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Abstract

Background: Mosquitoes that feed on animals can survive and mediate residual transmission of malaria even after
most humans have been protected with insecticidal bednets or indoor residual sprays. Ivermectin is a widely-used
drug for treating parasites of humans and animals that is also insecticidal, killing mosquitoes that feed on treated
subjects. Mass administration of ivermectin to livestock could be particularly useful for tackling residual malaria
transmission by zoophagic vectors that evade human-centred approaches. Ivermectin comes from a different
chemical class to active ingredients currently used to treat bednets or spray houses, so it also has potential for
mitigating against emergence of insecticide resistance. However, the duration of insecticidal activity obtained with
ivermectin is critical to its effectiveness and affordability.

Results: A slow-release formulation for ivermectin was implanted into cattle, causing 40 weeks of increased
mortality among Anopheles arabiensis that fed on them. For this zoophagic vector of residual malaria transmission
across much of Africa, the proportion surviving three days after feeding (typical mean duration of a gonotrophic
cycle in field populations) was approximately halved for 25 weeks.

Conclusions: This implantable ivermectin formulation delivers stable and sustained insecticidal activity for
approximately 6 months. Residual malaria transmission by zoophagic vectors could be suppressed by targeting
livestock with this long-lasting formulation, which would be impractical or unacceptable for mass treatment of
human populations.
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Background
Indoor, human-targeted vector control with long-lasting
insecticidal nets (LLINs) and indoor residual spraying
(IRS) accounts for most of the reductions in malaria
burden since 2000 [1]. However, further progress is lim-
ited by residual transmission, mediated by mosquitoes
that avoid LLINs/IRS by feeding and/or resting outdoors
[2, 3]. Also, physiological resistance to the four insecti-
cide classes approved for public health use threatens

these gains [4]. In 2016 there were approximately
445,000 malaria-related deaths globally and an increase
in cases from 211 to 216 million, representing a return
to the 2012 levels [5]. The global fight against malaria is
at a crossroads [6] and no longer on track to achieve the
goal of the WHO Global Technical Strategy (GTS) of re-
ducing cases by 90% and eliminating malaria from 35
countries by 2030 [6, 7]. New vector control approaches
and active ingredients [8] are needed to both tackle
residual transmission and mitigate against resistance, re-
spectively [2–4]. Eliminating malaria in many settings will
require reducing the biological coverage gap left by exist-
ing LLIN/IRS measures [9], by accelerating innovation
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and market entry of new approaches to malaria vector
control [6, 10].
The primary mechanism of action of existing LLIN

and IRS interventions is actually vector population sup-
pression, rather than the more obvious personal protec-
tion they provide against mosquito bites [11]. LLINs and
IRS are so effective in highly endemic parts of Africa
and Oceania because the most efficient vectors in these
regions feed consistently on humans, indoors and at
night [12]. However, the large majority of vectors cap-
able of transmitting malaria in various parts of the world
feed primarily upon animals [11], but also occasionally
upon humans [2, 11, 13]. Mosquito species that obtain
even a small percentage of their blood meals from
humans can mediate relatively low, but nevertheless self-
sustaining, levels of transmission that respond poorly to
human-targeted LLINs or IRS [11, 14–17]. However, an
even more important behavioural category of vectors is
those which feed readily, opportunistically and flexibly
upon either animals or humans [11]. Vectors with such
dual feeding preferences are ubiquitously associated with
residual malaria transmission because they feed often
enough on humans to mediate intense transmission, but
also often enough on animals to survive and reproduce
despite high coverage of LLINs and/or IRS [11]. Further-
more, feeding upon livestock is often associated with
additional behaviors that allow avoidance of insecticides,
such as feeding outdoors, at dusk/dawn or exiting
houses quickly after feeding [2, 11]. Successful scale-up
of human-centred indoor vector control with LLINs and
IRS in recent years has had the greatest impact upon the
most efficient, human-specialized vectors, so more zoo-
phagic species exhibiting these advantageous behaviors
now account for increasing proportions of persisting
vector populations and residual transmission [18]. Fur-
thermore, as humans are increasingly protected with
LLINs and IRS, the phenotypically plastic behaviours of
most mosquito species allows them to survive by making
greater use of animal blood source [2, 17, 19]. New tools
targeting partly zoophagic vectors may be needed to
eliminate malaria in many settings where they contribute
towards sustaining residual transmission [11, 15].
Ivermectin is an antiparasitic drug used for the control

of onchocerciasis, lymphatic filariasis and other
neglected tropical diseases (NTDs) in humans, as well as
a wide array of endo- and ectoparasites in livestock and
pets. Ivermectin is also an endectocide, meaning it also
has systemic insecticidal properties when administered
as a drug, shortening the lifespan of mosquitoes and
other arthropods feeding on treated subjects [20]. If used
at scale, ivermectin could potentially reduce malaria
transmission [21, 22], by targeting malaria vectors re-
gardless of place and time of biting, thus offering a com-
plementary strategy to LLINs and IRS for malaria

elimination. This has motivated a recent review by
WHO [23] and publication of the preferred product
characteristics (PPC) of endectocides for malaria trans-
mission control [24].
The impact of an ivermectin-based strategy would be

driven by (i) the proportion of blood sources (both hu-
man and animal) that are covered with the intervention
[9]; (ii) the drug levels achieved in the blood of treated
subjects [20, 25]; and (iii) the duration of time over
which a single treatment achieved sufficient blood
concentrations to kill mosquitoes [25, 26]. Of these
parameters, duration of mosquito-killing concentrations
is probably the most practically limiting for achieving
sufficient affordability, effectiveness and population-wide
coverage [27, 28].
Targeting livestock with endectocides offers two

potential advantages: (i) improved transmission suppres-
sion through increased biological coverage of all the
blood sources that are relevant to sustaining vector pop-
ulations [9]; and (ii) it is possible to administer a wider
diversity of veterinary formulations and high doses to
animals in a manner than would not be acceptable for
humans. In the case of ivermectin, there is proven effi-
cacy against Anopheles arabiensis [29, 30] and veterinary
application allows for more flexibility in dose, regimen
or formulations compared with what would be practical
in humans. We have optimized an implantable, slow-
release ivermectin formulation [31, 32] for use in cattle
and other livestock, as an improved tool for enabling
more effective malaria vector control while also improv-
ing livestock health and economic productivity, as well
as controlling multiple livestock-mediated zoonoses.
Here we report the pharmacokinetic and entomological
results obtained with this new formulation.

Methods
Experimental design
After basal blood sampling and mosquito feeding, three
calves were randomly allocated to treatment or control;
two were assigned to the ivermectin arm and received a
dose of five subcutaneous implants and one untreated
calve served as control. The dose was calculated based
on the formulations excipient composition, elution sur-
face and the calves’ expected weight for age. The control
calf received no ivermectin. Fortnightly for 44 weeks, a
group of Anopheles arabiensis was feed directly on the
calves. Concurrently, blood was drawn to determine the
ivermectin concentration present at the time of feeding
(see Table 1 for timing of all procedures). Mosquito
mortality was recorded daily for 10 days after feeding on
the calves at every time point. All mosquito exposure ex-
periments were performed in triplicate. The main out-
come measures were mosquito mortality after 3 days
and 10 days.
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Ivermectin formulation
An optimized variation of a previously described
silicone-based, slow release, subcutaneous formulation
was used [31] (Fig. 1). In brief, extruded tubing of med-
ical grade silicone with a 3.81 mm internal diameter and
0.25 mm thick wall (Freudenberg Medical, Carpinteria,
CA, USA) was cut in 7 cm segments and filled with
mixture of ivermectin, sodium deoxycholate, sucrose (all
from Sigma-Aldrich, St. Louis, MO, USA) and
unrestricted drug delivery silicone (DDU-4320, NuSil,
Carpinteria, CA, USA) using a pneumatic dispenser.
Drug powder, excipients and elastomers were mixed
using the method described by Maeda et al. [33] and
Cunningham et al. [34]. The tubes were then cured at
60 °C for 4 h and post-cured at room temperature for
additional 18 h. The resulting products were then
trimmed to 5 cm length. Once inserted, the drug-eluting
inner rod is only exposed to subcutaneous tissue and
fluids at the extremes of the formulation. There, the
sucrose in the inner cylinder is slowly diluted, creating
micro channels that allow for slow release of the drug.
Previous experiments have shown that the exposed

area of the drug-eluting core is a key driver of systemic

ivermectin levels [31, 32]. To increase release rate and
achieve sufficient ivermectin levels in cattle, three 1 mm
holes were drilled across each formulation. Each implant
contained approximately 73 mg of ivermectin and had
an elution surface of 95 mm2. After packaging, the rods
were sterilized using an electron beam.

Cattle procedures
Calves were aged 4 to 5 months when purchased from
local farmers at the Kilombero valley (approximate
weight at purchase 160 kg) at the outset of the study.
They were kept free-ranging in the pastures surrounding
the semi-field systems of the Ifakara Health Institute in
Ifakara [35].
Each calf received five implants in the lateral surface

of the neck by means of a single subcutaneous puncture
with a 5 mm plastic trocar. Procedures were done under
sterile conditions and using local anesthesia. All received
a unique ear tag after treatment. Insertion wounds were
treated topically with chlorhexidine. No calf received any
systemic treatment during the experiment. Their general
behavior was reviewed daily by a herdsman and in
monthly visits by a qualified veterinarian.
Before implantation and at 2 weeks intervals until 40

weeks after treatment (21 time-points), the calves were
mechanically restricted to draw 5 ml of blood from the
jugular vein for high-performance liquid chromatog-
raphy (HPLC) analysis. The mechanical restraint also
served to feed a group of 150 Anopheles arabiensis
(previously starved of sugar for 2 h) on every calf at
every occasion until week 44 (23 time-points).

Mosquito procedures
The mosquitoes used were Anopheles arabiensis from a
colony stablished at the Ifakara Health Institute in 2014
by collecting wild specimens in nearby villages. The col-
ony is kept inside the semi-field system at temperature
and humidity that fluctuates naturally with the local
climate [35].
Feeding assays were conducted every two weeks after

implantation, before every assay, 2–3 days old hungry

Table 1 Study procedures

Procedure Weeks

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

Basal blood sample ● – – – – – – – – – – – – – – – – – – – – – –

Basal mosquito feeding ● – – – – – – – – – – – – – – – – – – – – – –

Implantation ● – – – – – – – – – – – – – – – – – – – – – –

Daily aspect and behaviour
check

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Recurrent blood sampling – ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● – –

Recurrent mosquito
feeding

– ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Fig. 1 A schematic depiction of the formulation. Abbreviations: IVM,
ivermectin; DOC, deoxycholate; SUC, sucrose
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adult females were selected from the colony by holding
an open palm next to the cage and gently aspirating
those trying to bite. They were then transferred to paper
cups (approximately 50 per cup) marked according to
the assigned calf and starved of sugar for 2 h (Fig. 2a). A
total of 150 (145–170) females were fed on each calf
(triplicates of 50). The papers cups were covered with
netting and applied to shaved areas of the calves’ abdo-
men for 30 min (Fig. 2b). Unfed and partly fed females
were discarded and all fully engorged females from a
single cup were then transferred to a mosquito cage for

survival assessment, where they were allowed ad libitum
access to water and 5% sucrose solution. The cages were
kept on a shelf covered with a black cotton sheeting to
protect it from any strong winds (Fig. 2c). Each cage was
monitored daily for mosquito survival for 10 days and
dead mosquitoes were recorded and removed from the
cage. Following 10 days, mosquitoes remaining alive
were killed by desiccation.

Ivermectin quantification
Blood was drawn in 5 ml EDTA tubes, centrifuged and
plasma aliquots were separated and frozen at -20 °C.
Ivermectin was quantified using a previously described
HPLC method [36]. The detection and quantification
limits were 0.1 ng/ml and 0.5 ng/ml, respectively.

Statistics
Mosquito survival analysis after feeding on the calves at
each time point was accomplished using the Kaplan-
Meier method, implemented with Addinsoft’s XLSTAT®
Version 19.4.45479 (New York, USA). Comparisons of
survival patterns were done with Log-rank test using a
5% significance level. For mosquitoes feedings at each
time point, the proportions that survived for either 3 or
10 days (the approximate lengths of gonotrophic and
sporogonic cycle, respectively) was calculated. Survival
curves for each treatment at each time point were con-
structed to visualize variations over the study duration.
Additionally, individual hazard ratios (and 95% confi-

dence intervals) for each treatment and feeding time
point were calculated and fitted to a Cox’s proportional
hazards model with ‘week post-implant’ as a covariate
(fourth order polynomial function) to data from weeks 2
through to 44. A linear relationship was fitted to data
from weeks 0 to 2.

Results
Pharmacokinetics
After reaching a maximum concentration of 19.0 ng/ml
at two weeks after implantation, the formulations eluted
readily detectable levels of ivermectin into the blood-
stream of cattle for 40 weeks, at which point blood
sampling was stopped (Fig. 3). Ivermectin levels above
6 ng/ml, a concentration known to kill 50% of Anopheles
gambiae within 10 days of feeding exposure [37], was
sustained for more than six months. The lowest observed
concentration was 3.7 ng/ml at 40 weeks. Figure 3 shows
the pharmacokinetic curve for the whole period which is
consistent with our previous results in rabbits and pigs
(Fig. 4).

Safety
The maximum ivermectin concentration (Cmax) mea-
sured in the plasma of treated calves was 19.3 ng/ml.

a

b

c

Fig. 2 Mosquito feeding and follow-up procedures. a Triplicates of
50 mosquitoes fed on each calf. b Mosquitoes were fed by applying
the cups to shaved areas in the abdomen until all or most were fully
engorged. c Each group of 50 mosquitoes was then kept in individual
cages and allowed to feed on water and sugar ad libitum, they were
followed for 10 days and mortality recorded daily
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This value is below the Cmax achieved with injectable
3.15% and 1% commercial ivermectin veterinary formula-
tions (26 and 114 ng/ml, respectively) that are already
widely used. No behavioural side effects (recumbency,
depression, ataxia) were observed in the treated calves at
any stage of the experiment.

Mosquito survival after each feeding
A mean of 436 (range 372–475) fully engorged mosqui-
toes were followed for ten days after feeding on the
calves fortnightly. At this point the control group had a
slightly higher 10-day mortality (Log-rank test: df = 1,
P < 0.0001) (Fig. 5). The mortality of mosquitoes feeding
after implantation remained elevated throughout the
experiment (Log-rank test: df = 1, P ≤ 0.004) with respect
to the control group (Fig. 5).

Aggregated survival analysis
Three-day survival: mosquitoes dying before three days
are unlikely to complete the gonotrophic cycle and lay
eggs [26], so reductions in 3-day survival can have an

impact of large magnitude in overall mosquito densities
in the field. While 3-day survival remained high in the
controls throughout the experiment (mean 0.85, range
0.66–0.95), it remained consistently lower in the implant
group over the first 24 weeks, averaging approximately
half that of the controls for the first 25 weeks (mean
0.49, range 0.29–0.67) (Table 2, Fig. 6a).
Ten-day survival: mosquitoes dying within 10 days are

unlikely to complete the sporogonic cycle and become
infectious [26]; this metric directly predicts probability
of surviving long enough to incubate malaria parasites
through their full sporogonic development, into infec-
tious sporozoites. While in the control group a mean of
40% of mosquitoes survived 10 days or more, only 138
of the 6,016 mosquitoes (2.3%) fed upon implanted
calves in the first 26 weeks survived 10 days post-
exposure (Table 2, Fig. 6b).
Hazard ratios: the individual hazard ratios (and 95%

confidence intervals) for 10-day mortality after feeding
at each time point as well as the fitting model (fourth
order polynomial function) to weeks 2–44 (linear from

Fig. 3 Ivermectin plasma levels sustained with the implant formulation adapted for cattle in this experiment

Fig. 4 Ivermectin plasma levels sustained with previous versions of the same formulation adapted for 5 kg rabbits [31] and 80 kg pigs [32]. The
dotted line in the pig results has been extrapolated based on the implants’ residual ivermectin content after removal at 12 weeks
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week 0–2) are presented in Fig. 7 and show an elevated
hazard ratio throughout the experiment. All survival
data are provided in Additional file 1: Table S1.

Discussion
We report here a cattle-tailored implantable slow-release
formulation of ivermectin, which is capable of sustaining
ivermectin concentrations low enough to be safe but
high enough to shorten the lifespan of malaria vectors
feeding on cattle for six months. The implants are ad-
ministered through a simple implantation technique
using commercially available trocars.
There is currently much interest in mass drug admin-

istration to humans to reduce malaria transmission; this
will require modification of the dose currently used for
NTDs or use of novel long-lasting formulations [27]. In
contrast with the administration of ivermectin to
humans [38], veterinary applications may offer a

potentially easier regulatory pathway to large scale trials
and programmatic scale-up. Extensive and reassuring
veterinary experience with other formulations that have
higher peak blood concentrations (Cmax) in common
livestock species should pave the way for formulations
like the one described here, which delivers mosquito-
killing ivermectin concentrations more steadily over
much longer periods. The immediate advantage would
the targeted assessment of the many zoophagic malaria
vectors that drive residual transmission across the tro-
pics [2, 11, 15], including Anopheles arabiensis.
Additionally, this approach provides an opportunity to

enhance livestock-based agricultural production, which
plays a key role in the livelihood and food security of
almost a billion people around the world [39] and
obviously depends on sustaining animal health [40]. In
sub-Saharan Africa, this could improve the income of
300 million livestock-dependent people [41], by reducing

Fig. 5 Ten-day survival (and 95% CI) of Anopheles arabiensis mosquitoes after feeding on control and treated calves at two-week intervals after
implantation (mean n = 426, range 327–475). Differences in survival are statistically significant (P < 0.05) by log rank test at all time-points

Table 2 Three- and ten-day survival analysis of mosquitoes feeding upon control and implanted calves throughout the study period

Pre-implant 2 weeks 12 weeks 24 weeks 36 weeks 44 weeks Mean

3-day survival (proportion) Control 0.93 0.95 0.89 0.91 0.81 0.91 0.90

Implant 0.95 0.55 0.39 0.52 0.74 0.87 0.67

Difference +0.02 (1%) -0.40 (42%) -0.50 (56%) -0.39 (42%) -0.07 (8%) -0.05 (4%) -0.23 (25%)

10-day survival (proportion) Control 0.48 0.7 0.51 0.36 0.42 0.79 0.54

Implant 0.725 0.11 0 0.015 0.245 0.69 0.30

Difference +0.25 (51%) -0.59 (84%) -0.51 (100%) -0.34 (95%) -0.17 (41%) -0.1 (12%) -0.25 (46%)
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malaria in humans, as well as intestinal helminths and
tick-borne diseases in cattle [39, 42]. Emerging tools like
the ivermectin implant described here could be
promoted and subsidized through agricultural extension
systems [43], potentially leveraging novel funding
streams and intersectoral collaborations.
Regarding long-lasting formulations in livestock, one

key challenge is the induction of ivermectin resistance in

intestinal helminths, which is already a serious issue in
several parts of the world [44], or even among mosqui-
toes themselves. In the latter case, proven reduction of
mosquito fertility after feeding on sub-lethal ivermectin
concentrations could help delay the appearance of even-
tual ivermectin resistance [45]. Additionally, veterinary
ivermectin is not envisioned as a stand-alone tool, rather
as complementary strategy to the home-based standard

Fig. 6 Three-day survival a and 10-day survival b of Anopheles arabiensis mosquitoes after feeding on control and implanted calves every two
weeks throughout the experiment. Mean (n = 436) fully engorged mosquitoes for each time point, range 372–475. The ivermectin PK is represented as
dashed line in reference to the secondary axis

Fig. 7 Individual hazard ratios (and 95% CI) for 10-day mosquito mortality after feeding at each time point. Fitted model corresponds to a fourth
order polynomial function for weeks 2–44 and is linear from week 0 to 2
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of care with LLINs/IRS, a combination that is predicted
to be synergistic [46] or as a potential resistance man-
agement tool given its different class allowing for
combination of different delivery methods rather than
mixture of insecticides. Concerns regarding veterinary
helminths and non-target organisms [47] could be
assessed with drug combinations, refugia [48] or differ-
ent endectocides.
Although this evaluation does confirm the potential of

this novel formulation, the study also has important lim-
itations of that merit consideration going forward. First,
many of the most attractive secondary outcomes that
could confirm safety or motivate uptake by livestock
owners were not recorded. Although the calves were
physically examined daily by a herdsman and monthly
by a qualified veterinarian, we did not include any
formal assessment of growth or health. Also, defining
the withdrawal period for this new formulation will re-
quire determination of tissue residual concentrations
and against potential dietary exposure [49].
Secondly, mosquitoes were kept in a semi-field system

with near ambient conditions of temperature, humidity
and air flow, which has both advantages and disadvan-
tages. While the survival estimates obtained here may be
more representative of field conditions than other
studies in fully-controlled laboratory environments, such
exposure to near-natural variations in ambient weather
conditions may also underpin some of survival rate fluc-
tuations observed from one fortnight to another (Fig. 6).
Thirdly, and perhaps most important, we used only a
very limited number of healthy calves for this experi-
ment, so further studies with greater replication and
statistical power will be needed in a wider diversity of
settings and livestock species including those affected by
intestinal parasites of veterinary importance.
Nevertheless, the pharmacokinetic observations are

consistent with previous results with this formulation in
rabbits [31], dogs [34] and pigs [32] (Fig. 4). Given this
prolonged drug release at effective levels, field trials with
this or similar formulations will need to monitor the
vector species breakdown to ensure the number of
anthropophagic vectors does not increase as a result of
selective pressure on zoophagic vectors, even if model-
ling suggest synergism with LLINs [46].

Conclusions
Despite the study limitations described immediately
above, it does appear that incremental impact upon re-
sidual malaria transmission by zoophagic vectors could
be obtained through high area-wide coverage of livestock
with this novel ivermectin formulation, or with other
formulations capable of similarly stable and sustained
efficacy over several months.

Additional file

Additional file 1: Table S1. Survival analysis in all mosquito groups
throughout the experiment. (XLSX 11 kb)
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