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Abstract

Background: Gene flow restrictions between populations of Aedes albifasciatus, the vector of Western equine encephalitis
and Dirophilaria immitis, have been described in the central region of Argentina. Genetic and eco-physiological variations
usually result in local forms reflecting the climatic regions. Mosquito wings and their different parts have ecological
functions in flight and communication. Therefore, wing shape could be considered an aspect of sexual dimorphism, and
its eco-physiological responses can be expressed as morphological changes induced by the environment.

Methods: To compare the geographical and sexual variations with respect to wing shape and size in two Ae. albifasciatus
populations from contrasting climates of Argentina (temperate: Buenos Aires, and the arid steppe of Patagonia:
Sarmiento), the wings of adults reared in thermal trays at different constant temperatures (10–29 °C) were analyzed.

Results: The wing size of Ae. albifasciatus showed inverse linear relationships with the rearing thermal condition and
higher slope for Buenos Aires. In the cool range (10–17 °C), geographical size variations responded to the converse
Bergmann’s rule, where Buenos Aires individuals were larger than those from Sarmiento. Sexual shape dimorphism
occurred in both populations while geographical variation in shape was observed in both sexes.

Conclusions: Buenos Aires individuals showed greater response sensitivity with respect to the size-temperature relation
than those from Sarmiento. The converse Bergmann’s rule in size variation could be due to a higher development rate in
Sarmiento to produce more cohorts in the limited favorable season. The shape could be more relevant with respect to
the size in the study of population structures due to the size being more liable to vary due to changes in
the environment. The geographical variations with respect to morphology could be favored by the isolation
between populations and adaptations to the environmental conditions. Our results demonstrate that the
shape and size of wing provide useful phenotypic information for studies related to sexual and environmental
adaptations.
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Background
Aedes (Ochlerotatus) albifasciatus is a sylvatic mosquito
from the Southern Cone of South America, with explosive
abundances due to flood waters related to rainfall, over-
flow of rivers [1], and/or increase in the groundwater
layers. Aedes albifasciatus was the first mosquito species
incriminated as a vector of the western equine encephalitis
virus [2]. This species has also been related to Saint Louis
encephalitis virus [3] and Bunyamwera virus [4], and is a
potential vector of Dirofilaria immitis [5]. This species is
distributed from 17°S [6] to 54°S in Tierra de Fuego,
Argentina [7]. Its geographical range includes different re-
gions [8, 9] with different types of landscapes, environ-
ments and climates. Aedes albifasciatus has even been
found to be adapted to extreme places such as elevated
sites [10] and brackish water microenvironments [11], as
well as tolerating strong wind bursts [12].
Previous studies have demonstrated that differences in

the genetic divergence in Ae. albifasciatus are related to
gene flow restrictions between breeding areas of differ-
ent geographical populations [13, 14]. Otherwise, some
temperature-dependent life-cycle parameters, such as
development time and survival, present geographical
variations [15]. These genetic and eco-physiological
variations may result in local morphological forms
(relative to size and shape) in response to contrasting
climatic regions [16, 17].
Insect wings have ecologically important functions in

flight and communication, and in fact various insects
show intraspecific polymorphism in wing shape, making
wings a target of natural selection [18]. The morpho-
logical characteristics of the different parts of the wing
are closely related to the flight aerodynamics [19, 20].
In mosquitoes, only females are hematophagous and

pathogen-competent and use their wings to ensure an
accurate approach to other animals to suck their blood,
while males can copulate with several mates and use
wing beats to attract the opposite sex during courtship
[21]. Therefore in mosquitoes, the wing shape and size
could be considered an aspect of sexual dimorphism by
their sex-specific function. Additionally, their eco-
physiological responses include phenotypic plasticity,
which can be expressed as changes in the morphology of
the individuals of a population, such as those observed
in the wings of mosquitoes. Plasticity can be induced by
any environmental factor, and the resulting changes can
vary from weak forms to well-adapted phenotypes [22].
The phenotypic variations related to the size and shape
can be analyzed by morphometric techniques [23]. Both
molecular and morphometric techniques [24, 25] have
allowed the observation of intraspecific variability in in-
sects, particularly in mosquitoes [26–28]. Geometric
morphometrics has been used as a tool to analyze popu-
lation structure [29], evolutionary units [30], genetic

divergences in local populations [31], altitudinal varia-
tions [32] and different selective effects such as rearing
conditions [33–35].
The objective of this study was to compare geograph-

ical and sexual morphological variations (wing shape
and size) in two Argentinian populations of Ae. albifas-
ciatus from contrasting climates and their response to
different rearing temperature conditions. For this pur-
pose, geometric morphometrics was used as a first ap-
proach to the comparative study at the population level.

Methods
Study sites
Aedes albifasciatus mosquitoes were collected in two sam-
pling sites: Buenos Aires (34°36'S, 58°26'W, located in the
Pampas plain) and Sarmiento Valley (45°35'S, 69°05'W, lo-
cated in the Patagonian steppe) (Fig. 1). The climate in Bue-
nos Aires is humid temperate [36], with warm summers
(average 25 °C) and cool winters (average 12 °C).Winter is
the wettest season of the year, with averages of 74–79%
Relative Humidity (RH). In summer, the RH reaches values
of 63–68%. The climate in Sarmiento valley is arid [36] with
warm summers (average 18 °C), with daily desert thermal
amplitude, and very cold winters (average 4 °C). In the cold
season, the average monthly RH is approximately 75–80%
(rainfall period), whereas in summer, the RH is 40% and
precipitation does not reach the average of 15 mm. More-
over, the summer season is characterized by being very
windy, with strong gusts (mean speeds ranging between 8
and 30 km/h) between calm periods [37, 38].

Biological material
In the summer period (2010–2011), females of Ae. albi-
fasciatus were caught in the field, taken to the laboratory
(located near the natural breeding sites), and placed in
three cages. For this species has not been possible to
maintain colonies under laboratory conditions, probably

Fig. 1 Study sites and climatic regions of Argentina (by Peel et al., 2007)
where females of Aedes (Ochlerotatus) albifasciatus were captured
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due to its eurygamic characteristics, as in other species
of the subgenus Ochlerotatus [39]. Consequently, to
keep 150 individuals per cages approximately, dead indi-
viduals were replaced daily (about 30–50 adults). As a
source of blood for egg laying, females were blood-fed
on mammals (rabbits or nursing mice), where laboratory
animal ethics protocols were followed according to the
University of Buenos Aires regulations (R 4081/2004).
A Petri dish with absorbent paper on damp cotton was

offered as an oviposition substrate in each of the cages
with females. For the experiments, different portions of
these substrates were randomly selected for the purpose
of using eggs from different individuals. Eggs were in-
duced to hatch by immersing them in a yeast solution.
Then, approximately 30 larvae were placed randomly in
individual containers (cylindrical containers measuring
3 cm in diameter and 5 cm high with 10 ml of dechlori-
nated tap water) in thermal trays at constant tempera-
tures in a range of 10–29 °C (3° C step) until they
reached their adult form [15]. As the temperatures of
the trays could be affected by ambient conditions, we
placed temperature data loggers (Hobo®, Onset Com-
puter Corporation, Bourne, MA, USA) in the trays, and
took the mean recorded temperature instead of the sys-
tem thermostat sensor reading. The photoperiod during
rearing was 14:10 h (light: dark) and the individuals
were fed daily with an aliquot of dog chow (Purina®,
San Luis, MO, USA), as follows: instar I: 0.2 mg/day,
instar II: 0.3 mg/day, instar III: 0.4 mg/day and instar
IV: 0.6 mg/day [40]. After completion of development,
adults which emerged successfully were sacrificed at
freezing temperatures (-12 °C). A total of 135 speci-
mens were able to be photographed and analyzed: 24
males and 36 females from Buenos Aires and 32 males
and 43 females from Sarmiento valley.
To evaluate the geographical variation and sexual

dimorphism as a function of the thermal range, the tem-
peratures tested were divided into two sub-ranges: cool
(10–17 °C) and warm (19–29 °C), based on the fact that
the populations studied respond differently to the time
of development as a function of warm or cool tempera-
tures [15], which directly affects their size.

Wing processing, centroid size and shape
The left wings of each individual were removed from the
thorax by using a fine clamp, placed between glass slides
and photographed with a camera (Leica® DFC 295; Leica
Camera AG, Solms, Germany) coupled with a stereo-
scopic microscope (Leica® S8 APO; Leica Camera AG,
Solms, Germany). Once the digital image was obtained, 17
points of the wing (natural intersections given by the
venation) or landmarks (LMs) (Fig. 2) were selected from
references, and the software tps-DIG 2.16 [41] was used
to generate Cartesian coordinates in two dimensions for

each individual. The LM configurations obtained were
transferred, rotated and scaled according to the gen-
eralized Procrustes method [42], using MorphoJ® soft-
ware 1.05 [43]. Thus, the new Procrustes coordinates
were generated to be used as shape variables. To compare
the size of the wing between the different groups (sex or
population), the centroid size (CS), derived from Cartesian
coordinate data, was used as an isometric size estimator.
The CS is defined as the square root of the sum of the
square of the distances between the center of the configur-
ation of the LM (or centroid) and each LM [42]. Since the
CS is based on Cartesian coordinates (XY), the result of
the calculation mentioned above is a one-dimensional
scale. For the analysis, the morpho-geometric sizes (CS)
were logarithmized (log CS).
The software used to obtain, process and analyze the

data (tps-DIG 2.16, MorphoJ®) is freeware (http://life.bio.
sunysb.edu/morph/).

Data analysis
To study the relationship between size and temperature,
the logarithm of the CS against the rearing temperature
was linearly fitted for each sex and population separ-
ately. Then, the slopes were compared by a test of paral-
lelism in both populations and sexes [44]. The size
differences between sex and population were statistically
evaluated using the log CS in a parametric two-way
ANOVA [45]. Due to the low survival of the individuals
in both populations at warm range, only data for the
cool range were subjected to statistical tests.
The allometric influence of wing size on wing shape

was assessed by multivariate regression of the Procrustes
coordinates (shape) against CS, using a permutation test
with 10,000 randomizations [46, 47].
Two-way multivariate analysis of variance (MANOVA)

was used to compare and discriminate wing shapes
between the populations and sexes. Previously, the
variables of the shape (without the allometric effect) were
summarized by means of a principal components analysis
(PCA) where the PCs generated were taken as new vari-
ables of the shape. Canonical variate analysis (CVA) com-
bined with discriminant analysis (DA) was performed [47]
to evaluate the differences between sex and population.
To compare Procrustes distances between groups, a per-

mutation test with 10,000 iteration rounds was performed.
The square root of the sum of the squared distances be-
tween the corresponding LMs of two aligned configurations
is an approximation of the Procrustes distance [48], which
is a measure of shape variation. In all cases, a significance
level α = 0.05 was used. To visualize the morphological
changes in the wings, deformation vectors were used with
respect to a consensus configuration and a thin-plate spline
or wireframe scheme [43, 47], using the software MorphoJ®
1.05. The comparison between thermal ranges respect to
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the shape was not analyzed due to a low sample size in
both populations at warm range.
The variability of population and sex shapes was esti-

mated with CS of scatter plots within the morpho-space
formed by the first PCs (for instance, PC1:X and PC2: Y)
, similar to that described in Louise et al. [49]. For the
comparison between groups, we generated CS values
and performed two-way ANOVA.

Results
Centroid size
For both populations (Buenos Aires, Sarmiento) and for
both sexes (males and females), the wing size (log CS)

showed an inverse relationship with the rearing
temperature (Fig. 3). The simple linear regressions were
significant for the slope in all the cases, and the linear fit
(r2) was better for the individuals from Buenos Aires
(males Buenos Aires: r2 = 0.7110, P = 0.0000004, y =
7.5032 - 0.0328*x; females Buenos Aires: r2 = 0.7076,
P = 0.00003, y = 7.6401 - 0.0331*x; males Sarmiento:
r2 = 0.5097, P = 0.000004, y = 7.0732 - 0.0176*x; and
females Sarmiento: r2 = 0.4168, P = 0.000003, y = 7.1921 -
0.0185*x). Tests of parallelism indicated no differences
between sexes for each population (Buenos Aires: n = 60,
F(1, 56) = 0.00054, P = 0.9816; Sarmiento: n = 75, F(1, 71) =
0.04, P = 0.8433), but there were differences between

Fig. 2 Location of the 17 landmarks (LMs) on the wings of Aedes (Ochlerotatus) albifasciatus

Fig. 3 Wing size [Log (centroid size)] as a function of the rearing temperature. The solid lines indicate the linear fit and the dotted lines
the confidence level
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populations within each sex (males: n = 56, F(1, 51) = 8.16,
P = 0.0062; females: n = 79, F(1, 75) = 5.86, P = 0.0179).
The mean sizes (log CS) in the cool thermal range

were: males Buenos Aires (n = 18) = 7, males Sarmiento
(n = 21) = 6.83, females Buenos Aires (n = 23) = 7.2 and
females Sarmiento (n = 37) = 6.95. The ANOVA showed
no interaction between sex and population (F (1, 93) = 3.35,
P = 0.0704). Regarding the main effects, the results
showed sexual size dimorphism (F(1, 93) = 91.36, P <
0.0001), with females being larger than males regardless
of the population and with the individuals from Buenos
Aires being larger than those from Sarmiento (F(1, 93) =
159.58, P < 0.0001) regardless of the sex (Fig. 4).
The size means in the warm thermal range were:

males Buenos Aires (n = 6) = 6.69; males Sarmiento (n =
11) = 6.71; females Buenos Aires (n = 13) = 6.73 and
females Sarmiento (n = 6) = 6.77 (Fig. 4).

Shape
The allometric test was significant (P = 0.001) and the
proportion of total shape variation explained by the fact
that the regression (analog to r2) was lower than 9%.
Although the allometric level was low, it was removed
for the shape analyses.
After removing the allometric effect, the PCA was car-

ried out on shape variables (regression residuals), where
the first six components (explaining 81% of the variance)
were conserved according to the Kaiser criteria (eigen-
values greater than 1) as new shape variables. MANOVA
showed that the shape was significantly different between

populations and between sexes (Pillai, Lawley-Hotelling
and Roy tests with: F(6, 124) = 186.12 and P < 0.0001 for
sex level; F(6,124) = 13.83 and P < 0.0001 for population
level; and F(6,124) = 1.57 and P = 0.1401 for the sex-
population interaction).
The CVA revealed differences in shape between sexes

and populations (Fig. 5). Canonical variable 1 (CV1),
which explained 84% of the total variance, showed a
clear sex separation, whereas CV2, which explained 12%
of the total variance, indicated a distinction between
populations. The Procrustes distances of shapes between
sexes (Buenos Airesmales-females: 0.89; Sarmientomales-fe-

males: 0.88) were higher than between populations
(malesBuenosAires-Sarmiento: 0.027; femalesBuenosAires-Sar-
miento: 0.028). The permutation test (10,000 iteration
rounds) for Procrustes distances was significant (P < 0.005).
These differences between sexes are shown in Fig. 6,

where rectangles indicate the relevant area of the wing.
The differences were at the wing width level and, as ex-
pected, these were more contrasting between the sexes,
where the narrower form was that for males. Regarding
the differences between populations, although less con-
spicuous, the results show that the wings of Sarmiento
individuals are slightly thinner with respect to Buenos
Aires (Fig. 6).
The thin-plate spline showed that the LMs 1, 11 and

12 were the most important in the shape changes, asso-
ciated with CV1, in the sex separation. In CV2, LMs 1,
2, 10 and 9 explained the remaining variance between
the populations.

Fig. 4 Centroid size (Log CS) distribution in the wings of Aedes (Ochlerotatus) albifasciatus populations from Buenos Aires and Sarmiento, for cool
(10–17 °C) and warm (19–29 °C) thermal ranges. Numbers in parentheses indicate sample sizes (n)
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The DA of pairs allowed separating the populations
of the same sex and the sexes within the same popu-
lation. Because the sample size was relatively small in
relation to the variables to be analyzed (17 LMs), the
cross-validation classification was carried out (Table 1). In
females, 25% of the specimens from Buenos Aires
were misclassified as Sarmiento and 21% of those
from Sarmiento were classified as Buenos Aires,
whereas in males, 33% of the specimens from Buenos
Aires were misclassified as Sarmiento and 28% of
those from Sarmiento were misclassified as Buenos
Aires. No classification errors were detected between
sexes (Table 1).

Shape variability
Five CS values were obtained for shape variability in
each group. ANOVA showed that the shape variability
of females (mean = 558.7) was significantly higher than
that of males (mean = 393.6) (sex main effect: F(1, 16) =
40.71, P = 0.0001). No significant differences were ob-
served between populations (population main effect:
F(1, 16) = 0.65, P = 0.4315). The sex-population inter-
action was not significant (F(1, 16) = 1.82, P = 0.1959).

Discussion
The geometric morphometrics of the wings for Ae. albi-
fasciatus allowed us to comparatively study the sexual

Fig. 5 Canonical variables (CV1 and CV2) for wing shape configuration of Aedes (Ochlerotatus) albifasciatus: Males from Sarmiento (filled squares)
and Buenos Aires (empty squares); Females from Sarmiento (filled circles) and Buenos Aires (empty circles). Changes in wing shape through the
canonical variables (CV1: 84% and CV2: 12%) are illustrated with a thin-plate spline. Thick points indicate the consensus configuration and the
vectors (segments) indicate the relative relevance landmarks in the discrimination

Fig. 6 Wireframe scheme for the average wing shape (dotted lines) of Aedes (Ochlerotatus) albifasciatus and the tendency of the variation (continuous
line) by populations and sexes. The rectangles indicate zones of differences with respect to the average shape
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dimorphism and the variability of individuals from
different regions. It is known that geographical
differences may exist in the vector competence in
mosquitoes, observed in differences in infection and
transmission rates [50, 51].
A negative linear relation between the body size magni-

tude and the breeding temperature has been observed for
wing lengths [52, 53], femur lengths [53], cephalic capsule
[54] and dry weight [52]. Although there is a good fit
between wing length and centroid size [55], the centroid
size is more representative of the magnitude of the indi-
vidual because its multidimensionality summarizes the
global size variation [23]. The slopes indicate that the re-
sponse of size change (centroid) to the temperatures for
both sexes are the same. This would indicate the same
metabolic response, where the physical assimilation of
nutrients is lower with the increase in temperature, since
the development is more accelerated [15, 56].

Sexual size and shape dimorphism
In the cool thermal range, there was sexual dimorphism
of sizes for both populations. This difference is the result
of a lower development time for males (protandry)
resulting in a smaller body size [57]. In most insect spe-
cies, females are expected to reach a larger size than
males due to the important role of population fitness
[58]. In the warm thermal range a tendency of sexual di-
morphism with larger females is observed (small size of
the sample did not allow applying a statistical test).
The results suggest a sexual shape dimorphism for Ae.

albifasciatus populations, with more marked differences
than between the geographical populations. This sexual
dimorphism was evident, resulting in accurate classifica-
tions (100% success) (Table).
The wings of the females were wider in the anterior-

posterior sense, while the males had narrower wings.
The wireframe (Fig. 6) confirmed this difference. This
feature could optimize flight according to its sex-specific
functionality, since Ae. albifasciatus is eurygamic,
namely, it mates in swarms in open spaces [59] and, as

in other species, each sex would recognize its mating
pair through the sound of its wings during flight [60].
On the other hand, females must fly accurately to find
the host [61] and then find a suitable site for oviposition.
The sexual shape dimorphism would represent another
evolutionary example in homologous structures [62],
where the shape is canalized by sexual selection or other
evolutionary mechanisms [21].
Regarding shape variability, the wings of Ae. albifascia-

tus females showed greater variability of shapes than
those of males, indicating a greater sensitivity to the
different rearing temperature conditions [58] and sug-
gesting a more conspicuous phenotypic plasticity. Some-
thing similar has been recorded for females of Ae.
albopictus, in which the rate of change was higher than
that recorded for males [61].

Geographical variation in size and shape
The centroids size-temperature relation in Ae. albifas-
ciatus individuals from Sarmiento showed a lower slope
than those from Buenos Aires, suggesting a more robust
or less sensitive response to the gradual change in the
rearing temperature. This characteristic could be a local
adaptation to the local climatic region (Patagonian)
where the larval state must resist the daily thermal amp-
litude [36]. Local adaptations have also been suggested
for other life-cycle parameters such as development time
and survival [15].
Insects usually respond to environmental conditions

following the James rule [63] (which is similar to
Bergmann’s rule [64]) or the converse Bergmann’s rule
[65]. The James rule explains the increase in body size
with latitude or decreasing temperature [66]. In contrast,
in the converse Bergmann’s rule, the size decreases with
latitude, as a consequence of a shorter favorable season
and an increase in developmental metabolism. The latter
rule is common among univoltine insects [67] and has a
genetic basis since this type of response has been
observed both in field and laboratory studies [68]. Under
cool rearing thermal ranges in the laboratory, Ae. albi-
fasciatus individuals from Buenos Aires were larger than
those from Sarmiento (Fig. 4). The lower accumulation
of biomass by the individuals would be due to a higher
rate of development [15] as a physiological response to
the local environmental conditions [69]. Therefore, the
individuals from Patagonia could follow the converse
Bergmann’s rule, although Ae. albifasciatus is a multivol-
tine species, where an increase in metabolism could
produce more cohorts in a limited favorable season
(summer) [12], resulting in individuals of smaller size
than those from Buenos Aires.
In Buenos Aires and other temperate populations, in-

dividuals rear and can be active throughout the year [70,
71], suggesting a lower selective pressure (accelerated

Table 1 Cross-validation classification for Ae. albifasciatus from
discriminant analysis of pairs (by populations and sexes)

Proportion of misclassification

Groups compared BsAs F Sar F BsAs M Sar M

Geographical variation

BsAs F - Sar F 9/36 9/43

BsAs M - Sar M 8/24 9/32

Sexual dimorphism

BsAs F- BsAs M 0/36 0/24

Sar F - Sar M 0/43 0/32

Abbreviations: BsAs F Buenos Aires females, BsAs M Buenos Aires males,
Sar F Sarmiento females, Sar M Sarmiento males
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metabolism) with respect to the development time ob-
served in the Sarmiento population.
The geographical differences of wing shape in Ae. albi-

fasciatus could indicate a geographical polymorphism or
population structure, favored by the isolation between
populations, since Sarmiento valley is surrounded by a
desert steppe matrix. On the other hand, the shape dif-
ferences between populations should reflect the arid or
temperate environmental conditions [24].
The difference of the wing shape between studied pop-

ulations could indicate an adaptation in relation to flight
dynamics [19, 20]. In a windy environment such as the
Patagonian arid steppe during the summer time [38], the
favorable Ae. albifasiatus season [12], thinner wings
could be more favorable to avoid being displaced.
It is known that the individual or population variations

of the wing shape and size are selected depending on the
characteristics of the environment [72]. The architecture
of morphological characters responds to the engagement
between the demands of the environment and those of the
genome [25]. Therefore, complementary molecular studies
could explain the proportion explained by the genotype
and the proportion explained by the environment.
In many circumstances, alternative phenotypes in

response to environmental changes could be an
adaptive strategy to maximize fitness in variable
environments [73, 74].

Conclusions
The results of the present study evidenced sexual shape
dimorphism in Ae. albifasciatus for the two populations
and sexual size dimorphism in cool temperature rearing
conditions (and probably a warm range). Shape geograph-
ical variation in individuals of Ae. albifasciatus, regardless
of the sex, could indicate a population polymorphism be-
tween geographical regions. Size geographical variation
was observed only in cool rearing temperatures, according
to the converse Bergmann’s rule. Furthermore, an inverse
relationship between size and temperature was demon-
strated for the two populations studied, although individ-
uals from Buenos Aires showed greater response
sensitivity than those from Sarmiento. Our results demon-
strate that the shape and size of wing provide useful
phenotypic information for studies related to sexual and
environmental adaptations.
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