed on nearby
points, producing a more varying and less smooth sur-
face. Specifying a lower power places more emphasis on
distant points, resulting in a smoother surface. A power
of 2 is most commonly used with IDW [29].

Local polynomial interpolation

A trend surface interpolation entails fitting a smooth
surface defined by a polynomial function to a set of sam-
ple points and then using the polynomial function to
estimate the values of unsampled locations. The general
equation of a trend surface is as follows:

P Qi
Sf(x,y) = Zi,,zobi=ix3’

where p is the degree of the polynomial. As the polyno-
mial order increases, the surface being fitted has an in-
creasing number of curvatures and becomes
progressively more complex. Although polynomial or-
ders as high as 10 are accepted, numerical instability in

the analysis often creates artifacts in the trend surfaces
of orders higher than 5 [29].

We considered the simplest form of a trend surface to
be a planar surface with no curvature, which is defined
by a local linear or first-order polynomial:

f(x,9) = boo + brox + bo 1y

where x and y are coordinates, b; (i,j =0, 1) are polyno-
mial coefficients, and flx,y) is the value of an environ-
mental variable at the location (x,y). The coefficients of
the polynomial function can be determined from sample
points by minimizing

Z?lei{zi—f(xn )Y

This is called a local least-squares method, which
ensures that the sum of the squared deviations of ob-
served values at sample points from the trend surface is
a minimum. Suppose that there exist n sample points,
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whose values are zj, zy, ..., z, and the corresponding co-
ordinates are (x1,y1), (*2,%2), ..., (X,,¥,); wiis a kernel
smoothing weight and is given by a negative exponential
function of the following form:

w; eidiadiSdO
! O,di > dy

where d;(i=1, ..., n)is the distance from the point being
estimated to the ith sample point; d; is the bandwidth
[30].

Radial basis function

RBFs are conceptually similar to the approach of fitting
a rubber membrane through measured sample values
while minimizing the total curvature of the surface. An
RBF is a real-valued function whose value depends only
on the distance from the origin; the basic idea is to
choose a radially symmetric function, ¢(r;). The basis
function selected determines how a rubber membrane
would fit between the values [31]. The general form of
an RBF can be written as

Z,= Z:’:lwiqb(ri) +m

where Z,is the estimated value for the surface at the
grid point p; ¢(r;) is the RBF selected, with r; being
the radial distance from point p to the ith data point;
and w; is the weight and m the bias value (or Lagran-
gian multiplier), which are estimated from data points
[32].

The form of the RBF in this study was a weighted reg-
ularized spline, which is expressed as follows:

o(r) = In(cr/2)* +Ei(cr)* +y

where y is the distance between the point and the
sample, ¢ is a smoothing parameter, and y is Euler’s con-
stant (y = 0.577).

E() is an exponential integral function given by

-
E(x) = /ert
1

In the regularized type, the predicted surface becomes
increasingly smooth as the weight value increases [31].

Ordinary kriging

Kriging assumes that in most cases, spatial variations ob-
served in environmental phenomena are random vyet
spatially correlated, and data values characterizing such
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phenomena conform to Tobler’s law of geography (data
values at locations that are close to each other generally
exhibit lower variability than data values at locations
that are farther away from each other). This is called
spatial autocorrelation. The exact nature of spatial auto-
correlation varies with dataset and each dataset has its
own unique function of variability and distance between
sample points. This variability is represented by a semi-
variogram. Kriging uses semivariance values obtained
from the fitted semivariogram to estimate the weights
used in the interpolation and variance of interpolated
values [29].

Semivariance measures the variability of observed
values at sample points that are separated by a certain
distance. It is calculated using the following equation:

y(h) = o= S (o )-2(w)”

=D
where y(h) is the semivariance for a distance / separat-
ing two sample points z(x;) and z(x;+ /), and #n is the
number of pairs of sample points separated by /.

OK assumes that no trend exists in the data and that
the mean of the dataset is unknown. The weights are de-
rived by solving a system of linear equations, which min-
imizes the expected variance of data values:

Z;;ley(hij) +u=ylhp)foralli=1,...n

k

_wi=1
i=1

where k is the number of sample points within the
neighborhood, w; is the weight for the ith sample point
to be estimated, y(/;) is the semivariance between sam-
ple points i and j, y(h,) is the semivariance between
sample point i and the point to be estimated, and y is a
Lagrange multiplier, which is added to ensure the mini-
mum possible estimation error. Once wy(i=1,...,k) are
found, the equation (wi :2;’17("1/%)
values at unsampled locations.

We selected the spherical semivariogram model to es-
timate the semivariogram that was fitted with a continu-
ous curve.

The error variance for each interpolated point can be
estimated using the following equation:

) is used to estimate

k
ot = wiy(ho) +u

The square root of the variance provides the standard
error at the interpolated point, which yields an error
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estimate and the confidence interval for the unknown
point.

Suppose the interpolated value is z,. If interpolation
errors have a normal distribution, the real value at the

interpolated point is within zo £ (\/? X 2) with a prob-
ability of 95% [29].

Cross-validation

The cross-validation technique was adopted in this study
to evaluate and compare the performance of different
interpolation methods. The sample points were arbitrar-
ily divided into two datasets, with one set used to train a
model and the other used to validate the model. To re-
duce variability, the training and validation sets must
cross over in successive rounds such that each data
point could be validated against. The root mean square
error (RMSE) for error measurement was estimated to
evaluate the accuracy of the interpolation methods [33].

Zfil(oi_l)i)z

RMSE =
N

where O; is the observed value, P; was the predicted
value, and N is the number of samples.

Seasonal data derived from MODIS raster images were
evaluated using the four spatial interpolation methods
(i.e. IDW, LPI, RBE, and OK). The interpolation methods
were used to transform point data into zonal data by
using ArcMap 10, and each model automatically gener-
ated the minimum, mean, and maximum estimates. The
spatial interpolation models and error measurements
(i.e. RMSE) applied in this study were mapped using
ArcMap 10.

Transformation of the interpolated LST into 348-township
maps by using the binary principle

We assumed that a critical low temperature limits the
biogeographical distribution of Ae. aegypti to Southern
Taiwan. Designing criteria for creating a binary map of
384 townships for LSTs was necessary; from a binary
map, the extent of spatial similarity could be evaluated
by comparing geographical distributions between Ae.
aegypti and LSTs. The threshold temperatures were esti-
mated to range from 8 to 28 °C, encompassing the sea-
sonal temperatures in the plain areas of Taiwan. Criteria
were designed as follows: (i) if the LST of a township
was higher than an assumed temperature, then this loca-
tion was considered a favorable habitat for the survival
of Ae. aegypti (optimal survival conditions); (ii) if the
LST of a township was lower than a given temperature
assumption, then this location was considered harmful
for the survival of Ae. aegypti (nonoptimal survival
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conditions); and (iii) according to the binary principle,
optimal and nonoptimal survival conditions were de-
fined as “1” and “0,” respectively. Scenarios from each of
the given temperature assumptions were generated,
which were then mapped to a dichotomous map of the

348 townships.

Phi coefficient

The phi coefficient (@) is the version of Pearson’s y that
is used when both X and Y are true dichotomous vari-
ables [34]. It can be calculated from general Pearson’s y
by using score values of 0 and 1 or 1 and 2 for group
membership variables. Alternatively, the phi coefficient
can be computed from cell frequencies in a 2x2 table
that summarizes the number of cases for each combin-
ation of X and Y scores. The frequencies of cases in the
four cells of a 2x2 table are labeled in order to compute
the phi coefficient from the cell frequencies. Assuming
that the cell frequencies are from a to d (i.e. 2 and d cor-
respond to “discordant” outcomes and b and ¢ corres-
pond to “concordant” outcomes), then the following
formula can be used to compute the phi coefficient dir-
ectly from the cell frequencies:

o — bc-ad
Vi(a+b)x(a+c)x(b+d)x(c+d)

where b and c¢ are the numbers of cases in the concord-
ant cells of a 2x2 table and a and d are the numbers of
cases in the discordant cells of a 2 x 2 Table.

A formal significance test for the phi coefficient can be
obtained by converting it into a chi-square; in the fol-
lowing equation, N represents the total number of scores
in the contingency table:

X2
= ﬁ

This is a chi-square statistic with a degree of freedom
(df) of 1. This can be used as one of the many possible sta-
tistics to describe relationships between categorical vari-
ables based on the tables of cell frequencies. For X* with
df=1 and « = 0.05, the critical value of X* is 3.84; thus, if
the obtained X* value exceeds 3.84, then the phi coeffi-
cient is statistically significant at the 0.05 level [34].

In this study, a correlation statistic was computed
using the phi coefficient to evaluate the correlation of
the binary variables, namely Ae. aegypti geographical
distribution and LST, under a given temperature
assumption (details described in “Transformation of the
interpolated LST into 348-township maps by using the
binary principle” in the Methods section). Phi coefficient
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statistics were calculated using SPSS 12 (SPSS, Chicago,
IL, US).

Results

The results of the RMSE test are presented in Table 1.
The RMSE values obtained when fitting the IDW model
to the seasonal LSTs were 0.51, 0.6, 0.53 and 0.55 in
spring, summer, autumn and winter, respectively. The
RMSE values obtained when fitting the LPI model to the
seasonal LSTs were 0.44, 0.53, 0.46 and 0.47 in spring,
summer, autumn and winter, respectively. The RMSE
values for fitting the RBF model were 0.47, 0.51, 0.48
and 0.48 in spring, summer, autumn and winter, respect-
ively. The RMSE values for fitting the OK model were
0.4, 0.48, 0.42 and 0.44 in spring, summer, autumn and
winter, respectively. All RMSE values were lower than
0.6, indicating that the deviation of the interpolated esti-
mation was in the range of + 0.6 °C. The OK model,
which had the lowest RMSE values among the four
interpolation models in all four seasons, was determined
to be an optimal model for processing the nighttime
LST data.

Maps of nighttime LSTs in the 348 townships of
Taiwan for the four seasons were interpolated using the
IDW (Fig. 4), LPI (Fig. 5), RBF (Fig. 6) and OK (Fig. 7)
models.

A phi coefficient statistic was applied to calculate the
correlation between the geographical distribution of Ae.
aegypti and nighttime LST assumptions. The threshold
temperature assumptions were made by following the
criteria mentioned in the Methods section (Transform-
ation of the interpolated LST into 348-township maps
by using the binary principle). The threshold tempera-
tures were estimated to range from 8 to 28 °C with an
interval of 1 °C. We considered that a particular thresh-
old temperature limits the distribution of Ae. aegypti in
Southern Taiwan, and such a threshold temperature was
determined to be associated with the highest phi coeffi-
cient. The results obtained for the IDW model for all
four seasons, indicated that the phi coefficient showed
the highest peak value (@ = 0.66 at 14 °C) in winter, the
second highest peak value (@ = 0.58 at 19 °C) in spring,
the third highest peak value (@ = 0.51 at 21 °C) in
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autumn, and the lowest peak value (@ = 0.26 at 24 °C)
in summer (Fig. 8a). A phi coefficient higher than 0.141
was considered to signify a significant correlation at the
0.05 level. For the LPI model, the phi coefficient showed
the highest peak value (@ = 0.68 at 14 °C) in winter, the
second highest peak value (@ = 0.60 at 19 °C) in spring,
the third highest peak value (@ = 0.52 at 21 °C) in au-
tumn, and the lowest peak value (@ = 0.23 at 24 °C) in
summer (Fig. 8b). In addition, for the RBF model, the
phi coefficient showed the highest peak value (@ = 0.66
at 14 °C) in winter, the second highest peak value (@ =
0.58 at 19 °C) in spring, the third highest peak value
(@ = 0.51 at 21 °C) in autumn, and the lowest peak value
(@ = 0.17 at 24 °C) in summer (Fig. 8c). Finally, for the
OK model, the phi coefficient showed the highest peak
value (@ = 0.67 at 14 °C) in winter, the second highest
peak value (@ = 0.60 at 19 °C) in spring, the third high-
est peak value (@ = 0.50 at 21 °C) in autumn, and the
lowest peak value (@ = 0.25 at 24 °C) in summer (Fig.
8d). The highest phi coefficients were consistent in all
interpolation models and occurred in winter, indicating
that the geographical distribution of Ae. aegypti is more
strongly correlated with nighttime LSTs in winter than
in other seasons.

In Taiwan, low temperature during winter is a critical
factor affecting the geographical distribution of Ae.
aegypti. The threshold temperature was determined and
is shown in Table 2. According to the highest phi coeffi-
cient, which was used to determine the correlation be-
tween winter temperatures and the geographical
distribution of Ae. aegypti, in the IDW model, the mini-
mum, mean, and maximum temperatures that had the
strongest correlation with the distribution of Ae. aegypti
were 13.5 °C (@ = 0.68), 13.8 °C (@ = 0.71), and 14 °C
(@ = 0.69), respectively. In the LPI model, the minimum,
mean, and maximum temperatures that had the stron-
gest correlation with the distribution of Ae. aegypt were
13.8 °C (@ = 0.7), 13.8 °C (@ = 0.68), and 13.9 °C (@ =
0.67), respectively. In the RBF model, the minimum,
mean, and maximum temperatures that had the stron-
gest correlation with the distribution of Ae. aegypt were
134 °C (@ = 0.67), 13.8 °C (@ = 0.69), and 14.1 °C (@ =
0.7), respectively. Finally, in the OK model, the

Table 1 Descriptive statistics of the root mean square error in cross-validation of the studied interpolation models. The sample number
of observations from moderate resolution imaging spectroradiometer (MODIS) was 3215. Four seasons were defined: spring (from March
to May), summer (from June to August), autumn (from September to November), and winter (from December to February)

Season IDW LPI: exponential RBF: completely OK: spherical type
kernel function regularized spline

Spring 051 044 047 040

Summer 0.60 0.53 0.51 048

Autumn 0.53 046 048 042

Winter 0.55 047 048 044
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minimum, mean, and maximum temperatures that had
the strongest correlation with the distribution of Ae.
aegypt were 13.7 °C (@ = 0.71), 13.8 °C (@ = 0.69), and
14 °C (@ = 0.71), respectively. Thus, based on different
statistical models, the results revealed that the critical
low temperature of Ae. aegypti in Taiwan was 13.8 °C
(mean value) and ranged from 13.7 to 14 °C, according
to the results of the OK interpolation method. A mean
LST of 13.8 °C is a critical temperature to limit the oc-
currence of Ae. aegypti North of 23.5°N, the subtropical
region of Taiwan, particularly during winter.

Discussion

Developmental zero growth is based on a theoretical
line, which establishes a gradient that corresponds to the
growth rates at particular water temperatures in relation
to immature insect forms. For Ae aegypti, the

relationship between water temperatures and develop-
ment rates was similar for eggs, larvae, and pupae. Once
the lower developmental zero temperature (10-14 °C)
was exceeded, a near-linear relationship was observed
up to 30 °C. Then, the development rate remained rela-
tively stable or even decreased slightly before falling con-
siderably near the wupper developmental zero
temperature, which occurred at 38—42 °C [20]. On the
basis of the observed linear relationship between specific
life stages and water temperatures, the lower develop-
mental zero temperature has been estimated to be at
10-14 °C for eggs, 11.8-14 °C for larvae, and 10-12 °C
for pupae [17, 20, 25, 35-39]. Based on the spatial simi-
larity approach, our results indicate that the threshold
land temperature ranged from 13.7 °C to 14 °C; this stat-
istical finding is similar to those reported in previous
studies evaluating the threshold water temperature for
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the eggs or larvae of Ae. aegypti. Moreover, the
temperature extremes of 16 and 36 °C considerably de-
creased adult longevity and female fecundity [40]. Re-
garding survival time for females at extreme air
temperatures, studies have reported that females uni-
formly survived 60 min of exposure to 39-40 °C; how-
ever, only 15-30 min of exposure to 42—43 °C resulted
in 65% mortality, and 30 min of exposure to 45-51 °C
was uniformly lethal [17, 41]. At extreme lower tempera-
tures, adults could survive for 24—72 h when exposed to
4.4 °C [42] and for weeks at constant temperatures of 7—
9 °C [43]. The effects of a diurnal temperature range
(DTR) on female adult survival have also been shown to
be considerable; an increasing DTR at a mean
temperature of approximately 26 °C reduced the survival
of females over an experimental period from 70% for a
DTR of 0 °C to 50% for a DTR of 10 °C and 30% for a

DTR of 20 °C [44]. Follow-up studies have also found
that a DTR of 18.6 °C reduced female survival and re-
productive output [45, 46].

In addition to temperature, water nutrient conditions,
larval abundance, and the presence of biological compet-
itors, such as Ae. albopictus, or predators also affect the
growth and survival of Ae. aegypti larvae. Larvae reared
in lower diet concentrations survived longer than those
reared in higher diet concentrations [47]. Competition
and succession in territories of coexistence between Ae.
aegypti and Ae. albopictus have been reported [48-50].
However, Ae. aegypti tends to breed in urbanized eco-
logical niches, whereas Ae. albopictus is more frequently
found in rural areas [51]. Ae. aegypti prefers living in-
doors, whereas Ae. albopictus frequently breeds out-
doors [52-55]. However, the apparent coexistence of the
two species could be a transient situation, followed by a
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reduction [49, 56—-60] or displacement [61, 62] of the
resident species or satyrization [63, 64]. Furthermore,
oocysts of Ascogregarina parasites (such as As. taiwanen-
sis and As. culicis) can infect different stages of Aedes
mosquito larvae, and oocyst dissemination can occur at
the time of adult mosquito emergence and oviposition
[65]. For example, the Ascogregarina parasite was de-
tected in 16.7% of Ae. aegypti immature forms in tem-
perate Argentina [66]. In the Amazon region of Brazil,

the percentage of Ae. albopictus larvae infected by As.
taiwanensis ranged between 21 and 93.5% and that of
Ae. aegypti larvae infected by As. culicis ranged between
22 and 95% [67]. In Taiwan, field studies of Ascogregar-
ina parasites in three coastal townships in Chiayi County
(the area having the northernmost distribution of Ae.
aegypti in Taiwan) reported that larvae of Aedes spp.
could also be infected by Ascogregarina parasites, and
the average infection rate was 4.2% in Ae. aegypti and

Table 2 Highest values of phi coefficients demonstrating correlation between Aedes aegypti geographic distribution and threshold
temperatures. The temperature assumption is estimated following the criteria mentioned in Methods. The interval of temperature

assumption is 0.1 °C

Interpolation techniques

Land surface night temperature (°C)

Minimum Mean Maximum
Inverse distance weighting Threshold temperature 13.5 13.8 14.0
The highest value of phi coefficient 0.68 0.71 0.69
Local polynomial interpolation: exponential kernel function Threshold temperature 138 13.8 139
The highest value of phi coefficient 0.70 0.68 067
Radial basis function: completely regularized spline Threshold temperature 134 13.8 14.1
The highest value of phi coefficient 0.67 0.69 0.70
Ordinary kriging: spherical type Threshold temperature 137 13.8 14.0

The highest value of phi coefficient 0.71 0.69 0.71
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10.5% in Ae. albopictus in one 1994—1995 survey [68].
Socioeconomic factors affecting the distribution of Aedes
mosquitoes, other than the use of containers to store
water, include air conditioner use, housing quality, and
urbanization rate [69, 70]. Extensive and rapid
urbanization without appropriate planning may have dir-
ectly resulted in large numbers of artificial containers
(e.g. concrete tanks with broken lids) that are suitable
for breeding Aedes mosquitoes in and around house-
holds [71-73].

According to reports from the Taiwan Malaria Re-
search Institute, a few sporadic records of Ae. aegypti
were documented in the townships of Northern Taiwan
(i.e. Jhubei Township in Hsinchu County and Suao
Township in Yilan County) and Central Taiwan (ie.
Nantou Township in Nantou County and a few town-
ships in Yunlin County) during 1901-1964; however, Ae.
aegypti never successfully established colonies in these
townships [21]. As reported by the Central Weather
Bureau [74], the surface air temperature in winter is cold
in Northern Taiwan with a seasonal average of approxi-
mately 16 °C under the influence of the prevailing East
Asian winter monsoon. Conversely, Southern Taiwan is
very dry in winter with a seasonal mean rainfall of less
than 50 mm, a trend that reverses in summer. During
summer in Taiwan, the seasonal mean of the surface air
temperature is nearly 28 °C, with the maximum
temperature being more than 35 °C, which is magnified
in urban areas, which are impacted by the East Asian
Summer Monsoon, local circulation, and the urban heat-
island effect. During the past century, the mean surface
air temperature in Taiwan has increased by approxi-
mately 0.8 °C [74], and this may affect the distribution of
Ae. aegypti in the future.

Conclusions

The critical low temperature for the survival of Ae.
aegypti was statistically analyzed in this study. The phi
coefficient was used to evaluate the degree of association
between the ecological distributions of Ae. aegypti and
the spatial distribution of seasonal nighttime
temperature assumptions. The highest phi coefficient
was considered to be associated with the critical low
temperature for immature forms of Ae. aegypti. An LST
as low as 13.8 °C in winter was considered to be the crit-
ical temperature for Ae. aegypti larvae, which could re-
sult in near disappearance of Ae. aegypti in winter in the
subtropical regions of Taiwan under the influence of the
prevailing East Asian winter monsoon. Because of the
major role of Ae. aegypti as a vector of human patho-
gens, it is imperative to investigate the extent to which
climate change, particularly rising temperatures and
changes in rainfall patterns, affects the geographical dis-
tribution, local seasonal activity pattern, and peak

Page 12 of 14

abundance of Ae. aegypti, as well as the risk of human
DENV infection. Our data on LST obtained using satel-
lite telemetry can be used in mosquito control and pub-
lic health management planning in the future.
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