Ukawuba and Shaman Parasites & Vectors (2018) 11:224
https://doi.org/10.1186/5s13071-018-2781-0

Parasites & Vectors

RESEARCH Open Access

Association of spring-summer hydrology

@ CrossMark

and meteorology with human West Nile
virus infection in West Texas, USA, 2002-

2016

Israel Ukawuba' and Jeffrey Shaman

Abstract

Background: The emergence of West Nile virus (WNV) in the Western Hemisphere has motivated research into the
processes contributing to the incidence and persistence of the disease in the region. Meteorology and hydrology are
fundamental determinants of vector-borne disease transmission dynamics of a region. The availability of water influences
the population dynamics of vector and host, while temperature impacts vector growth rates, feeding habits, and disease
transmission potential. Characterization of the temporal pattern of environmental factors influencing WNV risk is crucial
to broaden our understanding of local transmission dynamics and to inform efforts of control and surveillance.

Methods: We used hydrologic, meteorological and WNV data from west Texas (2002-2016) to analyze the relationship
between environmental conditions and annual human WNV infection. A Bayesian model averaging framework was used
to evaluate the association of monthly environmental conditions with WNV infection.

Results: Findings indicate that wet conditions in the spring combined with dry and cool conditions in the summer are
associated with increased annual WNV cases. Bayesian multi-model inference reveals monthly means of soil moisture,
specific humidity and temperature to be the most important variables among predictors tested. Environmental
conditions in March, June, July and August were the leading predictors in the best-fitting models.

Conclusions: The results significantly link soil moisture and temperature in the spring and summer to WNV transmission
risk. Wet spring in association with dry and cool summer was the temporal pattern best-describing WNV, regardless of
year. Our findings also highlight that soil moisture may be a stronger predictor of annual WNV transmission than rainfall.
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Background

West Nile virus (WNV; family Flaviviridae, genus Flavi-
virus) is a zoonotic pathogen maintained in nature
through transmission mainly between Culex mosquitoes
and various species of birds [1], especially passerine
birds [2, 3]. Spillover transmission to humans occurs
when infected mosquitoes feed on uninfected human
hosts [4, 5], a risk that increases following local virus
amplification in both vector and avian host populations.
In Texas, the first human WNV case was reported in
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2002; since then, WNV has become endemic in the state
[6] and cases have been reported annually, with unprece-
dented outbreaks in 2003 [6] and 2012 [7]. Throughout
the temperate world, WNV is seasonal, with the greatest
number of cases reported during summer and early fall
when temperatures are warmer and the fewest number of
cases reported during winter and early spring when temper-
atures are cooler. Both precipitation and temperature
modulate mosquito ecology, and for this reason the effects
of temperature and precipitation on WNV transmission dy-
namics have long been investigated [8—10].

Temperature influences mosquito-host interaction and
the potential for disease transmission. Optimal temperatures
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shorten the number of days between blood meals and egg-
laying (i.e. the gonotrophic cycle) [11] in female mosquitoes,
increasing their contact rate with hosts (avian and human).
Temperature also increases the development rate of the
virus in the mosquito (i.e. shorter extrinsic incubation period
(EIP)) [12-14], reducing the amount of time it takes for the
mosquito to become infectious. Together with decreased
gonotrophic cycle (i.e. increased contact rate), a shorter EIP
increases the potential for WNYV transmission [15]. More-
over, warm temperatures within an optimal range [12] de-
crease the development time of mosquitoes [16] and
lengthens their longevity, further supporting mosquito
reproduction and WNV transmission. Indeed, warmer tem-
peratures have been shown to be closely associated with in-
creased transmission [17] and colder temperatures have
been linked with declines in mosquito populations [18, 19]
and reductions of WNV transmission [17, 20].

Rainfall also impacts WNV transmission. For many
mosquito species, rainfall provides the water needed for
oviposition and larval habitats [21]. Though rainfall is
associated with mosquito habitat availability and conse-
quently WNV transmission, past research indicates that
the association between rainfall and WNV disease trans-
mission is not quite straightforward. A lack of rainfall
has been shown to be linked to WNV amplification [22,
23]. As wildlife, birds and mosquitoes gather at surviving
water pools during droughts, host density increases
vector-avian host contact rates, fostering WNV trans-
mission in an otherwise limited setting. Also, during
such dry spells, mosquito populations may rise due to
decreased predator numbers [24] and standing water on
the land surface may become more nutrient-rich and
better support Culex larvae growth and development. Ir-
rigation offers another route for drought-induced ampli-
fication [25, 26], as artificial breeding sites may develop,
attracting birds and other wildlife. Humidity, like rainfall,
is also important for the mosquito life-cycle. Many
Culex mosquitoes initiate host-seeking, blood-feeding,
and egg-laying in response to increases in near-surface
humidity [21, 27].

Several studies have evaluated the association be-
tween water-availability and WNV transmission by
using rainfall or precipitation. One limitation to this
approach is that although rainfall reflects the amount
of rainwater received, it lacks feedback from land-
related factors acting on water retention. Whereas
rainfall only describes water delivered to the land sur-
face, estimates of land surface moisture reflect overall
water input and output, which is modulated by other
meteorological variables, e.g. temperature, wind speed,
solar insolation, as well as topography [28, 29]. To
better capture the effects of these additional variables,
some studies have used vegetation indices or modeled
near-surface soil hydrologic conditions to estimate
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surface water availability and describe WNV dynam-
ics. Such measures of land surface moisture have
been shown to be important predictors of WNV dy-
namics in some settings [22, 30-32].

Since its emergence in Texas, WNV has been stud-
ied with respect to climate and the environment.
Efforts to control WNV transmission could benefit
from careful monitoring of hydrologic and meteoro-
logical conditions [33-35]. For this study, we sought
to examine the temporal pattern of meteorology and
hydrology that describes the risk of elevated human
WNV infection. We wused monthly means of
temperature, specific humidity, soil moisture and pre-
cipitation data resolved at the county scale, to model
annual county-level case counts of human WNV.
Even though humidity is an additional indicator of
water availability, we examine it because it is also a
determinant of mosquito life-cycle and disease trans-
mission, as many Culex mosquitoes initiate host-
seeking, blood-feeding, and egg-laying in response to
increases in near-surface humidity [21, 27]. We hy-
pothesized that warmer, wetter spring conditions and
drier summer conditions are strongly associated with
increased numbers of WNV cases.

Methods

Study region

The region of study is west Texas, delineated as the area
of the state between longitudes 106°14'30"W and 98°
30'150"W. Mean annual precipitation is between 127 mm
in the far west to 380 mm in the central region. Monthly
mean precipitation is greatest during May-October. Aver-
age monthly temperature can range from near freezing in
the winter to 35 °C in the summer. Differences in hydrol-
ogy between east and west Texas motivate our focus on
west Texas (Fig. 1). In the west, Texas is typically arid,
mountainous, and filled with grasslands and desert re-
gions, whereas in the east, regions could be lowlands, wet,
humid, and forested [36, 37]. Such differences in climate
lead to varying natural habitats for birds and other
wildlife.

Human data

Human WNYV cases reported between 2002 and 2016 in
west Texas counties were totaled into yearly sums and
used as the dependent variable. During the study period,
1269 annual cases of human WNV were reported. By
using yearly totals for each county, the temporal auto-
correlation apparent in month-month case totals dimin-
ishes (Fig. 2). To account for the rate of WNV outcome
by population, we used county-level population data for
2000 and 2010 extracted from the US Bureau of the
Census website [38].
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Fig. 1 Map of annual precipitation in Texas, 2002 to 2016. Counties left
of dashed-line grouped as west Texas (106°14'30"W to 98°30'150"W).
Polygons represent counties and their annual precipitation average
from 2002 to 2012: red (127-254 mm); orange (255-381 mm); green

(382-508 mm); and blue (more than 508 mm)
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Hydrologic/meteorological data

North American Land and Data Assimilation System
(NLDAS) records of hourly rainfall (mm/day), specific
humidity (kg/kg) and temperature (Kelvin) during 2002—
2016 were averaged to monthly means at 1/8th degree
resolution (13 x 13 km) [29]. These monthly averages
were used as independent variables in a generalized lin-
ear model. Although on average, June describes the on-
set of West Nile virus season in west Texas (Fig. 3), our
study focused on hydrologic and meteorological condi-
tions up to three months before the WNV season-from
March through August - the peak of the season. We as-
sume a three month-lag relationship between environ-
mental conditions and the onset of West Nile virus
transmission [39, 40], and we also assume that condi-
tions between March and August are critical to changes
in annual WNYV outcome.

Many mosquito species exploit the waters that natur-
ally pool and pond at the land surface as habitats for ovi-
position and larval development. Actual measurements
of land surface wetness are often difficult to acquire but
can be simulated using a hydrologic model of the land
surface-atmosphere interface [41, 42]. Model-simulated
soil moisture can be used as a proxy for breeding site
abundance and has been used to predict the abundance
of flood and swamp water mosquitoes [28]. NLDAS-2
Mosaic hydrology model estimates of soil moisture levels
are generated through dynamical simulation using the
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Fig. 2 Correlogram of monthly and annual human WNV reports. Dotted blue lines indicate coverage probability of 95% confidence interval (Cl),
outside which correlations are considered significant. Autocorrelations at 1-month and 12-month lags are significant for monthly cases (95% Cl:
-0.18-0.18). However, autocorrelation at the annual level is not significant (95% Cl: -0.51-0.51). Correlation at the monthly scale may be more
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NLDAS hourly meteorological data [29]. For land sur-
face water availability, we use the layer 1 soil moisture
(L1SM) estimates of the Mosaic model (kg/m?), which
represents the water content in the top 10 cm of the
soil column. To enable geographical comparison with
the county-based human WNYV data, 13 x 13 km grid
of monthly average L1SM and NLDAS meteorological
data were interpolated to the centroids of each county
in west Texas. Validation of top 10 cm soil column
[43] and anomalies of top 40 cm [43, 44] of the Mosaic
model show good agreement with observed values in

regions of southern Great Plains, next to north-west
Texas.

The L1SM estimates represent upper soil column mois-
ture levels in the natural environment. Regions with high
urban development may have high percentage of impervi-
ous or artificial surfaces. Hence, it may be difficult for esti-
mated hydrology to accurately reflect the development of
aquatic habitats in these regions. Impervious surfaces,
such as cisterns, culverts, and storm drains, can house
breeding sites, regardless of soil water retaining capacity or
actual local surface wetness. Therefore, water availability
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Fig. 4 Rootogram [89] comparing the fit of Poisson regression and negative-binomial regression. Left panel negative-binomial, right panel
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in some aquatic habitats may be better represented by pre-
cipitation variability. Consequently, we include both pre-
cipitation and soil moisture in the present analysis.

Model

To estimate the effects of the independent variables, we
used a negative-binomial generalized linear model (GLM)
framework. In preliminary analysis, negative-binomial re-
gression showed less over-fitting/under-fitting than Pois-
son regression (Fig. 4). Data simulated with parameters of
top models fitted with negative-binomial framework
matched the distribution of the observed data (Fig. 5).

The negative-binomial model form is:

Yie=PB+XieB+Si:+¢

where Y, is the number of human WNV cases for
county i during year ¢, B, is the model intercept, X is
the matrix of independent variables (e.g. March
temperature, April temperature, June L1SM and August
rainfall) for county i during year ¢, B is the vector of par-
ameter estimates, and ¢ is residual error. S;, is an offset
term, the natural log of population for county i during
year t. All combinations of March to August rainfall,
L1SM, temperature and specific humidity with one to
four explanatory variables were tested: a total of n!/(n-r)!
models, where n = 24 and r = 1, 2, 3 or 4. The null
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model, which included only the intercept and offset
term, was also assessed.

Statistical analysis

Models were retained for further analysis, provided that
all coefficient estimates of variables and the intercept
had P-values of 0.05 or lower. To rank the retained
models (including the null model) based on goodness of
fit [45], we used the Bayesian information criteria (BIC).
Lower BIC is better.

Use of only the model with the lowest BIC (the top
model) may not reflect the general effects of environ-
mental conditions associated with WNV transmission.
For example, a model with a slightly higher BIC than the
top-ranked model may contain different environmental
predictors that fit the data almost as well. For this rea-
son, trusting one single model implies a level of confi-
dence in a limited set of environmental conditions that
is less aware of the fitted data [46]. Therefore, we
employed multi-model inference or model averaging, an
approach which considers possible explanations from
competing hypotheses that significantly explain the data.
For the averaged model, parameter and standard error
estimates are natural averages of variable parameters
from the retained competing models set, weighted by
the summed weights (WBIC) [47]. During modeling, we
addressed the issue of multicollinearity among predictors
in the top set of competing models, by using the model
averaging function in the MuM!In package [48] in R [49]
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Fig. 5 Frequency and density of the negative-binomial distribution of simulated WNV cases. Simulated data are from the average of 300
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to observed WNV cases. The difference between simulated data and observed data is small, supporting our choice of negative-binomial

— —— Observed
----- Simulated

0.6

0.4 0.5

Density
0.3
1

0.2

0.1

0.0
Il

T T T T T
0 20 40 60 80

N =1905 Bandwidth = 0.7079




Ukawuba and Shaman Parasites & Vectors (2018) 11:224

to standardize coefficient estimates by their partial
standard deviations [50, 51]. Collinearity is a common
issue that occurs when modeling with environmental
factors [52, 53], and correlated predictors tend to per-
plex interpretation of averaged models, due to varying
covariance structure in the participating models.

BIC weight (wBIC or wj) for a model was computed as
follows:

1
exp _iA]]
Wi="n
1
E exp{—A,}
j=1 2

where A;=BIC;- minBIC. BIC; is the BIC value for
model j, and minBIC is the BIC value of the model with
the lowest BIC among the set of m candidate models.
Total wBIC among the m candidate models equals 1.
The smallest subset of models with a total BIC weight >
0.95 were used for model averaging.

Relative importance of a variable, the sum of BIC
weights from competing models that contained an ex-
planatory variable, was also assessed. This metric indi-
cated the probability that a variable was present in all
top models, and/or the probability that it was included
in the top set of competing models.

Temporal cross-validation

A single year may disproportionately affect the associ-
ation between WNV outcome and environmental fac-
tors. As a result, variables that are important in such a
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year might themselves have disproportionate weights
and could thus undermine our goal of capturing uncer-
tainty and competing hypotheses. To identify such spuri-
ous years, well known to occur in exploratory studies
[54], we carried out leave-one-year-out temporal cross
validation. Fifteen sets of cross-validations were con-
ducted; for each set, data from one year between 2002
and 2016 was held out, and data from the remaining 14
years were used to rebuild the averaged model and to
re-compute the variable importance. We then generated
95% confidence intervals (CI) for estimates of the vari-
ables in the new sets of averaged models and compared
the results with the full model (i.e. 15-year data model).

Results

Seasonality of hydrology and meteorology

West Texas hydrology and meteorology during 2002—-2016
are summarized below. Monthly mean conditions followed
a consistent seasonal pattern. Temperature and humidity
peaked during July-August (Fig. 6). Rainfall levels peaked in
May, while soil moisture conditions were maximal during
December-January (Fig. 6).

Models

A total of 12,951 models with different combinations of
March to August soil moisture, rainfall, specific humid-
ity and temperature (Table 1) were built. Of these, 3149
models had variables and intercept estimates significant
at P < 0.05. Of the 3149 significant models, 4 models,
considered as the best-fitting models, were within 95%
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Fig. 6 Monthly means of aggregated hydrology and meteorology in west Texas during the study period. Top left pane: rainfall; top right pane:
soil moisture; bottom left pane: temperature; bottom right pane: specific humidity
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Table 1 Hydrology and meteorology variables of study

Variables Unit
Average temperature per month per county °C
Average precipitation per month per county mm/day
Average layer 1 soil moisture per month per county kg/m?
Average specific humidity per month per county kg/kg

of the cumulative BIC weights and therefore used in the
averaged model.

The best-fitting model (Table 2) showed a high relative
model weight (w; = 0.9014) and included March soil
moisture, June temperature, August soil moisture and
August specific humidity. As expected, wet conditions
during spring (March soil moisture f3 estimate + stand-
ard error, SE = 0.08 + 0.01) was a significant predictor of
increased annual WNV. Also, low monthly average
temperature, humidity and soil moisture conditions dur-
ing late spring and summer were significant predictors
of increased WNV risk, (June temperature 3 estimate +
SE = -0.34 + 0.03, August soil moisture {3 estimate + SE
= -0.10 + 0.02, August specific humidity 8 estimate + SE
= -304.14 + 42.54).

Three other models along with the top model
accounted for 0.95 of the overall cumulative BIC weight
(Table 2) and made up the top model set. The null
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model (i.e. containing intercept and offset term only)
had a low chance of being among the competing models
(w; = 1.27e™®). Among the environmental conditions in-
vestigated, soil moisture, temperature and specific humid-
ity were the variables in the competing models.
Precipitation had a relatively low importance or low prob-
ability of appearing in the top-competing models due to
high BIC values of models containing precipitation. The
highest relative importance observed for a precipitation
variable was 0.017 (June precipitation), but only when all
3149 significant models, instead of the top 4 models, were
used to infer an averaged model (Table 3). During this re-
run, changes to the relative importance of the competing
model variables were negligible. Compared to soil mois-
ture, rainfall appears to be a relatively less important vari-
able for estimating annual human WNYV cases.

In the averaged model (Table 4, showing {3 estimates
and 95% CI), increasingly wet conditions in March and
June, as well as humid conditions in June indicate in-
creases in WNYV (March soil moisture 8 = 0.37 (95% CI:
0.24-0.50), June specific humidity = 0.26 (95% CL:
0.14—0.38), June soil moisture 8 = 0.59 (95% CI: 0.48—
0.70). Additionally, cooler and dryer than average condi-
tions later in the year indicate increases in WNV as well
(June temperature 3 = -0.63 (95% CIL: -0.75— -0.50), July
specific humidity 8 = -0.40 (95% CIL: -0.52— -0.28),

Table 2 Summary of the 4 best-fitting models making up the averaged model, i.e. within 0.95 of cumulative BIC weight. Total num-

ber of significant models = 3149

Model ID Variable Coefficient estimate Standard error P-value BIC Weight
1005 Intercept 94.81 9.75 249E-22
March soil moisture 0.08 0.01 491E-1
June temperature -0.34 0.03 3.77E-25 0.00 09014
August soil moisture -0.10 0.02 9.82E-07
August specific humidity -304.14 42,54 8.67E-13
1009 Intercept 7813 9.46 1.51E-16
March soil moisture 0.05 0.01 3.00E-05
June temperature -0.28 0.03 571E-19 591 0.0470
June specific humidity 187.16 4436 245E-05
August specific humidity -560.86 57.95 3.74E-22
1543 Intercept 59.09 10.75 3.87E-08
June soil moisture 0.15 0.01 9.21E-26
August temperature -0.22 0.04 9.16E-10 6.62 0.0328
August soil moisture -0.14 0.02 1.04E-09
August specific humidity -265.29 43.96 1.60E-09
1004 Intercept 98.58 9.75 5.16E-24
March soil moisture 0.09 0.01 1.67E-11
June temperature -0.35 0.03 433E-27 7.74 0.0188
July specific humidity -255.70 3940 8.57E-11
August soil moisture -0.13 0.02 540E-12

Abbreviation: BIC Bayesian information criterion
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Table 3 Relative importance of variables from all significant
models (i.e. 3149). Soil moisture in March, temperature in June,
specific humidity and soil moisture in August maintain their
high relative importance. Precipitation showed low relative
importance

Month  Variable Relative importance  Model frequency
March Precipitation 0.001 290
Soil moisture 0.942 592
Specific humidity ~ 0.001 396
Temperature 0.000 539
April Precipitation 0.000 17
Soil moisture 0.000 415
Specific humidity ~ 0.000 403
Temperature 0.002 476
May Precipitation 0.000 31
Soil moisture 0.000 403
Specific humidity ~ 0.001 536
Temperature 0.000 438
June Precipitation 0017 569
Soil moisture 0.062 566
Specific humidity ~ 0.046 513
Temperature 0.956 449
July Precipitation 0.000 358
Soil moisture 0.000 522
Specific humidity ~ 0.026 719
Temperature 0.005 570
August  Precipitation 0.007 618
Soil moisture 0925 708
Specific humidity 0971 615
Temperature 0.037 495
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August specific humidity 3 = -0.46 (95% CI: -0.60— -0.31),
August soil moisture f§ = -0.33 (95% CIL: -0.46— -0.19),
August temperature 3 =-0.38 (95% CIL: -0.50— -0.26).

Table 4 also displays the relative importance of vari-
ables in the averaged model. The wBIC of competing
models ranked the relative importance, which is defined
as the probability of a variable being in a model with
high BIC weight. Average March soil moisture, June
temperature, August specific humidity and soil moisture
conditions demonstrated relatively high variable import-
ance (0.97, 0.97, 0.98 and 0.95, respectively). Variables
with low relative importance in the averaged model in-
cluded June specific humidity (0.05), June soil moisture
(0.03), July specific humidity (0.02) and August
temperature (0.03).

Environmental conditions in the averaged model showed
significant adjusted relative risks. 95% CI for both spring
and summer variables were significant (Fig. 7). Spring con-
ditions had relative risks greater than the null, indicating
increases in risk of WNV transmission, whereas summer
conditions showed relative risk less than 1 indicating
decreases in risk of WNV transmission. For a one unit in-
crease in March and June average soil moisture (kg/m?)
and average specific humidity in June (kg/kg), risk of WNV
transmission increases by 45%, 30% and 81%, respectively.
However, for a one unit increase in June and August
temperature (°C), July and August specific humidity
(kg/kg), and August soil moisture (kg/m?), risk for WNV
decreases by 47%, 31%, 33%, 37% and 28%, respectively.

Over the period of study, soil moisture had high vari-
ation (March min = 7.52 kg/m? max= 18.94 kg/m?),
(June min = 5.78 kg/m? max = 17.40 kg/m?), (August
min = 6.35 kg/m? max = 14.84 kg/m?), with mean and
standard deviation of 12.92 kg/m* (+ 6.09), 11.68 kg/m>
(+ 5.14) and 10.88 kg/m® (+ 4.74) in March, June and
August, respectively. Average specific humidity in June,
July and August depicted little variation (June min =

Table 4 Multi-model inferred averaged model. The average confidence intervals of the estimates indicate an effect on annual WNV
variability for all the variables of the multi-model (i.e. 95% Cl does not include zero). The relative importance of a variable (i.e. the prob-
ability of a variable being among the best-fitting models) is high for soil moisture in March, temperature in June, specific humidity and

soil moisture in August

Month Variable Coefficient estimate 95% Cl Relative importance
Intercept 0.00 0.00-0.00 -
March Soil moisture 037 0.24-0.50 097
June Specific humidity 0.26 0.14-0.38 0.05
June Soil moisture 0.59 0.48-0.70 0.03
June Temperature -0.63 -0.75--0.50 0.97
July Specific humidity -040 -0.53--0.28 0.02
August Specific humidity -046 -0.60- -0.31 0.98
August Soil moisture -0.33 -046--0.19 0.95
August Temperature -0.38 -0.50--0.26 0.03

Abbreviation: Cl confidence interval
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0.009 kg/kg, max = 0.014 kg/kg; July min = 0.010 kg/kg,
max = 0.014 kg/kg; August min = 0.011 kg/kg, max =
0.014 kg/kg) with mean and standard deviation of 0.012
kg/kg (+ 0.002), 0.012 kg/kg (+ 0.002) and 0.012 kg/kg
(+ 0.002), respectively. Temperature in June and August
showed moderate variation (June min = 26.42 °C, max =
31.27 °C; August min = 27.55 °C, max = 32.60 °C) and
spread (June temperature = 28.74 + 2.00 °C; August
temperature 29.53 + 2.09 °C).

Putting together the maximum and minimum ob-
served of each variable and the adjusted relative risk,
these range extremes represent an increase in WNV risk
of 512% for March soil moisture, 941% for June soil

moisture, 0.15% for June specific humidity, 228% for
June temperature, 157% for August temperature, 0.13%
for July specific humidity, 0.11% for August specific hu-
midity, and 238% for August soil moisture. Thus, given
the units and ranges of the explanatory variables, soil
moisture and temperature have the biggest impact on
WNV risk.

Overall, the multi-model inference strongly suggests
that wetter and more humid conditions in spring
followed by drier and cooler conditions in the summer
are associated with increased annual human WNV cases
(Fig. 8). Analysis of WNYV variability without accounting
for rate of transmission (i.e. no population offset) show

Models Selected by wBIC

March soil moisture

June soil moisture

June spec-humidity

June temperature

July spec-humidity

August temperature

August soil moisture

August spec-humidity

1004 1005

Model #

Fig. 8 Temporal pattern of multi-model environmental conditions linked with WNV variability. In general, wetter and more humid conditions in
the spring followed by drier and cooler conditions in the summer favor more human WNV cases
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1009 1543




Ukawuba and Shaman Parasites & Vectors (2018) 11:224

generally good agreement with the above temporal pat-
tern (Table 5, Fig. 9).

Temporal cross-validation of predictors of annual human
WNV cases

Figure 10 displays 95% CI plots, depicting changes in the
coefficient estimates of variables in the averaged model
during cross-validation. The confidence intervals of the
variables show no marked spread or deviations. During the
cross-validation analysis, a set of 15 competing models and
their averaged models were generated using the cross-
validation datasets. Variables of the averaged model built
using the full dataset (i.e. full model), especially variables
with high relative importance (March soil moisture, June
temperature, August soil moisture), demonstrated high
probability of being among the competing models regard-
less of year. Though, the probability of August specific hu-
midity being in a top model varied greatly with year.

Years 2003 and 2012 were high outbreak periods in Texas
and exclusion of data from these years allowed assessment
of whether the multi-model outcomes were conditional on
these years. When these years were excluded, wet soil mois-
ture in March and June, as well as cool temperature, dry soil
moisture and low specific humidity in August, remained in
the set of strong predictors explaining increased WNV
transmission, agreeing with the full model (Fig. 10).

A single best-fitting model (which included, March soil
moisture, June temperature, August soil moisture and Au-
gust temperature) had 95% of the cumulative BIC weight,
for each of the following cross-validation years 2007, 2011
and 2014. As a result, a multi-model could not be inferred
given the lack of competing hypotheses during the omitted
years. These years might seem crucial for generating
equally plausible hypotheses that are within the full data;
however, use of a less conservative model selection criter-
ion (e.g. delta BIC < 6 [55] or delta BIC < 10 [56], instead
of wBIC < 0.95) produced results similar to the full model
(Table 6). August specific humidity showed high probability
of being in the top models. Overall, several cross-validation
results suggest that the observed pattern between the rela-
tively important variables in the multi-model and human
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WNV risk appears robust and not solely dependent on any
given year.

Discussion

Multi-model inference indicates that wetter and more
humid conditions in the spring in conjunction with drier
and cooler summer conditions are strongly associated with
increased annual cases of WNV. The use of wBIC weighted
averages of best-fitting models allowed for the identification
of monthly conditions strongly associated with WNV an-
nual variability in west Texas. Cross-validation of the
multi-model revealed that soil moisture in March, June and
August, specific humidity in June, and temperature in June
and August consistently explained human WNV case vari-
ability in west Texas more than other variables. However,
soil moisture and temperature in the spring and summer
appear to have the biggest impact on WNV risk.

It is worth noting that between the two variables (pre-
cipitation and soil moisture) indicating land surface water
in this study, only soil moisture appeared in the best-
fitting models. Soil moisture also out-performed precipita-
tion during the cross-validation analyses, by having a
higher probability of being included in a multi-model and
being among the best-fitting models. These findings are
likely a reflection of the reliability of soil moisture in cap-
turing surface water availability and persistence. Rainfall
can influence ponding and pooling, but unlike the near
surface soil moisture employed here, it lacks feedbacks
from temperature, humidity, surface pressure, soil type,
vegetation type, solar and long wave radiation levels, and
wind speeds [28, 29]. By accounting for these underlying
effects that act on surface water availability (through the
Mosaic model framework), soil moisture is more likely
to provide a more robust estimate of mosquito habitat
availability at the land surface than rainfall.

Our results suggest that wetter spring conditions com-
bined with drier and cooler summer conditions strongly
predict elevated human WNYV infection risk. A number
of studies have found similar climatic patterns describing
human and mosquito WNV transmission [32, 57-59]. A
study on human WNV prevalence in Colorado indicated

Table 5 Multi-model inferred averaged model of WNV, modeled without offsets term for population. There is general agreement
between averaged models with and without offset terms. Wet conditions in the spring combined with dry and cool conditions are

the predominating pattern in both approaches

Month Variable Coefficient estimate 95% Cl Relative importance
Intercept 0.00 0.00-0.00 -

March Soil moisture 045 0.33-0.58 1.00

May Specific humidity -0.57 -0.71--043 038

June Soil moisture 0.53 0.39-0.68 1.00

August Soil moisture -0.74 -0.96- -0.52 1.00

August Temperature -0.58 -0.72- -044 0.62

Abbreviation: Cl confidence interval
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Fig. 9 Temporal pattern of the multi-model environmental conditions linked with WNV variability (population offset omitted in models)
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that in the semi-arid region of Colorado, wet spring and
dry summer predict human WNV; however, in the wetter
regions of the state, where water-availability is high, a weak
and opposite association was identified [32]. Another study
found that wet spring and dry summer conditions were
linked to WNV variability across the USA. However, in the
semiarid environments of the southwestern USA, while a
wet pattern in winter and spring were positively associated
with WNV rates, temperature conditions were not

significantly linked to WNV [58]. One explanation could be
that given the large study area, climatic conditions varied
considerably within the region. High vegetation and evapo-
transpiration, which are indicators of surface water avail-
ability, like soil moisture, have also been found to be
positively linked to WNV fluctuations [59].

Wet and humid conditions in the spring not only pro-
vide oviposition sites and larval habitat, but also support
early mosquito reproduction and avian host interactions

N
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Fig. 10 95% confidence interval of coefficient estimates of variables from cross-validation multi-models and full dataset multi-model. Specific
humidity in August had the lowest probability of being included in a multi-model. Soil moisture in March and August and temperature in June
and August had relatively high probability of being among the competing models. Compared to the full model estimates, the 95% Cl of param-
eter estimates from the cross-validation sets did not vary markedly. Note: multi-models for cross-validation years 2007, 2011 and 2014 not in-
cluded; only one model was within 95% of the cumulative BIC weight for each of these years
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Table 6 Multi-model inferred averaged model, from dataset omitting cross-validation years 2007, 2011 and 2014. Top models se-
lected using delta BIC < 6. Effect size, directionality, 95% Cl and relative importance of predictors closely resemble those of the pre-
dictors generated using the full dataset and 95% cumulative sum of BIC weights (Table 4)

Month Variable Coefficient estimate 95% Cl Relative importance
Intercept 0 0.00-0.00 -

March Soil moisture 048 0.36-0.60 1.00

June Temperature -0.57 -0.70- -0.44 1.00

July Specific humidity -049 -061--0.36 0.78

August Specific humidity -0.60 -0.79- -0.40 1.00

August Soil moisture -0.33 -046--0.19 0.95

Abbreviation: Cl confidence interval

[18, 19]. The timing of wet conditions in the year seems to
be crucial to the WNV season. Wetting early in the year
could lengthen mosquito-bird interactions and strengthen
WNV circulation. Shaman et al. [57] found an association
between summer and fall WNV prevalence in mosquitoes
and wet soil moisture early in the spring. Among sampled
Culex mosquito pools in Suffolk county, New York, WNV
prevalence was strongly linked with wet conditions in the
spring. Such early amplification of WNV in nature could
result in higher spillover rates to humans, once competent
avian hosts disperse in late summer [60-63].

Our results also indicate that drier and cooler than
normal summer patterns strongly predict an increase in
WNV transmission. During dry spells, such as droughts,
birds and other wildlife tend to gather at surviving water
pools. Culex tarsalis and Culex quinquefacitus are the
dominant vectors of WNV in west Texas. Like most
moderate-flyer mosquitoes that occupy woodlands, fields
and floodlands [21], Cx. tarsalis may follow their hosts
to converge at drying water resources [64]. At these
remnant water sites, both Cx. tarsalis and Cx. quinque-
fascitus are capable of sustaining and dispersing WNV,
because of their opportunistic feeding habits [61, 65].
Drought may also reduce predator and vector biomass
[24, 66, 67], the result of which is increased survival of
mosquito egg, larvae and pupae. With an already high
mosquito population due to the wetter-than-normal
spring, mosquito density could be high at these pools
and thus raise the mosquito-bird contact rate. Several
studies have shown that the congregation of avian hosts
and vector mosquitoes, as occurs when water resources
are limited, are linked with local zoonotic transmission
and amplification of arboviruses [22, 68—70].

Culex tarsalis, the predominant vector of WNV in west
Texas [71, 72], usually feeds on avian hosts [63, 73, 74].
However, during summer some WNV avian hosts, like
ardeids [63] and passerines [61], disperse or migrate in
search of food, reducing their proportion in the population
and their availability for blood-feeding. The decline in host
availability and peak in mosquito abundance during this
time strongly favor increases in mammal and human blood-

feeding [60—63]. To migrate or disperse, birds take cues
from their internal body conditions, which weather and food
availability influence [75-79]. In response to the growing
spring vegetation, migratory or dispersing birds seeking to
nest may arrive in early spring and depart in late summer in
search of wintering grounds, a timing that has been
proposed to be important for WNV spillover to humans
[80, 81]. Cooler and drier than normal summer conditions
might indicate declines in food resources and as a result
reduce species abundance [70, 82—85]. A reduction in food
resources may favor bird hosts aggregation at the limited
food sites, reinforcing drought-induced WNV amplification.
The range of minimum temperature during the summer
is typically within the limits for extrinsic incubation of
WNV [12] and for mosquito development [16]. Conse-
quently, the negative link seen in summer temperature
seems to suggest a mechanism of effect on WNV trans-
mission that is independent of virus and mosquito devel-
opment. We speculate that avoidance of excessively warm
temperatures by mosquitoes may contribute to these ef-
fects. Mosquito activity during cooler ambient conditions,
such as at sunrise or sunset tends to be higher compared
to hotter mid-day time periods [86]. Human behavior to
counteract hot and humid summer days could also play a
minor role in raising the risk of mosquito contact. In the
summer, agricultural or recreational activities may be car-
ried out during cooler days, or in early mornings and eve-
nings to avoid high temperatures, during which time
individuals are more likely to be exposed to mosquito bit-
ing [71], if not wearing protective gear. Therefore, cooler
summer temperatures might encourage human outdoor
activity but lead to increased human-vector contact rates.
Certain limitations in our study are noteworthy. Al-
though modeled hydrology generally captures WNV activ-
ity, Mosaic hydrology model soil moisture outputs have
only been validated on a regional scale. Validation of
the Mosaic model was performed for sites in the southern
Great Plain, which borders northwest Texas, but did
not include counties from Texas. This lack of local valid-
ation introduces uncertainty from the modeled hydrology
estimates. We also restricted our analysis to west Texas
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based on precipitation differences at the regional scale.
However, ecology at the local level may still vary. Also, dif-
ferences at the county level such as human activities (agri-
cultural irrigation and occupation), not accounted for in
our approach, may enhance mosquito population density
[87] and mosquito-human contact rates [88]. There-
fore, more work is needed to further assess the role of im-
portant WNV county-specific covariates on the observed
link between hydrology, meteorology and WNV transmis-
sion risk.

Conclusions

The findings observed here provide insight into the rela-
tionship between WNYV cases, meteorology and hydrol-
ogy in west Texas. The results support the idea that
wetter than normal spring followed by drier and cooler
than normal summer is associated with increased WNV
infection risk, corroborating several studies. More so,
our investigation has shown the above temporal pattern
to be consistent in high and low outbreak years.
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