Lo et al. Parasites & Vectors (2018) 11:387
https://doi.org/10.1186/s13071-018-2948-8

Parasites & Vectors

REVIEW Open Access

Plasmodium and intestinal parasite

@ CrossMark

perturbations of the infected host’s
inflammatory responses: a systematic

review

Aminata Colle Lo'?, Babacar Faye?, Ben Adu Gyan' and Linda Eva Amoah'"

Abstract

Plasmodium-helminth co-infection.

Co-infection of malaria and intestinal parasites is widespread in sub-Saharan Africa and causes severe disease especially
among the poorest populations. It has been shown that an intestinal parasite (helminth), mixed intestinal helminth or
Plasmodium parasite infection in a human induces a wide range of cytokine responses, including anti-inflammatory,
pro-inflammatory as well as regulatory cytokines. Although immunological interactions have been suggested to occur
during a concurrent infection of helminths and Plasmodium parasites, different conclusions have been drawn on the
influence this co-infection has on cytokine production. This review briefly discusses patterns of selected cytokine (IL-6,
IL-8, IL-10, TNF-a and INF-y) responses associated with infections caused by Plasmodium, intestinal parasites as well as a

Background

Malaria, a significant contributor to high childhood mortal-
ity, is endemic in the tropical regions as are pathogenic hel-
minth infections. The distribution patterns of malaria
parasites (Plasmodium spp.) and helminths coincide (1, 2],
making malaria-intestinal parasite co-infections very com-
mon occurrences in most malaria endemic countries (Fig.
1, Table 1). In patients infected with Plasmodium spp., the
interdependence between pro- and anti-inflammatory me-
diators of immunity can influence the survival of the Plas-
modium parasite and subsequent development of disease
[3]. In humans, helminth infections have strong
immune-modulatory effects that could impact on other
co-infecting parasites [4]. Additionally, helminth infections
can cause anemia in the host. Anemia during a Plasmo-
dium infection enhances gametocyte production [5], which
can result in an increase in malaria transmission. Thus, an
effective malaria control strategy should include critical
knowledge of the impact helminth infections exert on Plas-
modium parasite development and survival in the host.
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It is evident from several human epidemiological sur-
veys that have assessed variations in cytokine responses
during parasitic infections that contradictory findings
have been reported on responses identified during Plas-
modium-helminth co-infections. For example, some
studies on co-infections of Plasmodium and selected hel-
minths such as Schistosoma haematobium and Trichuris tri-
chiura have reported an increase in malaria parasite
prevalence, parasite density, frequency and severity of disease
[6-10]. Other studies have suggested that co-infection with
Plasmodium and selected helminths including Schistosoma
mansoni or S. haematobium, Ascaris lumbricoides, Necator
americanus and T. trichiura provides protection against mal-
aria [11-13]. Some studies, however, could not identify any
effect of helminth (S. haematobium and S. mansoni)
co-infection on the outcome of malaria [14, 15]. Two recent
meta-analyses determined the overall odds of asymptomatic
malaria to be slightly lower in uninfected children compared
to children infected with soil-transmitted helminths (STH),
including, N. americanus, A. lumbricoides T. trichiura or S.
mansoni or S. haematobium [16, 17]. It has, however, been
noted that immune responses to the different forms (eggs,
adults and cercariae) of helminths differ, such as the differ-
ences noted in inflammatory responses to S. mansoni eggs
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Fig. 1 Distribution of people suspected to have malaria and children with soil-transmitted helminthiases. A map showing the global distribution
of people in 2016 with suspected malaria (ovals) and children requiring helminth treatment (triangles). Countries with both an oval and a triangle
are burdened with both diseases. The data for the soil-transmitted helminthiases was obtained from the Global Health Observatory (GHO) data
[2] and the suspected malaria cases obtained from the 2017 WHO Malaria Report [1].
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and larvae [18]. As such immune responses during Plasmo-
dium-helminth co-infections are naturally expected to differ,
depending on the form (stage) of the infecting helminth
(egg, larvae or adult). This then could account for the
variations in results obtained in the reported studies.
The risk of anemia has been suggested to be high in STH
infections as is an increase in the prevalence of malaria
during a Plasmodium-Schistosoma spp. co-infection [19].
During the 2-day life-cycle of the asexual Plasmodium
falciparum parasite, some developmental life-stages

Table 1 Prevalence of Plasmodium-helminth co-infections. A
selection of malaria-helminth co-infection prevalence data
obtained from studies conducted in Africa and South America

Country Year Prevalence (%) Reference
Cameroon 2008 139 [127]
Cameroon 2014 221 [128]
Cameroon 2015 11.9 [129]
Cameroon 2016 116 [16]
Colombia 2012 245 [130]
Ethiopia 2009 236 [131]
Ethiopia 2010 39.6 [132]
Ethiopia 2012 194 [133]
Ethiopia 2012 52 [134]
Gabon 2010 15.0 [135]
Ghana 2009 310 [136]
Ghana 2009 30.7 9
Ghana 2011 30.5 [137]
Indonesia 2016 7.1 [138]
Ivory Coast 2012 247 [139]
Ivory Coast 2014 135 [140]
Kenya 2008 26.7 [141]
Kenya 2009 378 [142]
Kenya 2011 09 [143]
Kenya 2013 4.7 [144]
Kenya 2015 14.3 [145]
Malawi 2011 214 [146]
Nigeria 2011 43 [147]
Nigeria 2013 209 [148]
Nigeria 2013 429 [149]
Tanzania 2014 179 [150]
Tanzania 2017 264 [151]
Thailand 2010 19.0 [13]
Uganda 2005 548 [86]
Uganda 2008 15.5 [152]
Uganda 2010 155 [153]
Uganda 2011 93 [143]
Zambia 2012 443 [154]
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(trophozoites and schizonts) are sequestered and evade
immune recognition [20]. The 3 to 13 week helminth (var-
ies for specific helminthes) life-cycle in the human simi-
larly goes through various developmental stages, each
eliciting variations in immune responses in the human
host [21]. This makes the timing and order in which a
parasitic  mono-infection becomes a co-infection
additional contributing factors that could account for the
disparities in immune responses reported during Plasmo-
dium-helminth co-infections.

Cytokines associated with malaria infections
During a Plasmodium infection, T-cell mediated inflam-
matory responses contribute to reduced parasite density
as well as the pathology of the disease [22, 23]. The mech-
anism by which the host controls parasite density via
regulating inflammatory processes remains poorly under-
stood [24], although a number of human and animal stud-
ies have suggested that the extent to which the host
regulates the level and longevity of inflammatory re-
sponses generated against the parasite governs the effi-
cient clearance of the parasite during the infection [25].
An optimum balance of cytokines is always needed at the
different stages of the infection [26] to ensure effective
parasite clearance. Pro-inflammatory responses such as
IL-12, IEN-y and TNF-a are Th1 cytokines, which are pre-
dominantly expressed during a Plasmodium infection in
both humans and small rodents [27]. The Thl cytokines
including IL-6, IL-8, IL-12 and TNF-« are produced by a
number of different cells including macrophages, dendritic
cells and antigen presenting cells [28] are crucial to regu-
lating parasite density at the beginning of a P. falciparum
infection [29, 30].

Systemic cytokines associated with human malaria

An acute P. falciparum infection is usually associated
with an increase in pro-inflammatory responses, which
subsequently cause an increase in the secretion of IFN-y
and TNF-a [31]. An early IFN-y response is crucial in
protecting against the development of the symptoms
associated with severe malaria [32-34]. However, during
a chronic P. falciparum infection, cytokines including
IL-12, IFN-y and TNF-a can induce adverse immunopa-
thology if not well regulated [35]. The induction and
expansion of regulatory T (Treg) cells are crucial during
chronic disease [25, 36, 37] because Th2 cytokine cells
can counteract Thl responses.

A study conducted on the Dogon and the Fulani
people of Mali, who live within the same environment
but respond very differently to P. falciparum infections
(Fulani are more resistant to malaria than the Dogon),
found that IL-6, IL-8, IL-12 and IFN-y levels in unin-
fected Fulani children were much higher than in unin-
fected Dogon children. The levels of IL-8 in Fulani
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infected with P. falciparum were significantly lower than
an uninfected Fulani; however, the same was not
observed among the Dogon people. They also identified
IEN-y as the only cytokine that was significantly higher
in P. falciparum-infected Fulani children compared to
matched Dogon children [38]. Stimulation of mono-
nuclear cells from a Fulani with Plasmodium parasites
was found to produce 10-times higher IFN-y responses
compared to similar cells from the Dogon [38].

TNF-a is predominantly secreted by activated macro-
phages and its pyrogenic properties are central to the
immune response generated during a Plasmodium infec-
tion [39]. IL-6 has been suggested to be an essential
component of the immune response during the acute
phase [40] and in complicated P. falciparum malaria
[41]. Elevated levels of IL-6 have also been associated
with an increase in the incidence of clinical malaria [41].
This suggests that the IL-8 contribution to protection
may be specific to the Fulani, especially as elevated levels
of IL-8 have been reported in adults with severe malaria
in Thailand [42]. Additional studies are needed to clarify
the roles of IL-6 and IL-8 during Plasmodium infections.

Interleukin 10 in combination with other cytokines
play an important role as immune regulators by neu-
tralizing the Thl effects associated with the more se-
vere forms of Plasmodium infection [35]. Plasma
levels of IL-10 in children with asymptomatic and
mild malaria were found to correlate positively with
the parasite load and to reduce significantly after the
parasites in the peripheral blood were cleared [43].
Elevated levels of IL-10 with low TNF-a have been
associated with mild malaria [43], whilst recovery
from malaria (parasite clearance) has been associated
with reduced levels of IL-10 [44]. Similarly, IL-10
levels in Zambian children under six years-old with
severe malaria anemia were not significantly associ-
ated with protection [45]. The development of severe
malaria anemia in African children may be a result of
a lack of IL-10 production in response to high TNF-a
concentrations [46]. Furthermore, increased IL-10 but
not IL-12 production has been associated with in-
creased parasite density in Mozambican children with
both severe and uncomplicated malaria [47].

Cytokines associated with murine malaria

Animal studies have been used to buttress some findings
observed in in vitro and in vivo human studies relating
to the use of cytokines in the control of malaria para-
sites. Murine models of malaria demonstrate a regula-
tion of balance between IL-10 and inflammatory
cytokines such as IFN-y and TNF-a [48]. IL-10 produc-
tion early in a rodent malaria infection has been found
to prevent high parasite loads due to reduced Thl
responses [48] and the absence of regulatory cytokines
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during the later stages of the infection resulted in the
development of adverse immuno-pathology [48]. Al-
though pro-inflamatory responses involving cytokines
including TNF-a, IFEN-y have been identified as contrib-
utors to the pathology of cerebral malaria in mice [49],
early production of IFN-y has been found to be crucial
for preventing cerebral malaria [50].

In summary, human and murine models have both
suggested IFN-y to be essential for parasite clearance
and reduced parasite multiplication rates [51-53]. How-
ever, regulated IFN-y levels are required to avoid im-
mune pathology [26, 39]. These characteristics of IFN-y
suggest it to be an ideal marker for tolerance to Plasmo-
dium infections. Increased levels of IFN-y, TNF-a, IL-12
and IL-10 are known to be associated with a reduced
risk of malaria; however, those who become infected
with malaria parasites have an elevated risk of symptom-
atic malaria [54]. These cytokines are also essential for
inhibiting parasite development, stimulating parasite
clearance and interacting with macrophages, which
amongst other processes control infections through
antibody-dependent and independent phagocytosis [55].
These subsequently resulted in the suppression of mero-
zoite invasion into erythrocytes and subsequently fewer
parasitized erythrocytes. More information on processes
that occur in the immune system during a Plasmodium
parasite infection can help develop malaria vaccines as
well as help in designing other strategies for malaria
control interventions such as intermittent preventive
treatment (IPT) or seasonal malaria chemoprevention
(SMC).

Effects of intestinal parasite infections on
cytokine profiles

Helminths survive by modulating the host’s immune sys-
tem [17]. The initial immune response to intestinal hel-
minths is usually Thl, which is then overtaken by Th2
during the course of the infection. Elevated Th2
response [56, 57] and the production of a regulatory net-
work of immune responses [58, 59] are hallmarks of
chronic helminthiasis that have the potential to impact
the host’s immune response to other antigens [60]. The
chronic immune activation caused by a helminth infec-
tion can alter T-cell memory responses and result in
altered Th1 responses [18, 61, 62]. However, some intes-
tinal helminth interactions with the host, such as host
skin penetration by schistosome cercariae released from
the intermediate host (a snail) induce strong Thl
responses. These responses make the host susceptible to
inflammation characterized by the production of TNF-a
together with other cytokines such as IL-1, IL-8, IFN-y
[63, 64]. TNF-a has been reported to enhance [65, 66]
as well as decrease [67] the egg laying properties of
female S. mansoni parasites. The role played by TNF-a
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in the metabolism of the adult S. mansoni parasite also
remains controversial [68]. A comprehensive description
of the processes involved in the TNF-a pathway in hel-
minths is not readily available.

Although concurrent multiple (mixed) helminth infec-
tions are frequent occurrences, little is known about
how concurrent parasite infections, such as S. mansoni,
S. haematobium and A. lumbricoides, influence immune
responses in a patient. There are only a few studies that
have tried to understand the effect of multiple helminths
and intestinal protozoan parasite co-infections on im-
mune responses in children [69-71]. The IL-10 levels of
children infected with mono or mixed helminths have
been found to be similar to the levels in uninfected chil-
dren; however anthelmintic treatment of the infected
children resulted in a significant reduction in IL-10
levels compared to the uninfected children [70]. Simi-
larly, when peripheral blood mononuclear cells (PBMCs)
from adults co-infected with three parasites (filaria,
hookworm and Entamoeba histolytica) were stimulated
with helminth-specific antigens, they produced higher
IL-10 levels compared with PBMCs from adults without
the triple infection [72]. Filarial infection in Malian chil-
dren aged between 11 and 17 years was found to have a
higher ex vivo frequency of CD4+ cells producing IL-10
and IL-4 compared with those without the infection
[73]. IL-10 can modulate Thl responses by reducing
pro-inflammatory cytokine, including TNF-«, IFN-y and
IL-12 responses [72] as well as enhancing immune
suppression by preventing symptoms of inflammation
[74, 75]. An increase in IL-10 levels may generate
chronic disease pathogenesis. Co-infection with different
helminths may counteract the IL-10 effect and the dis-
tinct cytokine response profiles generated may be used
to define immunity as well as the severity of the result-
ant disease [68, 76]. A chronic co-infection of Brazilian
children aged between 4 and 11 years with A. lumbri-
coides and T. trichiura was associated with an acute pro-
duction of IL-10 in response to stimulation with A.
lumbricoides antigen [77]. However, another study in
young adults similarly co-infected with A. lumbricoides
and T. trichiura, identified similar levels of IL-10 in the
uninfected control, the mono- and poly-parasite infected
groups [78]. The balance between Thl and Th2 immune
responses induced in a host during a multiple mixed in-
testinal parasite infection can hinder immune clearance
of one of the co-infecting parasites over the other as has
been suggested from a study on young children within
independent or co-infections with Giardia lamblia and
Ascaris lumbricoides. Higher levels of TNF-a was found
in the co-infected children compared to matched chil-
dren with only a Giardia infection and the IL-10/IFN-y
ratio in these co-infected children was higher than in
uninfected children as well as children with only an

Page 5 of 12

Ascaris infection [79]. These results suggest that
although the host most often is able to control infecting
helminth load by initiating Th2 cytokine production, the
presence of concurrent intestinal parasites can alter the
cytokine responses and lead to persistence or a chronic
infection of one of the infecting parasites.

Cytokine profile during co-infection of
Plasmodium and intestinal parasites

The precise impact of polyparasitism on the immunopa-
thology of malaria is not known even though malaria
co-infections with intestinal parasites in tropical regions
are common [4]. Several studies conducted in Africa
demonstrate that infection with STH and Schistosoma
spp. may affect the immune response of a host to a mal-
aria parasite infection and lead to increased susceptibility
and disease severity [80—83]. However, helminthic infec-
tions have also been demonstrated to offer protection
against severe malaria and anemia [84]. The variations
reported in these study outcomes could be due to differ-
ences in the co-infecting helminth species, study design,
study population and the level of immunity to Plasmo-
dium parasites in the study population [85, 86].

Ascaris infections are more likely to afford protection
against severe malaria while infections with hookworm
or Schistosoma spp. are more likely to enhance the inci-
dence of malaria [87]. The underlying immune responses
generated against the different pathogens may have a
strong effect on the development and pathological con-
sequences of malaria. Diallo et al. [82] reported higher
plasma levels of TNF-a and IFN-y in S. haematobium
and P. falciparum co-infected children compared with
those infected with only P. falciparum. When blood
from Ghanaian children with and without a S. haemato-
bium infection was stimulated with P. falciparum anti-
gens, a significantly higher level of IL-10 was recorded
[17]. Similarly, IL-10 levels were significantly increased
and INF-y, IL-17 and TNF-a marked decreased when
whole blood samples from asymptomatic malaria
patients in Mali with filaria co-infections were stimu-
lated with P. falciparum schizont lysate compared with
the asymptomatic patients without filarial infection [73].
Children aged between 4 and 14 years with malaria and
an asymptomatic S. haematobium infection were found
to have significantly higher levels of IFN-y but similar
levels of IL-10 when compared to matched children
without S. haematobium infection [88]. Schistosoma hae-
matobium was found to protect against P. falciparum in
children between 4 and 8 years-old [88]. IL-6 and IL-10
levels were found to correlate positively with acute mal-
aria in children infected with S. haematobium who
developed P. falciparum malaria when compared with
Schistosoma-negative children who developed malaria.
The effect was more pronounced in children aged
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between 9 and 14 years relative to those between 4 and
8 years [89]. Whilst a similar IL-10/IFN-y ratio was ob-
served in both the Schistosoma-positive and -negative
children aged between 4 and 14 years who developed
acute malaria, a significantly lower mean IL-10/TNF-a
ratio was identified in Schistosoma-positive children
aged between 9 and 14 years who developed acute mal-
aria compared with matched Schistosoma negative chil-
dren [89]. However, results from a study involving
children co-infected with Plasmodium and S. haemato-
bium did not demonstrate any influence of the
co-infecting helminth on the immune response gener-
ated by the host against the Plasmodium parasite as a
similar increase in both innate and adaptive immune re-
sponses was observed in the P. falciparum-infected and
P. falciparum-S. haematobium co-infected children [90].

Helminth infections induce immuno-regulatory re-
sponses such as Th2 responses in the human host. These
immune-regulatory responses can inhibit the ability of the
host to mount an effective Thl response [78], which also
influences the immune response against the malaria para-
site. When plasma levels of cytokines from individuals
from the Amazon region of Brazil with either a Plasmo-
dium infection or an intestinal parasite (G. intestinalis, A.
duodenale and S. stercoralis) infection or concurrent Plas-
modium-helminth (G. intestinalis, A. duodenale and S.
stercoralis) co-infection were compared to uninfected in-
dividuals, the levels of TNF-«, IL-2, IL-10, IL-6 in the
Plasmodium and Plasmodium-helminth co-infected group
were similar, and both significantly higher than the unin-
fected group. These results corroborated the absence of
additional stimulation of cytokine responses by the
co-infecting helminth [91]. The median level of IFN-y
was, however, increased in all three (Plasmodium, intes-
tinal parasite and Plasmodium-helminth co-infected)
groups compared to the uninfected group [91]. In malaria,
an efficient immunological balance prevents excessive
multiplication of the parasite, which enables the malaria
parasite survive in the host without the associated activa-
tion of inflammation. More studies are however needed to
elucidate the immunological balance and the relationship
between Th1, Th2 and chemokine responses that develop
and moderate a Plasmodium-helminth co-infection as
such information is very limited.

Cytokine profile in pregnancy during a malaria
and intestinal parasite co-infection

Pregnancy naturally causes alterations in immune re-
sponses and results in the dominance of Th2 immune
responses. Increased IL-10 and a decrease in IFN-y pro-
duction have been associated with successful pregnancies
in humans [92-94]. However, decreased IFN-y and
TNEF-a production in animal models have been associated
with poor pregnancy outcomes [93, 94]. These alterations
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in immune responses have been found to alter the suscep-
tibility of pregnant women to some infectious diseases
[95] including malaria [96, 97] and intestinal parasite
infections [98, 99]. In humans, IFN-y levels to schistosome
egg and worm antigen has been found to decrease during
pregnancy and high IL-10 levels [100-102] as well as
IFN-y, TNF-q, IL-10 and IL-6 [103] have been found to be
associated with pregnancy associated malaria. Animal
models have also shown a reduced schistosome specific
IFN-y production in pregnant mice [104]. Interleukin 10
responses to schistosome egg and worm antigen, however,
are not altered by pregnancy in humans [105, 106]. The
alterations in cytokine responses during the individual
mono parasitic infections are likely to influence cytokine
responses that occur during Plasmodium-helminth
co-infections [98]. Although a number of studies have
been conducted on pregnant women co-infected with
Plasmodium and helminths, their main focus, which has
been captured in a review by Mpairwe et al. [107], has
been on anemia and birth outcomes, including infant birth
weight, anemia, mortality and response to vaccines
amongst others. More studies are needed to monitor
changes in immune responses that occur across the three
trimesters of pregnancy in women co-infected with these
parasites as pregnancy makes women highly susceptible to
mono and co-infections of these parasitic infections.

Insights
We noticed the existence of several disparities relating
to the association between various cytokine levels found
in individuals co-infected with P. falciparum and differ-
ent helminths. Diverse effects of a helminth infection on
the susceptibility, severity and the pathology or the risk
of cerebral malaria have been observed in several human
studies conducted in Africa. These disparities could have
arisen as a result of a number of different covariates,
including the choice and nutritional status of the co-
hort(s) used in the study, the level of exposure, the in-
fecting parasite species and the population and
composition of microbial communities (microbiota) resi-
dent in the hosts’ intestines to name a few. In P. falcip-
arum immunology, age is a strong confounder to
antibody and cytokine analysis; however, in many of the
studies monitoring the cytokine profiles of people with a
malaria helminth co-infection, children with ages ran-
ging from a few months with a low age range [91], to 19
years with a large age range [108] were used. TNF-a was
found to be generally high in children aged between 11
and 12 years irrespective of their infection status. More
consistent data could be obtained when the categories of
age stratification is better described.

The definition of a P. falciparum and helminth infec-
tion differed between the studies, making the definition
for a malaria helminth co-infection very different. A few
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studies defined malaria as P. falciparum positivity by real
time PCR [89] and others used microscopy [89, 109].
Some studies defined a helminth infection as parasite
positivity by real time PCR [91] or by observing eggs in
stool and urine using microscopy [89, 91]. The sensitiv-
ity of the tests applied could interfere with sample
grouping and subsequently influence the statistical ana-
lysis. In some instances, the cohort was asymptomatic
for one [110] or both [91] the malaria and helminth
infection. Other times, one infection was classified as
symptomatic and sometimes chronic. A better under-
standing of cytokine responses generated during differ-
ent presentations of an infection, such as during
asymptomatic and symptomatic as well as high and low
density infections, especially relating to malaria, could
also help in providing a more stringent interpretation of
and less disparity in the data obtained during Plasmo-
dium-helminth co-infections under different infecting
parasite conditions.

Nutrition directly impacts immunity as malnutrition
and obesity have been found to result in immunodefi-
ciency and reduced immunity, respectively [111], and
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indirectly influence the composition of resident micro-
biota in the host. Microbiota that colonize the human
intestine have been found to regulate, including the
modulation of T cell differentiation [112, 113] as well as
be regulated by the human immune system [114]. Disrup-
tion of the homeostatic balance between the microbiota
and the immune system can render the host susceptible to
disease [115]. Animal studies have identified helminth
infections to alter the microbiota composition in the
infected animal and subsequently result in an increase in
the adult worm population [116]. Luckily, the alteration in
microbiota composition is reversible, with elimination of
the adult helminth resulting in a restoration of the original
microbiota composition [117] as well as immunity of the
previously infected host. Controlling for nutritional status
and resident microbiota population and composition
within and between cohorts would be very challenging
and as such would remain as an uncontrollable covariate.
These properties of the infection status all greatly
influence the cytokine profile of the individual infections
and likely would affect the cytokine profile of the
co-infection. A list of cytokine responses associated with

Table 2 Changes in cytokine profiles during parasitic infections. A selection of results obtained from selected Plasmodium, helminth
and Plasmodium-helminth co-infection studies conducted in Africa and South America

Year Country  Study Parasite Cytokines Reference
population
2016 Indonesia All age Helminths Increased in vitro production of pro-inflammatory cytokines in response  [108]
groups to Pf after treatment
2015 Gabon Children Schistosoma haematobium Innate or adaptive immune response to Pf with or without Schistosoma ~ [90]
co-infection was similar
2015 Kenya Children Polyparasite IL-10 increased with Schistosoma infection but decreased in Schistosoma/  [90]
filaria co-infections
IL-6 increased with Pf infection but decreased in Pf/hookworm [109]
co-infection
IL-6 and TNF-a levels were not affected by Schistosoma infection [109]
2014 Nigeria Children Schistosoma haematobium IL-10 did not change with Schistosoma infection but IFN-y increased in ~ [110]
older children
2014 Brazil All age Giardia intestinalis, Ancylostoma TNF-q, IL-12, IL-10 and IL-6 were low but IFN-y was high in co-infected [91]
groups duodenale, Strongiloides people
stercoralis
2013 Ghana All age Necator americanus and Pf exposure increased TNF-q, IL-17 and IL-7 production [155]
groups Giardia lamblia
2012 Mali Children Schistosoma haematobium Higher Th1 cytokines in Schistosoma/Pf co-infections [88]
2012 Mali All age Filaria IL-12 low in filarial-positive, in vitro filarial-positive associated with IFN [156]
groups regulatory factor 1, no IL-12 in response to malaria antigen stimulation
2011 Mali All age Filaria Filarial infection with asymptomatic malaria was associated with an [73]
groups increase in IL-4, IL-10 and IL-17A. PBMC stimulation with Pf antigen
reduced IFN-y, TNF-a and IL-17A in the filiarial infection
2011 Senegal  All age Schistosoma haematobium Higher IL-10 in the co-infected group [157]
groups
2010 Senegal  Children Schistosoma haematobium Schizont extract produced IL-10 only in co-infected group [158]
2009 West Children Schistosoma mansoni Memory T-regulators cells decreased in co-infected children [159]
Kenya

Pf, Plasmodium falciparum
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the innate and adaptive immune responses to Plasmo-
dium and helminth infections and co-infections is shown
in Table 2.

Anthelmintic treatment (deworming) in humans has
been suggested to enhance immune responsiveness to
vaccines, especially to Plasmodium antigens in adults
and children above 4 years old [118]. A major stumbling
block to the validation of a malaria vaccine candidate is
reduced immunogenicity. Currently, the only licensed
malaria vaccine (RTS,S) is recommended to be adminis-
tered as a four dose schedule in infants between 5 and
17 months old, which exhibited a 31.5% efficacy against
severe malaria over a four year period [119]. Deworming
children between 5 and 17 months is likely to result in
enhanced immune responsiveness to the Plasmodium
antigen (circumsporozoite protein, CSP) in RTS,S and
subsequently increase the effectiveness of the vaccine.
This increased immune responsiveness may also result
in RTS,S efficacy in older children as well.

Experimental results obtained from the mice studies
discussed in this review that have not been validated in
human studies are to be taken as suggestive and to an
extent that is probable but not definitive. These cautions
are relevant because despite the genetic and physciologi-
cal similarities between humans and mice [120, 121] and
the fact that some studies have demonstrated similarities
in observations made in both murine and human studies
[122-124]. A number of studies have demonstrated dis-
parities in results from murine and human studies such
as fibrogenesis in mice being associated with a Th2
response but fibrogenesis caused by severe ‘hepatio-sple-
nic’ schistosomiasis in humans associated with Thl re-
sponses [125, 126].

Conclusions

Several studies have provided evidence of immunological
perturbations occurring during Plasmodium intestinal para-
site co-infections; however, due to varying confounding fac-
tors, different mechanisms have been reported for the
protection provided by different cytokines. A major
source of variation in the results reported by the nu-
merous studies could be the use of different cohorts
and population (ethnic groups and age), stimulant (live
parasite or recombinant antigen) and cell type (PBMC
or plasma) as well as the different methods used to de-
termine parasite prevalence and density.

Increased national efforts to reduce parasitic worm in-
fections with frequent mass drug treatments may result
in the modulation of the helminth induced cytokine
response. It is thus imperative that the precise contribu-
tion intestinal parasites add on to immune responses
generated during a malaria infection is fully understood.
This will enable a better understanding of immune
modulation when such a mass drug treatment is
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implemented. Increased efforts to obtain an effective
malaria vaccine require a complete understanding of im-
mune moderations generated during the co-infections of
Plasmodium and intestinal worms.
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