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Abstract

Rickettsioses are among the oldest known infectious diseases. In spite of this, and of the extensive research carried out,
many aspects of the biology and epidemiology of tick-borne rickettsiae are far from being completely understood. Their
association with arthropod vectors, the importance of vertebrates as reservoirs, the rarity of clinical signs in animals, or the
interactions of pathogenic species with rickettsial endosymbionts and with the host intracellular environment, are only
some examples. Moreover, new rickettsiae are continuously being discovered. In this review, we focus on the ‘neglected’
aspects of tick-borne rickettsioses and on the gaps in knowledge, which could help to explain why these infections are
still emerging and re-emerging threats worldwide.
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Background
Rickettsioses, infections caused by bacteria from the
family Rickettsiaceae, are among the oldest known infec-
tious diseases and are mainly transmitted by arthropod
vectors [1]. The most clinically severe tick-borne rickett-
siosis [2], the Rocky Mountain spotted fever, was firstly
described in 1899, and ten years later Ricketts showed
that the Rocky Mountain wood tick, Dermacentor ander-
soni, was vector of the causative agent of the disease [3, 4].
For approximately nine decades, Rickettsia rickettsii had
been the only tick-borne rickettsia associated with human
disease in the New World and several rickettsiae from this
region were considered non-pathogenic. Similar patterns,
with one known pathogenic rickettsial species and various
species of unknown pathogenicity, had been observed in
Europe and Africa (Rickettsia conorii conorii), Asia (Rick-
ettsia sibirica) and Australia (Rickettsia australis) [2, 5].
In the past 30 years, with advent of molecular tech-

niques, the range of known species within this group of
bacteria raised significantly. Numerous rickettsial species
continue to be described in a wide range of invertebrates
[6–8], and generate new questions on their biology, ecol-
ogy, epidemiology, geographical distribution and poten-
tial pathogenicity.

In this paper, we revised the neglected aspects of the
biology of tick-transmitted Rickettsia spp., their relation-
ship with tick vectors and vertebrate hosts, and the chal-
lenges of rickettsial research in a changing environment.

Natural foci of rickettsiae and tick vectors
The genus Rickettsia comprises intracellular endosymbi-
onts with remarkably adaptive potential. It is approxi-
mately 150 million years old, and splits into two main
clades, one primarily infecting arthropods, and the second
infecting a variety of other eukaryotes, such as protists and
leeches [7]. Around 24% of terrestrial arthropod species are
thought to be infected with Rickettsia endosymbionts [8].
The best-known members of this bacterial genus are hu-

man pathogens associated with blood-feeding arthropods.
Humans are accidental hosts, except for Rickettsia prowa-
zekii, for which they are reservoir [9]. Reconstructed phyl-
ogeny of the genus Rickettsia, based on whole genome
sequence data, showed that hard ticks (Ixodidae) are
found across phylogeny, which correlates with the fact
that they are ancestral arthropod hosts for rickettsiae [10].
Most tick-borne rickettsiae belong to the spotted fever
group (SFG). They are maintained in nature by transsta-
dial and transovarial transmission in ticks [11], so it is
generally stated that ticks act both as vector and as reser-
voir of most SFG species [12]. Rickettsia-free ticks may ac-
quire the bacteria by feeding on rickettsemic host, co-
feeding or sexual transmission [13–15].
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Looking at the associations with tick genera [1, 2], it is
evident that the level of host specificity varies among
rickettsial species. Some of them seem to be strictly
linked with one tick vector, such as R. conorii with Rhi-
picephalus sanguineus (s.l.) ticks (with the exception of
R. conorii caspia transmitted by Rh. pumilio in the Cas-
pian Sea region), and Rickettsia sp. 364D with Derma-
centor occidentalis [2]. Other rickettsiae are related to
tick species belonging to the same genus, such as Rick-
ettsia slovaca, which infects the two Dermacentor spe-
cies present in Europe, D. marginatus and D. reticulatus
[11, 16]. Finally, R. rickettsii is an example of a Rickettsia
associated with a broad spectrum of tick species belong-
ing to different genera [2].
Most Rickettsia species are transmitted by hard ticks,

but rickettsiae in soft ticks (Argasidae) are continuously
being identified (Table 1). Even though there are no re-
ports of human cases due to soft-ticks bites so far, the
ability of argasid ticks to transmit rickettsiae to verte-
brates and the possible implications to human and
animal health are worth further study. In fact, among
the identified rickettsiae, some are pathogenic (i.e. R.
felis). Moreover, among the soft tick species infected
by rickettsiae, some commonly feed on humans, such
as Carios capensis, Ornithodoros erraticus and O.
moubata; in particular, the latter two tick species are

already recognized vectors of tick-borne relapsing
fever borreliae to humans [17].
Rickettsiae can have deleterious effects on their inver-

tebrate hosts; for example, they have been shown to de-
termine parthenogenesis in Hymenoptera, male killing
in Coleoptera or larger body size in leeches (Hirudinida)
[6, 18]. For ixodid ticks, negative effects can occur on
their viability and survival, on the oviposition and per-
centage of successful transovarial transmission within
each arthropod generation. These effects have been ob-
served in ticks infected in the laboratory with different
rickettsiae [11, 19–22], and are more evident when
pathogenic species [2] infect ticks (e.g. R. rickettsii and
R. conorii), compared to less (e.g. Rickettsia sp. strain At-
lantic rainforest) or non-pathogenic species (e.g. R. mon-
tanensis, R. bellii and R. rhipicephalii). Interestingly,
external factors, such as temperature, can influence
these phenomena. For instance, Rh. sanguineus (s.l.) can
maintain R. conorii conorii for several generations, but
naturally infected specimens showed higher mortality,
compared to uninfected ticks, when exposed to low tem-
peratures (4 °C), so that winter colds may explain the
low prevalence of R. conorii-positive ticks in nature [23].
Conversely, D. andersoni ticks survived better to experi-
mental R. rickettsii infection when incubated at 4 °C
[19]. The loss of performance in ticks induced by

Table 1 Rickettsia species associated with soft ticks

Rickettsia speciesa Methodology (detected/isolated) Tick species Animal or site association Geographical origin Reference

R. bellii Detected Carios capensis Seabirds Western Indian Ocean Islands [91]

R. felis Detected Carios capensis Brown pelican nests USA [92]

R. hoogstraalii Detected Argas persicus Human dwellings, trees Ethiopia [93]

Detected Carios capensis Seabirds Japan [94]

Isolated Carios capensis ns USA [95]

Detected Carios capensis Seabirds Western Indian Ocean Islands [91]

Detected Carios sawaii Seabirds Japan [94]

R. lusitaniae Isolated Ornithodoros erraticus Pigs/pigpens Portugal [96]

Detected Ornithodoros yumatensis Bat caves Mexico [97]

R. nicoyana Isolated Ornithodoros knoxjonesi Balantiopteryx plicata Costa Rica [98]

R. wissemanii Detected Ornithodoros hasei Bats French Guiana [99]

R. argasii Isolated Argas dewae Bats boxes Australia [2]

Rickettsia spp. Isolated Argas persicus ns Armenia [100]

Detected Argas vespertilionis Bat-infested building France [101]

Detected Carios capensis Yellow-legged gull nests Algeria [102]

Detected Carios kelleyi Bat-infested building USA [103]

Detected Ornithodoros erraticus Rodent burrows Algeria [102]

Detected Ornithodoros moubata Human dwellings Tanzania [104]

Detected Ornithodoros rupestris Rodent burrows Algeria [102]
aIncludes Rickettsia-like species
Abbreviation: ns, not specified
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rickettsial infections, and interactions with environmen-
tal factors, are still poorly understood.
Recent studies have also addressed the positive influ-

ence of rickettsial endosymbionts on tick hosts. For ex-
ample, metabolic reconstructions of rickettsial genomes
in Ixodes scapularis and I. pacificus ticks showed that all
genes required for folic acid biosynthesis are present in
rickettsial genomes [24]. Later, it was proven that Rick-
ettsia species phylotype GO21 of I. pacificus produces
an enzyme involved in the vitamin B9 biosynthesis,
which indicates nutritional interactions between this
endosymbiont and its host [25].
Other studies revealed that rickettsial endosymbionts

have negative effects on pathogenic rickettsiae within
the tick vector and preclude their secondary infection,
through a rickettsial interference in ovarian tissue
colonization, or transovarial transmission [19, 26, 27].
For instance, this interference was observed between R.
peacockii and R. rickettsii [28], R. rhipicephali and R.
montana [26] and, more recently, between rickettsial
species in different families, i.e. between R. bellii and A.
marginale in D. andersoni ticks [29]. Therefore, Rickett-
sia endosymbionts are thought to protect ticks against
tick-borne pathogens colonization, and to condition
their abundance and diversity [30]. However, positive in-
teractions with pathogens can also occur, as was shown
between Rickettsia spp. and Borrelia lusitaniae in lizards’
ticks [31]. The simultaneous occurrence of multiple
pathogens in ticks is a topic of concern, since their con-
current transmission to vertebrate hosts can have severe
health consequences for patients [32].
The study of the interactions of endosymbionts with

ticks and with pathogens within ticks, and among differ-
ent pathogens, is still on its infancy but has a promising
future. Moreover, it has the very fascinating perspective
of using tick microbiome manipulation to limit the
transmission and maintenance of pathogens in ticks,
thus decreasing their vectorial competence [29, 30].
However, the unavailability of a suitable axenic medium
for rickettsiae culture hampers many conventional gen-
etic approaches. Recent identification of 51 host metabo-
lites required by Rickettsia, which offered information
about host-dependent metabolism, may help dissociating
rickettsiae from eukaryotic cells [33].

Rickettsia spp. infection in animals
As previously said, ticks are usually thought to be the
main reservoir of SFG rickettsiae thanks to transstadial
and transovarial transmission. However, studies have
demonstrated the occurrence of transovarial transmis-
sion in only a limited number of species [11]. Moreover,
the efficiency of vertical transmission varies according to
the rickettsial and tick species [19, 34], and transmission
may not occur in female ticks infected by sexual/co-

feeding transmission [35]. Vertebrate hosts may thus be
necessary to maintain and perpetuate some rickettsial
agents in nature [36]. However, systemic transmission of
infection from the vertebrate host to feeding ticks seems
to have a limited importance, because rickettsemia in
most vertebrates occurs at low level and/or it is transient
[37]. In fact, few studies provide evidence that animal
species are competent reservoirs of Rickettsia spp. Gen-
erally, we consider as ‘reservoir’ a host that permanently
maintains a pathogen and is able to transmit it to the
target population/vector [38]. To determine potential
reservoirs, studies identifying natural infection in hosts
(through antibody detection, isolation of the infectious
agent, or its genes from the host) may be useful, to-
gether with xenodiagnostic experiments, to show the
host susceptibility to the infection and its ability to
transmit the pathogen to the vector. In the case of Rick-
ettsia spp., natural infection has been demonstrated in a
number of vertebrate species, but the studies rarely in-
vestigated the persistence of the agent in the host. In
regards to xenodiagnostic experiments, most of them
have shown that only a small percentage of uninfected
feeding ticks were able to acquire the infection from the
rickettsemic host (Table 2).
The dog was identified as reservoir of R. conorii by

means of experimental studies. In fact, dogs infected
both by inoculation and by using infected ticks were able
to infect feeding Rh. sanguineus (s.l.) larvae and nymphs
[39]. In turn, these ticks were able to transmit the rick-
ettsiae to the next developmental stages and to naïve
dogs. Dogs maintained the ability to transmit the in-
fection to ticks for at least one month post-infection,
also when rickettsemia was not detectable by PCR.
They developed antibodies within two weeks after the
infection, which declined within three to six months,
and their persistence and titres were shown to be
dose dependent [39].
Rickettsial transmission to feeding ticks was also dem-

onstrated, in the Americas, in opossums, lagomorphs,
capybaras, small rodents (R. rickettsii) [40–44] and goats
(North American isolate of R. slovaca) [45]. In Europe,
Heylen et al. [46] showed that experimentally infected
great tits (Parus major) transmit R. helvetica to feeding
I. ricinus and facilitate co-feeding.
Co-feeding is in fact a transmission mechanism, which

may be very important in perpetuating rickettsiae in na-
ture [20, 47]. It can occur among both infected and un-
infected ticks simultaneously feeding in close proximity
on the host’s skin, and by 'extended co-feeding transmis-
sion' in a localized site, after the infected ticks have
dropped off [48]. Local skin infection may facilitate the
transmission, thanks to the tropism of SFG rickettsiae
for the endothelial cells of peripheral blood vessels [49].
As an example, natural transmission of R. conorii
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Table 2 Natural and experimental infections by tick-borne Rickettsia spp. in vertebrate host species

Rickettsia
species

Host species Type of
infection

Methodology demonstrating the infection Reference

R. rickettsii Birds (Ciconiiformes, Piciformes, Passeriformes) Natural Antibodies [41]

Capybara (Hydrochoerus hydrochaeris) Experimental Rickettsemia, infection transmitted to
Amblyomma cajennense ticks (25–30%
success)

[44]

Rodents and lagomorphs Natural Isolation [41, 105]

Experimental Rickettsemia, infection transmitted to
Dermacentor andersoni ticks

[40, 42]

Opossum (Didelphis spp.) Natural Isolation [41, 106,
107]

Experimental Rickettsemia, infection transmitted to
Amblyomma cajennense ticks (5% success)

[41, 43]

White-tailed deer (Odocoileus virginianus) Natural Antibodies [41]

Wild carnivores (fox, raccoon, skunk) Natural Antibodies [41]

Dog (Canis lupus familiaris) Experimental Antibodies [52a]

Natural Antibodies, DNA in blood [53a, 59,
60]

Horse (Equus caballus) Experimental Antibodies [108]

R. parkeri Opossum (Didelphis spp.) Experimental DNA in blood [109]

Dog (Canis lupus familiaris) Natural Antibodies, DNA in blood [110, 111]

R. conorii Lagomorphs (Oryctolagus cuniculus, Lepus granatensis) Natural Antibodies [112, 113]

Cat (Felis catus) Natural Antibodies [114]

Dog (Canis lupus familiaris) Experimental Antibodies, infection transmitted to Rh.
sanguineus ticks

[39]

Natural Antibodies, DNA in blood [54–56a,
58]

R. conorii-
like

Bats (African species) Natural DNA in blood [115]

R. helvetica Deer (Cervus nippon, Capreolus capreolus) Natural DNA in blood [116, 117]

Passerine birds (Erithacus rubecula, Parus major, Prunella
modularis)

Experimental (in
Parus major)

Infection transmitted to Ixodes ricinus ticks [46]

Natural DNA in blood [118]

Hedgehog (Erinaceus europaeus) Natural DNA in tissues [119]

Lizard (Teira dugesii, Podarcis muralis) Natural DNA in tissues [120, 121]

Small rodents (Myodes glareolus, Microtus arvalis, M. arvestis,
Apodemus flavicollis, A. sylvaticus, Mus musculus)

Natural Antibodies, DNA in tissues [117,
122–124]

Wild boar (Sus scrofa) Natural DNA in blood [117]

Dog (Canis lupus familiaris) Natural Antibodies [61]

R. massiliae Cat (Felis catus) Natural Antibodies [114]

R.
monacensis

Lizard (Teira dugesii) Natural DNA in tissues [120]

Dog (Canis lupus familiaris) Natural DNA in blood [125]

R. raoultii Dog (Canis lupus familiaris) Natural Antibodies, DNA in blood [61, 126]

R. slovaca Small rodents (Apodemus spp., Myodes glareolus) Natural DNA in tissues [50]

Experimental Antibodies [127]

Wild boar (Sus scrofa) Natural DNA in tissues [128–130]

Cattle (Bos taurus) Natural Antibodies [131]

Dog (Canis lupus familiaris) Natural Antibodies [61]

Goat (Capra hircus) Natural Antibodies [131]

Tomassone et al. Parasites & Vectors  (2018) 11:263 Page 4 of 11



israelensis was shown among Rh. sanguineus (s.l.) ticks
co-feeding on dogs. The transmission was less efficient
when co-feeding occurred on seropositive dogs [47], but
Levin et al. [49] observed that it might remain efficient
at high densities of co-feeding ticks. Therefore, high tick
aggregation levels on the same individuals can favour
Rickettsia maintenance in the tick populations. Recent
studies suggest the occurrence in nature of this non-
systemic transmission, in animals that are preferred
hosts for the immature stages of tick vectors (e.g. small
mammals, passerine birds), especially in heavily infested
individuals [46, 50]. In this sense, vertebrates act as ‘am-
plifiers’ of rickettsiae, contributing to its spread in the
ecosystem, even in the absence of a systemic infection.
However, Paddock et al. [51] recently suggested that
ticks could acquire SFG rickettsiae from ear tissues of
systemically infected hosts; in fact, they observed rickett-
sial aggregates, persisting for at least 14 days, in the ear
dermis of guinea pigs inoculated intraperitoneally with
Rickettsia sp. Black Gap. Therefore, we need further re-
search to clarify the relative importance of systemic and
non-systemic transmission mechanisms for the mainten-
ance of Rickettsia spp.
In general, clinical illness is not reported in animals in-

fected by tick-borne rickettsiae. Cases of illness have oc-
curred in dogs infected by R. rickettsii [52, 53] and R.
conorii [54–56] in endemic areas. Clinical signs were
similar to humans’, including fever, lethargy, anorexia,
depression, cutaneous petechiae and ecchymoses,
epistaxis, conjunctivitis, ocular discharge, lymph node
enlargement, diarrhoea, weight loss and dehydration.
Haematological abnormalities included anaemia,
thrombocytopenia and leucocytosis. In the case of R.
conorii, symptoms are generally mild and of short dur-
ation, so that the disease goes unnoticed [39]. In any
case, the clinical diagnosis in dogs is challenging, since
other pathogens can cause similar clinical signs, such as
Ehrlichia canis, Anaplasma platys, Babesia canis and
Hepatozoon canis [55]. Studies from distinct geograph-
ical regions showed the presence of antibodies and DNA
of other Rickettsia species in dogs’ blood (Table 2). Some
of these rickettsiae are pathogenic to humans (e.g. R.
helvetica, R. slovaca, R. parkeri and R. raoultii), but all
observed animals were asymptomatic.
Actually, the mechanisms determining the different

pathogenicity and virulence of rickettsial species are

poorly understood, even in humans [57]. Future research
on the interactions between SFG rickettsiae and the host
intracellular environment could help in understanding
why most animals do not show any clinical sign when
infected by rickettsiae that are pathogenic to humans. In
addition, histologic studies in mammals would be valu-
able, in order to characterize specific features related to
Rickettsia spp. infections (e.g. changes in tissues due to
vasculitis).
Finally, it is important to remember that animals serve

as sentinels for rickettsial circulation and are useful for
rickettsiosis surveillance in humans. For example, nat-
ural antibodies to SFG rickettsiae were detected in dogs
living in close proximity to human cases of Mediterra-
nean spotted fever [58], and Rocky Mountain spotted
fever [59, 60]. Dogs seropositive to R. helvetica, R. raoul-
tii and R. slovaca were reported in Austria [61], indicat-
ing a contact with SFG species prevalent in continental
Europe. Generally, high prevalence of rickettsial infec-
tion in ticks parasitizing dogs correlates with high levels
of SFG rickettsiae antibodies in dogs [55, 56, 62, 63].

New Rickettsiae
During the last decades, molecular techniques have
allowed researchers to genetically characterize several
bacteria within the genus Rickettsia before they have
been cultured. According to taxonomic criteria proposed
by experts, these uncultured rickettsiae can be given
Candidatus (Ca.) status and are considered potential
new species of Rickettsia [64].
In regards to Rickettsia culture, ‘temperature’ and ‘en-

richment of medium’ variables seem to be essential to
establish a pure culture. Different cell lines, media with
supplementations and culture conditions have been
tested for the in vitro growth of Rickettsia spp. [65].
Nevertheless, the isolation of these bacteria is still a
challenge that not always succeeds. Thus, several geno-
types of Rickettsia were observed in DEBONEL/TIBOLA
patients, which were different from validated Rickettsia
species involved as human pathogens [66]. One of them
is Rickettsia rioja, which has been molecularly charac-
terised and detected from human blood and biopsies,
and ticks, but to date remains uncultured [67, 68].
The number of microorganisms that fulfil criteria of

“Ca. Rickettsia” spp. continues to increase in Europe and
in other continents (Tables 3 and 4). If the analyses of

Table 2 Natural and experimental infections by tick-borne Rickettsia spp. in vertebrate host species (Continued)

Rickettsia
species

Host species Type of
infection

Methodology demonstrating the infection Reference

Experimental
(American strain)

DNA in tissues, infection transmitted to
Dermacentor variabilis ticks (< 5% success)

[45a]

Sheep (Ovis aries) Natural Antibodies [131]
aStudies reporting clinical signs in animals
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additional rickettsial genes are needed to define the
taxonomic status of a novel rickettsial organism, it must
be designated as a strain. This was, for instance, the case
of Rickettsia sp. strain Davousti. It was first detected in
Amblyomma tholloni from African elephants in 2007
[69], and further genetically characterized as “Ca. Rick-
ettsia davousti” from one Amblyomma nymph attached

to a traveller from Gabon to Spain in 2015 [70]. Table 5
details the new strains of Rickettsia.
The association of a bacterium with human disease

can be found even 65 years after its discovery, as
happened with Rickettsia parkeri [71]. Therefore, all
Rickettsia organisms (species, Ca. or strains) must be
considered as potential human pathogens.

Table 3 “Candidatus Rickettsia” spp. in Europe

“Ca. Rickettsia”
spp.

Associated arthropod or
source

Country of the first
identification

Reference Associated human
disease

Reference of associated
disease

“Ca. R.
tarasevichiae”

Ixodes persulcatus Russia [132] “Ca. R.tarasevichiae”
infection

[133]

“Ca. R. kotlanii” Ixodes spp. Hungary [134] – –

“Ca. R. barbariae” Rhipicephalus turanicus Italy [135] – –

“Ca. R. rioja” Dermacentor marginatus Spain [67] DEBONEL/TIBOLA [68]

“Ca. R. siciliensis” Rhipicephalus turanicus Italy [136] – –

“Ca. R. uralica” Ixodes trianguliceps Russia [137] – –

“Ca. R. mendelii” Ixodes ricinus Czech Republic [138] – –

Table 4 “Candidatus Rickettsia” spp. outside Europe

“Ca. Rickettsia” spp. Associated arthropod or source Country of the first
identification

Reference of the
first identification

Associated
human
disease

Reference of
associated
disease

“Ca. R. andeanae” Amblyomma maculatum, Ixodes boliviensis Perú [139] – –

“Ca. R. kellyi” Unknown arthropod (detected in a human skin
biopsy from a maculopapular lesion)

India [140] Unnamed [140]

“Ca. R. principis” Haemaphysalis japonica Russia [141] – –

“Ca. R.
tasmanensis”

Ixodes tasmani Australia [142] – –

“Ca. Rickettsia” sp.
strain Argentina

Amblyomma parvum, Amblyomma
pseudoconcolor

Argentina [143] – –

“Ca. R. cooleyi” Ixodes scapularis USA [144] – –

“Ca. R. hebeiii” Haemaphysalis longicornis China [145] – –

“Ca. R. liberiensis” Ixodes muniensis Liberia [146] – –

“Ca. R. kulagini” Rhipicephalus annulatus Kenya [147] – –

“Ca. R. angustus” Ixodes angustus Canada [148] – –

“Ca. R. kingi” Ixodes kingi Canada [149] – –

“Ca. R.
senegalensis”

Ctenocephalides felis (cat flea) Senegal [150] – –

“Ca. R. davousti” Amblyomma sp. (attached to a human) Gabon [70] – –

“Ca. R.
sepangensis”

Amblyomma varanense Malaysia [151] – –

“Ca. R. johorensis” Amblyomma helvolum, Amblyomma varanense Malaysia [151] – –

“Ca. R.
goldwasserii”

Haemaphysalis spp., Rhipicephalus spp. Palestine [152] – –

“Ca. R. gannanii” Haemaphysalis qinghaiensis China [153] – –

“Ca. R. indica” Human blood Imported from India
to Japan (traveler)

[154] Unnamed [154]

“Ca. R. moyalensis” Rhipicephalus appendiculatus Kenya [155] – –

“Ca. R. wissemanii” Ornithodoros hasei (soft tick) French Guiana [100] – –
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In a near future, exploring the bacteriome of arthro-
pods (ticks, fleas, mosquitoes and others) will mean a
step forward for the knowledge of potential new Rickett-
sia species and for the improvement of diagnosis and
treatment of vector-borne diseases [72].

Rickettsioses in a changing environment
Due to the close relationship between ticks and vectors,
changes in the distribution of arthropods are very im-
portant for the epidemiology of rickettsiosis. Climate,
density of vertebrate hosts, landscape features and an-
thropogenic factors are the drivers of such changes [73].
While these may affect in a relative way rickettsial agents
with widespread distribution of vectors (e.g. the flea-
transmitted R. typhi and R. felis, or R. prowazekii, trans-
mitted by the body louse), they can have greater import-
ance for tick-borne rickettsioses, most of which are
restricted to specific endemic areas. For instance, D. reti-
culatus colonization of new areas in Eastern Europe was
associated to cases of DEBONEL/TIBOLA in the human
population [74]. In the case of I. ricinus, its geographical
expansion [73] has not been accompanied so far with an
increase of human cases of associated rickettsioses (caused
by R. helvetica and R. monacensis). This could be due to a
low competence of I. ricinus as a vector of these Rickettsia
species and/or to their low pathogenicity [75].
As regards climate changes, it is known that, for

example, warming has an impact on the activity and ag-
gressiveness of the brown dog tick Rh. sanguineus (s.l.),
increasing human attacks and the possibility of transmis-
sion of severe rickettsioses [76].
The availability of vertebrate animals that are common

tick hosts may favour the maintenance and transmission
of Rickettsia spp. The introduction of wild animals in
urban areas may facilitate interchange of arthropods
with domestic animals, increasing human exposure to

Rickettsia spp. [77]. Vice versa, pathogens infecting do-
mestic animals may threaten the health of wild animals
when they share the same habitat (e.g. livestock and An-
dean tapirs in South America) [78]. Moreover, birds are
possible dispersers of Rickettsia spp. and other tick-
borne pathogens [79, 80]. It is known that migratory
birds respond to environmental changes and are able to
adjust their timing of migration according to climate.
This can affect the life-cycle of ticks feeding on them
and, consequently, the potential transmission pattern of
tick-borne pathogens.
Social changes (e.g. demographics, availability of public

health care infrastructures, human behaviour, trade and
travel, economic development, war and famine) may also
have an impact on vector dynamics and alter pathogen
adaptation or evolution. Regarding human behaviour,
outdoor activities have increased in the last decades
by leisure or due to the economic crisis (e.g. picking
mushrooms for trade), accompanied by the risk of be-
ing bitten by ticks [81].
International trade and travel are likely routes of intro-

duction of rickettsiosis. In fact, travel-acquired rickett-
sioses are frequently considered imported diseases.
Several travel-associated infections refer to tourists in-
fected by R. africae in sub-Saharan Africa, who develop
African tick-bite fever (ATBF) [82]. It has been sus-
pected that tick-borne infections can also affect individ-
uals who have recently been visited by travellers, as was
the case of the first DEBONEL/TIBOLA related to a D.
marginatus bite in a patient without travel history docu-
mented in United Kingdom, where this tick species had
not been notified yet [83].

Conclusions
We live in a changing world and we will probably have
to face threats to health more and more frequently. The

Table 5 Strains of Rickettsia spp. (without Candidatus status)

Rickettsia sp. strain Associated arthropod or
source

Country of the first
identification

Reference of the first
identification

Associated human
disease

Reference of
associated disease

Rickettsia sp. strain
Uilenbergi

Amblyomma tholloni Central African Republic [69] – –

Rickettsia sp. Atlantic
rain forest

Amblyomma ovale
Rhipicephalus sanguineus

Brazil [156] Unnamed [157]

Rickettsia sp. strain
Pampulha

Amblyomma dubitatum Brazil [158] – –

Rickettsia sp. strain
colombianensi

Amblyomma dissimile Colombia [159] – –

Rickettsia sp.- novel
isolate

Ixodes ricinus Czech Republic [160] – –

Rickettsia sp. strain
Tselenti

Hyalomma anatolicum
excavatum
Rhipicephalus turanicus

Cyprus [161] – –

Rickettsia sp. strain IbR/
CRC

Ixodes boliviensis Costa Rica [162] – –
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recent finding of the tick-borne encephalitis (TBE) virus
in ticks and roe deer from a forested area in the
Netherlands [84] led to the identification of the two first
autochthonous cases of TBE in this country [85, 86].
Similarly, the description of the two first cases of
Crimean-Congo haemorrhagic fever (CCHF) in Spain in
2016 [87], followed the identification of the etiologic
agent (CCHF virus) in ticks from southern Europe
several years before [88]. Could we also expect the emer-
gence of tick-borne rickettsioses? Indeed, we do not
know the actual impact of rickettsial diseases in Europe.
The main sources of information we have are published
papers, but often only impact reports are available to the
scientific community, while other relevant data are less
accessible (e.g. grey literature). In addition, official infor-
mation is not consistently updated; for example, the last
technical report on tick-borne rickettsioses from the
‘European Centre for Disease Prevention and Control’
(ECDC) dates back to October 2013 and includes data
up to 2010 [89]. In order to tackle emerging threats in a
more timely and effective way, a major effort is required
in Europe to harmonize data collection and notification
on rickettsioses (and other tick-borne diseases). Further-
more, surveillance could be strengthened by sharing of
information and inter-disciplinary collaboration among
public, animal and environmental health, based on a
‘One Health’ approach [90].
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