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Abstract

Background: Dengue is one of the major health problems in Sri Lanka causing an enormous social and economic
burden to the country. An accurate early warning system can enhance the efficiency of preventive measures. The
aim of the study was to develop and validate a simple accurate forecasting model for the District of Gampaha, Sri
Lanka. Three time-series regression models were developed using monthly rainfall, rainy days, temperature,
humidity, wind speed and retrospective dengue incidences over the period January 2012 to November 2015 for
the District of Gampaha, Sri Lanka. Various lag times were analyzed to identify optimum forecasting periods
including interactions of multiple lags. The models were validated using epidemiological data from December 2015
to November 2017. Prepared models were compared based on Akaike’s information criterion, Bayesian information
criterion and residual analysis.

Results: The selected model forecasted correctly with mean absolute errors of 0.07 and 0.22, and root mean
squared errors of 0.09 and 0.28, for training and validation periods, respectively. There were no dengue epidemics
observed in the district during the training period and nine outbreaks occurred during the forecasting period. The
proposed model captured five outbreaks and correctly rejected 14 within the testing period of 24 months. The
Pierce skill score of the model was 0.49, with a receiver operating characteristic of 86% and 92% sensitivity.

Conclusions: The developed weather based forecasting model allows warnings of impending dengue outbreaks
and epidemics in advance of one month with high accuracy. Depending upon climatic factors, the previous
month’s dengue cases had a significant effect on the dengue incidences of the current month. The simple, precise
and understandable forecasting model developed could be used to manage limited public health resources
effectively for patient management, vector surveillance and intervention programmes in the district.
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Background
Dengue is the most rapidly spreading mosquito-borne
viral infection in the world causing more than 390 million
dengue infections annually of which 96 million clinically
manifest. The disease mainly appears in tropical and sub-
tropical regions of the world and approximately 3.9 billion
people are living in these dengue endemic countries [1, 2].
The causative agent of the disease is one of the four sero-
types of dengue virus (DENV) belonging to the genus Fla-
vivirus of the family Flaviviridae and these viruses are
transmitted to humans mainly via bites of female Aedes
spp. mosquitoes, predominantly by Ae. aegypti (Linnaeus),

while the subsidiary vector is Ae. albopictus (Skuse). The
disease has a wide spectrum of clinical presentations, from
undifferentiated dengue fever (DF), to dengue haemor-
rhagic fever (DHF), to life threatening dengue shock syn-
drome (DSS), creating significant health, economic and
social burdens in endemic areas. Large-scale unplanned
and uncontrolled urbanization, together with a rapid in-
crease in the human population, leads to higher transmis-
sion of the disease in endemic areas [3–6].
In Sri Lanka, dengue is the most important vector-

borne disease. The first serologically confirmed dengue
case was reported in 1962, and the largest dengue epi-
demic was reported in 2009, with 35,008 reported cases
and 346 deaths, with an incidence rate of 170 per 100,000
population [7, 8]. According to the Epidemiological Unit
of Sri Lanka, more than 30,000 cases were reported every
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year since 2012, and approximately half of these cases
were reported from the Western Province, including the
Colombo, Gampaha and Kalutara districts. The second
highest number of dengue cases was reported from the
District of Gampaha, Sri Lanka since 2010. Currently, all
four DENV serotypes are circulating in the district. An
intervention study conducted previously demonstrated
the importance of community mobilization and waste
management in controlling dengue in the District of Gam-
paha [9]. Another study demonstrated the efficacy of
space spraying and destroying larvae to control Aedes
dengue vector mosquitoes in the district, and the import-
ance of public participation [10]. Despite much effort put
into disease prevention and control measures, more than
5000 dengue cases on average were reported annually in
the district, and more than 31,000 cases were reported in
the year 2017 alone. In the absence of an effective drug or
vaccine specific to the dengue virus, controlling of vectors
at the adult and immature stages through eliminating
breeding sources is the best method to control the trans-
mission of dengue in the district.
Recently, many health authorities directed their attention

toward an early warning system to reduce the incidence
rates of dengue and to allocate scarce public health re-
sources for effective intervention programmes. Predictive
risk maps and mathematical models provide an alternative
way of assessing and quantifying the distribution of risk fac-
tors and assessing interventions to predict impending den-
gue epidemics. These maps are predominantly beneficial in
settings which lack sufficient data on disease surveillance
[11]. Geographical information system (GIS)-based ap-
proaches and spatial statistical analysis can be deployed for
the development of predictive risk maps. Further, climatic
variables, which can affect life-cycles, survival rates and bit-
ing rates of mosquitoes, as well as the incubation period of
DENV, are extensively studied as potential predictors and
early warning tools of dengue distribution [12–15]. Previous
studies have indicated that rainfall, temperature, and hu-
midity play a greater role in dengue transmission, but a
more precise weather-based forecasting tool will be required
to assist national health authorities to perform effective vec-
tor control programmes and disease management [16–19].

Methods
Risk maps and predictive models are not available yet
for the District of Gampaha to assess the disease
transmission and there is an urgent requirement for
an early warning system to predict imminent dengue
epidemics in the district. Therefore, this study aimed
to analyze spatial and seasonal distribution of dengue
incidence, and to propose a simple and precise den-
gue early warning system based on local meteoro-
logical factors in the district, using the time series
regression method. The outcome of the study will

probably improve the effectiveness of dengue surveil-
lance programmes, ultimately controlling impending
dengue epidemics in the district.

Study area
The District of Gampaha is located adjacent to the Dis-
trict of Colombo and expands over 1387 km2. It is the
second most populated district in Sri Lanka. The
elevation of the district ranges from sea level to 450 m.
The district comprises of fifteen Medical Officer of
Health (MOH) areas, sectioned into 106 Public Health
Inspector (PHI) areas, 1177 Grama Niladhari (GN)
divisions with 1784 villages. All MOH areas in the district
were considered for the study. The estimated human
population of the district in 2008 is around 2.2 million
with a 1.02% annual population growth rate. However,
the population density varies in different MOH areas,
depending on the presence of major cities and industrial
sites in the district [9, 20].

Data collection
The reported number of dengue incidences was col-
lected on monthly basis from the Regional Epidemiology
Unit in the District of Gampaha for the period 2005 to
2014 in all fifteen MOH areas in the district. The total
number of dengue cases was plotted yearly to identify
patterns in the incidence distributions. Then, the average
number of dengue cases was georeferenced in the dis-
trict as claimed by each MOH area. Figure 1 shows the
incidence rate per 100,000 population and the average
number of dengue case reported from 2005 to 2014 in
each MOH area in the District of Gampaha.
Weather records on rainfall, number of rainy days,

minimum and maximum temperature, minimum and
maximum Relative Humidity (RH), and wind speed
were obtained from January 2012 to May 2017 from the
Department of Meteorology, Colombo, Sri Lanka
(where the climatic data are recorded centrally) on a
monthly basis. These meteorological variables were col-
lected by the weather stations at the Bandaranayake
International Airport, Katunayake. In addition to that,
rainfall and the number of rainy days were also col-
lected from the Pasyala weather station. Rainfall data
were highly correlated (rrainfall = 0.77, rrainy days = 0.89)
between the two weather stations, and the average
values were taken for the analysis. Both weather sta-
tions are located in the middle of the district and they
represent the study area well.

Risk map construction
A risk map was developed based on the population
density and average number of dengue incidences re-
ported from 2005 to 2014 in each MOH area in the dis-
trict, using ArcGIS software (v.10.2.1).
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Model construction
Multiple time series regression approaches were used to
develop a dengue forecasting model. The data collected
from January 2012 to November 2015 were used for the
model construction and the observed data from Decem-
ber 2015 to May 2017 were used for validation of the
models. Previous studies have mentioned relationships be-
tween monthly meteorological data and dengue incidence,
from zero to three months lag periods considering the

influence on mosquito survival and vertical disease trans-
mission [21–23]. Therefore, several time series approaches
were tried based on climatic variables with a lag of zero to
three months and only three time series regression models
are listed here. Time series regression models were fitted
using R statistical software. The best model was selected
based on lowest Akaike’s information criterion (AIC),
Bayesian information criterion (BIC), R-squared (R2), root
mean square errors (RMSE), mean absolute error (MAE),

Fig. 1 Incidence rate (cases per 100,000 population) and averaged number of dengue cases reported in District of Gampaha, Sri Lanka. Green
color indicates the MOH areas with low dengue incidences rates, yellow indicates those with medium incidences rates, and red those with high
incidences rates, from 2005 to 2014. The red colored dots indicate the average number of dengue cases reported in the each MOH area in
this period
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Pierce skill score (PSS) and mean absolute percentage
error (MAPE) of prediction [24].

Model 1
Here, a multiple time series regression model was
fitted using log10 (cases) as the response variable and
climatic variables with only the highest correlated
lagged terms as the explanatory variables. Significant
lagged terms of the climatic variables were found
using the Pearson’s correlation test. Table 1 gives a
summary of the correlation analysis.
From Table 1, it can be seen that lag 2 of rainfall, lag 2 of

rainy days, lag 3 of minimum temperature, lag 0 and 1 of
maximum temperature, lag 1 and 2 of minimum RH, lag 1
and 2 of dengue cases, and lag 1 and 2 of squared dengue
cases were significant at the 5% level. A multiple regression
model was constructed using the stepwise method taking
log10(cases)t as the response variable and the highest corre-
lated lagged variables listed in Table 1 as the explanatory
variables. According to the stepwise method, the number of
rainy days lagged two months (Rainy dayst−2) and the
squared number of dengue cases lagged one month (casest
−1

2) showed a significant contribution to the distribution of
dengue cases in the district. Therefore, our regression
equation was:

yt ¼ β0 þ β1x1 Rainy daysð Þt−2
þ β2x2 casesð Þt−1

� �2 þ εt ð1Þ

where yt is the dengue cases at time t, β0 is the baseline
number of dengue cases derived from the multivariate
model, β1 and β2are the regression coefficients for the
rainy days lagged two months and the squared dengue
cases lagged one month, respectively, and εt is the ran-
dom error term of the model.

Model 2
The dengue cases could be significantly associated with
multiple lagged terms of retrospective meteorological
variables and dengue incidences. The usual practice is to
consider only the most significant lagged term and it
may not be possible to capture the true variation of the
response variable. Therefore, all climatic variables were
considered up to three lags before proceeding to the
model selection. Since the spread of recorded values was
high in most variables, the explanatory variables were
converted to log10 terms. Significant variables were iden-
tified using the stepwise regression method. In the se-
lected model, significant climatic variables were rainfall,
rainy days, and minimum temperature, all lagged 3
months, minimum RH lagged 1 and 2 months, and
squared dengue cases lagged 1 month. Therefore, our re-
gression equation for the model was:

yt ¼ β0 þ β1x1 Rainfallð Þt−3
þ β2x2 Rainy daysð Þt−3
þ β3x3 Minimum temperatureð Þt−3
þ β4x4 Minimum RHð Þt−2
þ β5x5 Minimum RHð Þt−3
þ β6x6 casesð Þt−1

� �2 þ εt ð2Þ

where yt is the dengue cases, β0 is the baseline number
of dengue cases derived from the multivariate model,
and β1to β6 are the regression coefficients for each re-
spective variable. εt is the random error term in the re-
gression model.

Model 3
The third time series regression model was constructed
using standardized meteorological data. Mean and standard
deviation were calculated for each climatic variable from
January 2012 to November 2015 and the climatic variables
standardized. Then, stepwise regression model selection was
performed with logarithm transformed dengue incidences
versus retrospective standardized meteorological variables
and logarithm transformed dengue incidences to identify
significant variables. In the model, significant variables were
rainfall and rainy days lagged 3 months, minimum RH
lagged 2 months, and squared dengue cases lagged 1 month.
Therefore, our regression equation for the model was:

yt ¼ β0 þ β1x1 Rainfallð Þt−3
þ β2x2 Rainy daysð Þt−3
þ β3x3 Minimum RHð Þt−2
þ β4x4 casesð Þt−1

� �2 þ εt ð3Þ

where yt is the dengue cases, β0 is the baseline number
of dengue cases derived from the multivariate model,
and β1to β4 are the regression coefficients for each re-
spective variable. εt is the error.

Table 1 Pearson’s correlations between log10-transformed dengue
cases (2012–2015) and weather variables in the District of Gampaha

Meteorological variable Lag 0 Lag 1 Lag 2 Lag 3

Rainfall -0.08 0.148 0.353* 0.094

Rainy days -0.017 0.249 0.426* 0.065

Minimum temperature 0.066 0.25 0.291 0.295*

Maximum temperature -0.385* -0.398* -0.238 0.058

Minimum RH 0.186 0.395* 0.420* 0.092

Maximum RH -0.026 0.14 0.276 -0.019

Wind speed 0.159 -0.011 -0.234 -0.095

Dengue cases – 0.716* 0.426* 0.222

(Dengue cases)2 – 0.720* 0.432* 0.226

*Significantly correlated lagged variables with dengue incidences during the
study period. A 5% significance level was used to identify
significant correlations
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Model validation
The augmented Dickey-Fuller (ADF) test was performed
to identify the stationarity of and the presence of unit
root of the residuals of the time series model. Autocor-
relation function (ACF) and partial autocorrelation func-
tion (PACF) plots were analyzed for the residuals for
each model. The good fit of the model was further ex-
amined by plotting the fitted values with reported den-
gue cases in the district.

Forecasting of dengue case from the developed model
The developed models were used to forecast the dengue
cases reported in the District of Gampaha from December
2015 to May 2017. Root mean squared error (RMSE), mean
absolute error (MAE), mean absolute percentage difference
(MAPE), and the Pierce skill score (PSS) (Additional file 1:
Table S1) were calculated for the forecasts from each model
and the forecasted values were plotted against reported
dengue cases in the district during the forecasting period
[25]. Sensitivity tests with receiver operating characteristics
(ROC) were also performed for forecasting period to iden-
tify the sufficiency of the developed model [26–29].

Results
Overall dengue incidences
There were 56,834 dengue incidences reported to the Epi-
demiology Unit, Sri Lanka, from all MOH areas in the Dis-
trict of Gampaha from January, 2001 to December, 2016.
Figure 1 illustrates the population density and average
number of dengue incidences in each MOH area reported
from 2005 to 2014 in the district. The highest population
density was observed from the Kelaniya MOH area along
with more than 300 dengue incidences annually. Further-
more, high population densities were observed from
Negombo, Wattala, Biyagama, and Ragama MOH areas. As
shown in Fig. 2, more than half of the dengue incidences
were reported recently during the period 2012–2016 even
though there was a greater fluctuation. Also, the number of
dengue incidences has increased significantly after 2012

compared to the period 2001–2011 (95% CI, df = 14, P = 0.
001) and the study was, therefore, based on the dengue in-
cidences during the period 2012–2016.
During the study period, 34,652 dengue incidences were

recorded in the district with most incidences (31,637) in
2017. Figure 3 illustrates the monthly distribution of den-
gue incidences from January 2012 to May 2017 in the dis-
trict. The distribution of dengue incidences was stationary
according to the ADF test (P = 0.99).

Forecasting dengue cases from December 2015 to
November 2017
Figure 4 illustrates the distribution of dengue cases from
each studied model with fitted cases and forecast dengue
cases. The results of each model were summarized in Table
2. No significant lines were observed in the ACF and PACF
plots in all three models and therefore, it was concluded
that the residuals were distributed normally (Fig. 5).
According to Table 3, the lowest AIC and BIC and the

highest R2 were achieved by Model 2. Therefore Model 2
was selected as the better model for the forecasting of
dengue incidences in the District of Gampaha. According to
Halide & Ridd [29], a moderate epidemic is defined when
the number of dengue cases in a given month exceeds the
75th percentile. When the number of dengue cases exceeds
the 90th percentile, it is defined as a severe epidemic. Based
on the Gampaha district monthly data, the 75th and 90th
percentiles were 977 and 1588, respectively. Therefore, in
line with frequently used guidelines, 1200 was considered as
the cutoff value for an outbreak [30]. The PSS was
computed taking 1200 dengue cases as the cutoff for an
epidemic. The PSS for the forecasts from Model 2 was 0.49,
which indicates a moderate prediction ability of the model
[31]. Parameter estimates of Model 2 are given in Table 3.
A regression equation was employed with the

coefficients in Table 2 for the forecasting of dengue
incidences with the developed model. The developed
model was:

Fig. 2 Annual number of dengue incidences from January 2001 to
November 2017 for the District of Gampaha

Fig. 3 Monthly reported dengue incidences from January 2012 to
November 2017 for the District of Gampaha
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ŷ¼ −2:9881
þ 0:35815x1 Rainfallð Þt−3−0:66158x2 Rainy daysð Þt−3
þ 3:3334x3 Minimum temperatureð Þt−3
þ3:2757x4 Minimum RHð Þt−2−3:3490x5 Minimum RHð Þt−3

þ0:14715x6 casesð Þt−1
� �2

ð4Þ

where ŷ is the number of predicted dengue case. The
forecast monthly dengue cases were plotted against the
real-time reported cases in the district (Fig. 4).
The distribution of residuals of the developed models

was also analyzed (Fig. 6). Significant seasonality and trend
could not be observed in the distribution of dengue cases.
A realistically straight line can be observed in the residual
normal probability plot, and the residual sequence plot il-
lustrates a consistent distribution of errors around zero
within ± 1. Furthermore, a symmetrical pattern can be ob-
served in the residual histogram (Additional file 2: Figure
S1). These observations indicate a normal distribution of
residuals. There were no dengue epidemics observed in the
district during the training period of the models, and nine
outbreaks occurred during the forecasting period. The pro-
posed model captured five outbreaks and rejected 14 of
them correctly within the testing period of 24 months. The

Pierce skill score of the model was 0.49, with a receiver op-
erating characteristic of 86%, and 92% sensitivity.

Discussion
Dengue incidences have been reported from every MOH
area in the district. Adjacent MOH areas demonstrates simi-
lar disease transmission patterns analogous to their spatial
and climatic similarity. Higher dengue incidence rates can
be detected from highly congested MOH areas with the ex-
ception of the Ragama MOH area, which urbanized recently
and has well-equipped health care facilities. The district ex-
perienced ample rainfall, fewer variations in temperature,
and high humidity throughout the year, as it is located in
the wet zone of a tropical country, which enhances the sur-
vival rates of Aedes mosquitoes. Therefore, meteorological
variables were incorporated into the model as predictive var-
iables. During the analysis of correlations between dengue
incidences and climatic variables, monthly rainfall, number
of rainy days, minimum and maximum RH, and minimum
temperature show positive correlations while maximum
temperature and wind speed show negative correlations.
The forecasting model developed in this study was based

on retrospective monthly rainfall, rainy days, minimum
temperature, minimum RH and dengue incidences. Even
though monthly rainfall and rainy days are positively

Fig. 4 Fitted and forecast dengue cases from each developed model. Three models were developed and the fitted and forecast values from each
model were plotted against actual dengue incidences. Actual incidences are shown in black, fitted values in each model are illustrated in
different colored lines, and forecasts are shown in dotted line with respective color for each model

Table 2 Results of the three models developed

Model AIC BIC Adj. R2

(training)
Adj. R2

(testing)
For fitted (training) values For forecasted (testing) values

MAE RMSE MAPE MAE RMSE MAPE

Model 1 -33.59 -30.02 0.5611 0.4345 131.65 203.34 26.58 635.84 963.52 39.37

Model 2 -65.31 -61.74 0.7635 0.6880 95.65 146.83 18.81 532.39 715.59 43.76

Model 3 -50.01 -46.45 0.6824 0.7409 113.10 179.79 21.37 492.68 652.13 42.66

Abbreviations: AIC Akaike’s information criterion, BIC Bayesian information criterion, Adj. R2 adjusted R-square, MAE mean absolute error, RMSE root mean square
error, MAPE mean absolute percentage error
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associated with the dengue cases, excessive and continuous
rainfall may rinse out dengue vector mosquito breeding
places and may delay the buildup of mosquito population
until later in the rainy season, leading to a decrease in den-
gue incidences. A higher number of rainy days increased
the accessible breeding places for vector mosquitoes leading
to greater transmission of the disease [22, 32, 33].

Furthermore, a three-month lag time can increase the den-
gue vector mosquito populations as it allows sufficient time
to complete the mosquito life-cycle, and acquire and prolif-
erate the DENV in vector mosquitoes. These higher lag pe-
riods can partly be explained by survival of Aedes mosquito
eggs in dry containers for several months and long egg
hatching periods. In Pearson’s correlation analysis, a signifi-
cant negative correlation was observed between dengue in-
cidences with one month lagged maximum temperature.
This also agreed with previous studies in Sri Lanka and
Taiwan [8, 34]. The average maximum temperature in the
district during the study period was 31.4 °C with a max-
imum of 34.3 °C. The negative correlation may be due to al-
teration of mosquito development, blood-feeding behavior,
and availability of breeding containers [34]. Furthermore, a
non-significant positive correlation was observed between
dengue cases and minimum temperature. During the study
period, the average minimum temperature was 24.5 °C
which is favorable for mosquito survival and reproduction.
The district experienced only minor fluctuations in

Fig. 5 ACF and PACF of residuals of the developed forecasting models. ACF and PACF plots are shown on the left and right, respectively. There
are no significant lags observed in ACF and PACF plots in the all three models

Table 3 Selected variables in the developed model, coefficients,
standard errors and P-values

Variable Coefficient Standard error P-value*

Intercept -2.9881 2.11106 0.165298

Rainfall t-3 0.35815 0.10600 0.001728

Rainy days t-3 -0.66158 0.17185 0.000453

Minimum temperature t-3 3.3334 1.44787 0.027048

Minimum RH t-2 3.2757 1.05164 0.003546

Minimum RH t-3 -3.3490 1.24795 0.010828

(Dengue cases t-1)
2 0.14715 0.01558 2.13E-11

*At 5% significance level
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temperature throughout the year. Additionally, a previous
study in Sri Lanka reported that there was no correlation
between small scale immediate temperature changes and
impending dengue outbreaks [35]. However, the minimum
temperature was significant at three months lag time in the
selected model. This suggests the importance of carrying
out a time series regression analysis considering serial corre-
lations rather than shortsighted individual correlations ob-
tained by a Pearson’s correlation analysis. Relative humidity
is often associated with temperature and higher relative hu-
midity increases mosquito population while lower relative
humidity (e.g. 60%), will decrease the oviposition [36]. Both
minimum and maximum relative humidity are higher in
the district due to its close proximity to the Indian Ocean.
Therefore, relative humidity is positively correlated with the
transmission of dengue in the district as it increases the sur-
vival and oviposition rates in dengue vector mosquitoes
[37]. Gampaha district frequently experiences light or gentle
breezes, with wind speed two or three on the Beaufort wind
scale. Wind speed is negatively correlated with dengue
transmission as wind restricts flying activities of dengue vec-
tor mosquitoes, which affects human-mosquito contact and
oviposition [38].
The current study has a few limitations. The District

of Gampaha is located next to the District of Colombo,
the capital of Sri Lanka, where the highest number of
dengue cases is reported every year. Previous studies
mentioned that during the daily commute of residents in
the District of Gampaha to the District of Colombo for
work and other commercial purposes, they can be in-
fected by dengue. However, these patients are reported
under the District of Gampaha [20]. There is no proper
mechanism to track these commute related infections.
Therefore, further studies are needed to focus on daily
and monthly commutes of the district.

The district of Gampaha is located in the wet zone
of the country with annual rainfall of 1400–2500
mm. The district experiences virtually the same pre-
cipitation throughout the year from the south-west
and north-east monsoons, with a constant average
temperature of 27.7 °C. The eastern part of the dis-
trict is a hilly area with an elevation of about 150 m,
while to the west, the elevation decreases steadily
with lagoons, marsh lands to coastal areas. The dis-
trict consists of five agro-ecological regions, wet
zone low country WL1, WL2, WL3, WL4 and Inter-
mediate zone low country IL1 [39]. The rainfall pat-
tern differs in those regions, with highest expectancy
of precipitation in WL1 and the lowest in IL1. Be-
cause of this, even though the number of dengue
cases was reported by MOH areas, separate models
need to be developed with significant variables par-
ticular to each MOH area to forecast impending
dengue outbreaks in such areas.
Previous studies mentioned the importance of den-

gue incidences lagged one month to forecast current
month dengue incidences [40–42]. Our model also il-
lustrated that, depending upon climatic factors, the
current month’s dengue cases were significantly af-
fected by the previous month’s dengue cases in the
district. Furthermore, there was a quadratic influence
of the previous month’s dengue incidences on the
current month’s dengue incidences in the District of
Gampaha. This could also be a limitation of the se-
lected model (Model 2). A further investigation was
conducted to identify the effects of the previous
month’s dengue incidences alone in forecasting the
current month’s dengue incidences. In this model, the
R2 for the training period was only 40.8% and the
AIC and BIC values were higher compared to Model

Fig. 6 Residual normality plots of the developed model (Model 2). Approximately linear distributions of residuals are visualized in all plots. Errors
were distributed around zero within ± 1 in the residual vs fitted plot
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2. Also, the forecast skill measured using PSS was 0.
5. The model considering only the significant climatic
variables (without lagged cases) resulted in an R2 of
19.3% for the training data. Additionally, higher AIC
and BIC values suggested a lack of fit for the data
(Additional file 1: Table S2). Therefore, it was
confirmed that the selected model with lagged cases
and significant explanatory variables was the better
model for this study.
In this study, the effects of climatic factors and

retrospective dengue incidences were modelled to
forecast impending dengue outbreaks. However, den-
gue is a result of complex interactions of vectors,
pathogens and humans. This includes introduction of
new dengue viral genotypes, adaptations of dengue
vector mosquitoes, commutes of population, herd im-
munity of population, urbanization, vegetation cover,
land use patterns, efficiency of preventive and aware-
ness programmes, socioeconomic factors and the atti-
tude of people. The contribution of these factors to
the magnitude of the dengue spread in the district
still needs to be addressed. Moreover, there is insuffi-
cient time series data available to analyze the effects
of these factors. Therefore, further investigations need
to be conducted regarding these factors in a time
series manner in the District of Gampaha.

Conclusions
The model provides a one month time period for local
vector surveillance and control agents, sufficient time
to prepare for an impending dengue epidemic in the
district in many ways. These early warning systems in-
crease the efforts of dengue control during outbreaks
reducing the impact of outbreak, disease transmission,
healthcare burdens and possible mortalities. These sim-
ple, precise, and low-cost models can be utilized by end
users, with more confidence in the early warning tool
and minimum decision making time, allowing vector
control units to utilize scarce public health resources
for effective interventions. The higher precision of the
model minimizes the use of health units on false den-
gue alarms, avoiding costly and unnecessary vector
control operations. Dengue distribution patterns de-
pend on many factors, such as ecological, environmen-
tal, epidemiological and social factors, and when a new
vector control strategy and policies are implemented,
these distribution patterns and epidemic cycles change
over time. Therefore, appropriate modifications need to
be made with re-calibration of the model according to
the changes of risk factors and related fields, for long-
term forecasting in future. Further studies need to be
focused on the long-term sustainability of forecast pre-
cision and incorporation of the dengue early warning
tool into the national dengue control system.

Additional files

Additional file 1: Table S1. Contingency table used for to calculate the
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Additional file 2: Figure S1. Histogram of residuals of Model 2. The
approximate bell shape of the histogram indicates the normal
distribution of residuals of the model. (PDF 4 kb)
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