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Abstract

model mirrored the national model predictions.

better inform allocation of public health services.

Background: Yellow fever virus is a mosquito-borne flavivirus that persists in an enzoonotic cycle in non-human
primates (NHPs) in Brazil, causing disease in humans through spillover events. Yellow fever (YF) re-emerged in the early
2000s, spreading from the Amazon River basin towards the previously considered low-risk, southeastern region of the
country. Previous methods mapping YF spillover risk do not incorporate the temporal dynamics and ecological context
of the disease, and are therefore unable to predict seasonality in spatial risk across Brazil. We present the results of a
bagged logistic regression predicting the propensity for YF spillover per municipality (administrative sub-district) in
Brazil from environmental and demographic covariates aggregated by month. Ecological context was incorporated by
creating National and Regional models of spillover dynamics, where the Regional model consisted of two separate
models determined by the regions’ NHP reservoir species richness (high vs low).

Results: Of the 5560 municipalities, 82 reported YF cases from 2001 to 2013. Model accuracy was high for the National
and low reservoir richness (LRR) models (AUC = 0.80), while the high reservoir richness (HRR) model accuracy was
lower (AUC = 0.63). The National model predicted consistently high spillover risk in the Amazon, while the Regional
model predicted strong seasonality in spillover risk. Within the Regional model, seasonality of spillover risk in the HRR
region was asynchronous to the LRR region. However, the observed seasonality of spillover risk in the LRR Regional

Conclusions: The predicted risk of YF spillover varies with space and time. Seasonal trends differ between regions
indicating, at times, spillover risk can be higher in the urban coastal regions than the Amazon River basin which is
counterintuitive based on current YF risk maps. Understanding the spatio-temporal patterns of YF spillover risk could
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Background

Yellow fever virus (YFV), a mosquito-borne flavivirus,
began re-emerging in Brazil in the early 2000s, gradually
spreading from the Amazon River basin towards the
southeastern region of the country [1, 2]. Unlike other
mosquito-borne diseases in Brazil, such as malaria and
dengue, YFV circulates in a sylvatic transmission cycle
among non-human primate (NHP) reservoirs main-
tained by Haemagogus and Sabethes mosquitoes, with
spillover occurring when mosquitoes transmit outside
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this cycle to human hosts [3, 4]. Thus, YFV spillover
events leading to human yellow fever (YF) disease are
closely tied to population dynamics and community
composition of both mosquitoes and NHP. Beginning in
late 2016, Brazil experienced a YF outbreak of over 450
cases, more cases than had been reported in the previ-
ous fifteen years combined [5]. The majority of these
cases were outside the previously defined range of YF
and near densely populated, urban areas. To date, the
Brazilian Ministry of Health classifies these cases as “syl-
vatic”, or the direct result of a spillover event due to
transmission of YFV from local NHP reservoirs to
humans via Haemagogus and Sabethes mosquitoes. The
unexpected emergence of YF in these regions previously
considered low-risk highlights the need for a better
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understanding of the spatial and temporal patterns of YF
spillover risk.

Infectious disease mapping is one such method to pre-
dict spatial patterns in disease transmission risk [6]. Pre-
dictive maps of disease risk use statistical methods to
account for disease transmission dynamics via their rela-
tionship with environmental and socio-demographic co-
variates. This approach has been applied to a range of
infectious diseases, including Ebola [7, 8], malaria [9, 10]
and dengue [11, 12]. Past efforts at mapping YF have fo-
cused primarily on environmental variables as drivers of
YF spillover dynamics [13—15]. However, these studies
have relied on static environmental variables, ignoring
multi-year and annual cycles in environmental condi-
tions and spillover events which occur on seven and
fourteen year cycles [16, 17]. Multi-year cycles are due
to the El Nifo-Southern Oscillation [18] and the accu-
mulation of susceptible hosts in NHP populations [16].
Spillover events are also seasonal, with the majority of
cases occurring during the rainy season (approximately
December-April), when mosquito vector abundances are
highest [19]. Predictive models that focus on a snapshot
in time, or a normalized average of climate data, are
therefore unable to capture temporal changes in spill-
over risk.

Because the compositions of mosquito and NHP com-
munities vary over space, it might be that the processes
and corresponding environmental drivers of YF spillover
are dependent on the underlying ecological context. For
example, in the West Nile virus (WNV) system in the
USA, WNV is positively associated with urban land
cover in the northeast and with agricultural land cover
in the west, due to different habitat preferences of vec-
tors of the disease, which differ across regions [20]. Like
the USA, Brazil contains multiple biomes, with Amazon
rainforest in the northwestern region, cerrado (savanna)
in the central region, and Atlantic rainforest in coastal
areas in the southeast. We reasoned that the processes
and corresponding environmental drivers of YF spillover
are dependent on the underlying ecological context or
region. Multiple models, unlike a single model, can in-
corporate different directions and magnitudes of rela-
tionships between environmental variables and YF
spillover. By assuming a single homogeneous process of
spillover across the country, current models of spatial
risk of YF spillover do not allow for the existence of a
variety of spillover processes, and therefore cannot iden-
tify their corresponding environmental drivers.

Past spatial mapping of YF risk in Brazil has assumed
a temporally constant risk or similar environmental
drivers of YF spillover across all regions of Brazil, re-
gardless of their NHP species richness [14, 15, 21, 22].
Here, we first present a statistical model (National
model) that incorporates monthly variation in covariates
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to predict the propensity of YF spillover across munici-
palities (sub-state administrative units) of Brazil. Sec-
ondly, we better contextualize the spillover process by
fitting models to two contiguous regions determined by
a natural break in NHP reservoir species richness. The
composite of these models are presented as the Regional
model. Finally, we present the models’ predictions of the
spatio-temporal risk of YF transmission by month across
Brazil from 2001 to 2013 for the National and Regional
models.

Methods

YF spillover propensity was estimated for each month
between January 2001 and December 2013 using 12 en-
vironmental and socio-demographic covariates for each
municipality by a bagged logistic regression model (Fig. 1,
Table 1). The spatial and temporal unit of the model,
municipality and month (hereby referred to as
municipality-month) was based on the finest resolution
of epidemiological data reported by the Brazilian Minis-
try of Health. Municipality-months with at least a single
reported YFV case were given a positive label for the
binary response variable, spillover event. Data collection
methods are briefly reported here, with additional details
reported in Additional file 1.

Data collection

We chose environmental and socio-demographic covari-
ates that are suspected drivers of YF disease transmis-
sion by either modifying the host population, mosquito
population or host proximity to competent non-human
primate (NHP) reservoirs (Table 1). Variables were
downloaded at the monthly, yearly, or static temporal
resolution, as determined by the availability of data for
the whole country of Brazil. In the case where annual
values were the smallest temporal resolution, values
were held constant for the year. Variables were spatially
averaged by area to the resolution of the municipality to
provide a mean value for each municipality-month. Ag-
gregating spatial variables can lead to bias (e.g. the
modifiable areal unit problem) by analyzing the relation-
ship between variables at a coarser spatial scale than the
process of spillover occurs [23, 24]. However, we limited
bias introduced by aggregation by conducting our ana-
lysis at the finest grain possible given the availability of
epidemiological data. Further, we believe conducting an
analysis at the scale of the municipality rather than
pixel-level is more relevant to public health
decision-making as this corresponds to the smallest ad-
ministrative level. All variables were visually inspected
for normality and cube root transformed if needed, ex-
cept for population density, which was log,,-transformed
(Table 1).
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Fig. 1 Conceptual diagram of modeling methods. The dataset was aggregated by month and municipality (top panel) before being split into training (70%)
and withheld testing (30%) datasets. Models were fit to 500 data subsamples, which consisted of 10 spillover events and 100 background obsenvations (lower
panel). The bagged logistic model predictions are the average of subsampled dataset models. Spatial dependence was not considered in the model

Mosquitoes are extremely sensitive to changes in
temperature and relative humidity, and their abundance is
often correlated with rainfall [12, 25, 26]. We therefore
chose mean monthly temperature (hereby referred to as
temperature), the Normalized Difference Vegetation Index
(NDVI), and mean hourly rainfall averaged over a month
(hereby referred to as rainfall) as variables relevant to mos-
quito population dynamics. While daily temperature vari-
ability and extremes are important for mosquito dynamics
[27, 28], environmental variables are not available at this
fine of a temporal-scale for the entire country of Brazil. We
therefore used monthly averages to represent the climatic
profile of a municipality corresponding to the temporal
resolution of the epidemiological reports. Preliminary data

analysis revealed spatial minima, maxima and mean vari-
ables to be highly correlated (p > 0.90, Additional file 1: Fig-
ure S1). Univariate analyses on the training data found no
difference in explanatory power amongst variables (Add-
itional file 1: Table S1). Therefore, we chose the spatial
mean to represent each environmental variable to reduce
bias due to collinearity [29]. In addition to environmental
variables that can influence mosquito abundances, we also
included the species ranges of mosquito vectors of YF in
our model. We estimated the occurrence of mosquito vec-
tors from published MaxEnt models of distributions of
three YF vector species (Hg. leucocelaenus, Hg. janthinomys
and Sa. chloropterus). The maximum probability amongst
the three species was chosen for each municipality,



Kaul et al. Parasites & Vectors (2018) 11:488

Page 4 of 12

Table 1 Summary of data sources used in the model (see Additional file 1 for additional information on variable collection)

Data type Temporal resolution Raw spatial resolution Source Extreme variable?
Yellow fever incidence Monthly Municipality MS -

Population density Yearly Municipality MS -

Land surface temperature Monthly 0.05° LPDAAC Yes

Normalized difference vegetation index Monthly 1 km LPDAAC Yes

Average hourly rainfall® Monthly 0.25° TRMM Yes

Fire density” Monthly 1 km FIRMS Yes

Non-human primate species richness® Static Municipality JUCN -

Agricultural and non-human-primate overlap® Yearly 1 km IUCN/ LPDAAC -

Maximum probability of mosquito vector occurrence Static 0.04167° VectorMap -

Abbreviations: MS Brazilian Ministry of Health, LPDAAC NASA Land Processes Distributed Active Archive Center, TRMM Tropical Rainfall Monitoring Mission, FIRMS
Fire Information for Resource Management System, /UCN International Union for Conservation of Nature

#Variable was cube root transformed prior to model construction

resulting in the maximum probability of a mosquito vector
occurring within that municipality.

Transmission from the sylvatic cycle to human hosts
occurs when human hosts are in proximity to NHP res-
ervoirs of the pathogen. Human proximity to NHPs was
captured in three variables. First, we created a variable
of fire density, as a representation of anthropogenic land
conversion [30]. Secondly, we calculated the species
richness of NHPs susceptible to YF per municipality to
represent reservoir abundance. In general, host species
richness positively correlates with spillover events of dis-
eases of zoonotic origin [31]. Other factors, such as spe-
cies’ competences, relative abundances, and overall
community structure, can further influence spillover risk
[32, 33]. However, the role of individual species in YF
transmission and the population abundances of NHPs
across all of Brazil is not known. Finally, as a proxy for
longer-term NHP-human contact, we calculated the pro-
portion of a municipality’s land area that is both agricul-
tural land use and within a primate species’ range. To
calculate this proportion of agricultural land overlapping
NHP species’ ranges, we overlaid species range maps
with land cover maps of agricultural land use. We then
calculated the proportion of total municipality area that
was both in agricultural use and within a genus range
and summed across all nine genera, resulting in a value
of 0-9 per municipality per year.

Additional variables were constructed to capture ex-
treme events, which are considered to be triggers for
socio-ecological events like YF spillovers. The three envir-
onmental covariates intended to reflect mosquito dynam-
ics (temperature, NDVI and rainfall) along with fire
density were scaled to the maximum value for that specific
calendar month and municipality. The inclusion of anom-
alies allowed us to distinguish between seasonal trends
and particularly extreme events acting as triggers [7].

Human host population dynamics were captured by
annual estimates of human population by municipality,

obtained from the Brazilian Institute of Geography and
Statistics. This was converted to population density
based on municipality area, and then log;o-transformed.
Higher frequency population density estimates or pro-
portion of the population vaccinated were not available
by municipality.

Finally, a spillover occurred in a municipality-month
that had one or more confirmed YF cases. We used the
monthly confirmed cases of YF reported by the Brazilian
Ministry of Health Notification of Injury Information
System (Sianan Net) to determine whether a spillover
event occurred for each municipality in each of the 156
months between January 2001 and December 2013. Ex-
ploratory analysis indicated the majority of YF cases
were single cases per municipality-month (mean 1.83 +
2.46 YF cases per municipality-month, Additional file 1:
Figure S2). Given the consistent reporting of single cases
per municipality-month, we collapsed the continuous
case counts data into the binary spillover variable. In
municipality-months with multiple cases reported, the
binary classification assumes that at least one case is the
result of sylvatic transmission. Municipality-months with
a single case and those with multiple cases are equally
weighted as a single spillover event.

The compiled dataset had 867,360 observations (5560
municipalities times 156 months), 106 of which were
positive for a spillover event (Table 2). No additional
variable selection was conducted before model training
and testing.

Predictive model

We used a bagged logistic regression to predict the
monthly propensity of YF spillover per municipality
across Brazil, which we refer to as the “National model”
(Fig. 1). Bagging (bootstrap aggregating) is an ensemble
machine learning approach that combines the predictive
power of many less informative models to provide an
overall more accurate prediction [34, 35]. The less
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Table 2 Dataset summary. Training and testing dataset used to build the National model, which was then subset into the low
reservoir richness (LRR), and high reservoir richness (HRR) Regional models

Model Training dataset Testing dataset Whole dataset

Positive Background Positive Background Positive Background
National 74 607,077 32 260,177 106 867,254
LRR 59 584,263 27 250,251 86 834,514
HRR 15 22,814 5 9926 20 32,740

informative models are constructed from random small
subsets of the full dataset. The final model consists of an
average of the less informative models. Bagging is also
particularly robust with noisy or sparse data, ensuring
models are not over fit to the relatively few positive ob-
servations [34].

We used a balanced spatial and temporal sampling de-
sign via the BalancedSampling package in R to split the
data into training (70%) and testing (30%) sets, preserv-
ing the proportion of municipality-months with a spill-
over event (positive observations) in each [36]. This
sampling design ensured there was no spatial or tem-
poral trend in our training and testing data, which is
particularly important given the severe imbalance of
positive to negative or background observations (positive
observations are ~0.01% of the dataset) [37]. The train-
ing data were used to fit 500 logistic regression models
with main effects of the 12 variables. Each logistic re-
gression model was fit to a randomly sampled without
replacement subsample of data consisting of 10 and 100
positive and background points in the training dataset,
respectively. The final bagged logistic regression model
is the average of the logistic regressions.

The data used for the national model above were fur-
ther divided into two regional datasets, based on species
richness of non-human primate reservoirs. These data-
sets were used to build separate high reservoir richness
(HRR, > 5 NHP reservoir species) or low reservoir rich-
ness (LRR, < 5 NHP reservoir species) models, both of
which still included NHP richness as a covariate. We
refer to the combination of these models as the “Re-
gional model”. This division was determined by a natural
break in the distribution of the species richness data,
which generally corresponded with a geographic break
(Fig. 2). In a few instances, municipalities with a low res-
ervoir richness (< 5 NHP reservoir species) were in-
cluded in the HRR region, and vice versa to create two
contiguous regions. This data driven delineation of re-
gions within the Regional model allowed for potentially
different relationships between environmental covariates
and spillover risk in the HRR and LRR regions while
preserving the maximum number of positive observa-
tions within the datasets.

We calculated the performance of each model via the
area under the receiver-operator curve (AUC) of the

withheld testing data. The AUC represents the model’s
classification performance and can range from 0.0 to 1.0,
where a value of 0.5 is the equivalent of random guess-
ing while an AUC of 1.0 indicates a perfect prediction
[38]. Relative variable importance was assessed by the
difference in median AUC of 100 permutations to the
AUC of the original model, scaled to the largest decrease
in AUC due to permutation of a single variable.

Results

Eighty-two of 5560 municipalities reported YF cases
from 2001 to 2013. The number of repeated spillover
events in a single municipality was low. Roughly 77%
(63) of municipalities reported cases in only a single
month, 18% (15) reported cases in two months during
the 13 year period. Only 3 municipalities reported cases
in 3 months, and a single municipality reported cases in
four months. Municipalities with more than 2 spillover
events were all located Minas Gerais, a southeastern
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Fig. 2 Distribution of NHP species richness by municipality. Plot of
distribution of non-human primate species richness per municipality,
colored by the break used to determine areas of high reservoir richness
(purple) and low reservoir richness (orange). Inset is a map of the
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state with locally-acquired cases in the 2017 and 2018
outbreaks.

Model predictive accuracy was high for all three data-
sets. The AUC values for models evaluated on the train-
ing dataset were 0.81, 0.79 and 0.88 for the national
dataset, LRR and HRR regions, respectively. When eval-
uated on the testing dataset, the AUC was 0.80 for both
the National and LRR Regional models, while the predic-
tions on the HRR testing dataset had an AUC of 0.63.

The predicted risk of YF spillover varied by season,
generally peaking in January for the National and LRR
Regional models (Fig. 3). The temporal risk in the HRR
model was asynchronous to the other two models, and
peaked in May (Fig. 4f). A supplemental movie shows
the predicted risk of YF spillover for the entire time
series (Additional file 2). The municipalities along the
Amazon River and surrounding Sdo Luis, Rio de Janeiro
and Sdo Paulo had the greatest change in spillover risk
throughout the year (Fig. 4a-c). This annual variation
was more pronounced in the Regional models.

We conducted a slope test for each municipality from
2001 to 2013 to explore long-term trends in the predicted
intensity of yellow fever spillover. The majority of munici-
palities saw no long-term trend in predicted intensity over
the 156 months included in the dataset (National model:
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5028 of 5560 municipalities; Regional model: 5045 of 5560
municipalities). More municipalities experienced a de-
crease in predicted spillover intensity (National: 489; Re-
gional: 482) than experienced an increase in intensity
(National: 43; Regional: 33). Intensity tended to increase
over the study period in municipalities along the Amazon
River and in the southeastern region of Brazil and de-
crease along the coast (Additional file 1: Figure S4). When
considering calendar months individually for the Regional
model, predicted spillover intensity increased the most in
July and August between 2000 and 2013, particularly in
the southeastern region of the country (Additional file 1:
Figure S5), however these months still had the lowest
spillover intensity over all. When averaging across munici-
palities, the highest predicted annual risk was in 2008,
followed by 2001.

The area of highest risk differed by model. In the Na-
tional model, the HRR region had high predicted values
of YF spillover risk across all 156 months and the LRR
region experienced seasonal shifts in spillover intensity.
In contrast, the Regional model predicted high risk of
spillover in municipalities near the Amazon River, with
lower risk in the higher elevation areas near Brazil’s
northern border. As in the National model, the LRR
region in the Regional model had seasonal variability in
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Fig. 3 Predicted spatial risk of yellow fever spillover. Propensity of yellow fever spillover in January, June, and September of 2008. Raw outputs of
the model for each municipality-month are rank-ordered to allow for comparison across models. Results from the National model are on the top
row and the Regional model are on the bottom row. Black outline represents the split between HRR (northwest) and LRR (southeast) regions. The
outline in the national model is for reference only. See supplemental video for entire time series. Map projection: SAD69 Brazil Polyconic. Data
source: 2001 municipality boundaries, Brazilian Institute of Geography and Statistics
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model (e), and within high reservoir richness Regional model (f). Gray lines represent an individual year of data with overall mean in black. Rug along
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SAD69 Brazil Polyconic. Data source: 2001 municipality boundaries, Brazilian Institute of Geography and Statistics

the risk of YF spillover, with a higher risk of spillover
from November to March.

The ranked order of variable importance differed be-
tween the models (Fig. 5). However, NHP richness was
consistently highly ranked. The LRR Regional model and
the National model had a similar rank order of variable
importance, sharing the top three most important vari-
ables (rainfall, temperature, and NHP richness). This is
perhaps expected given that the LRR dataset is 96% of
the national dataset. Anomalous conditions as captured
in the scaled covariates are of greater importance in the
HRR Regional model than the other two models. How-
ever, the type of anomalous condition influences the co-
variates’ importance. Scaled rainfall is ranked in the top
half of the ranked variables for the National and LRR
Regional models, but is less important in the HRR Re-
gional model. The scaled covariates of temperature and
fire density follow the opposite pattern, increasing in im-
portance for the LRR Regional model. To a lesser extent,
the scaled NDVI follows the same pattern as the

anomalous temperature and fire density covariates. The
largest change in the rank order between the three
models was rainfall (difference of 8), followed by scaled
rainfall and scaled fire density (tied with a difference of
7), then NDVI and vector occurrence (tied with a differ-
ence of 6).

The central tendencies of the relative variable import-
ance, as measured by AAUC, for the three models in-
cluded a natural break in the variables (Fig. 6). The top
three variables in the National model (rainfall, NHP
richness and temperature) were similar, while the first
and second ranked variables for the LRR Regional model
(temperature and rainfall) were very similar. In the HRR
Regional model, the highest ranked variable (NHP rich-
ness) was substantially more important than the second
through fourth variables (NDVI, fire density and scaled
fire density), which were clustered. However, in general
the AAUC for any variable permutation was small (less
than 0.05 decrease from model AUC) indicating that
model performance is not driven by a single covariate.
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Discussion

Yellow fever has re-emerged in Brazil, and is spreading
into new regions. This range expansion is reflected in
the most recent vaccine recommendation maps [14]. Ac-
companying this geographic expansion is an increase in
the number of cases of YF, with large outbreaks in 2016/
2017 and 2017/2018 (as of June 2018). Although a vac-
cine exists for the disease, understanding of the spatial
and temporal risk of the spillover has been insufficient
to predict where vaccines, a limited resource, should be
distributed. We created retrospective time-varying risk
maps of YF spillover based on environmental and demo-
graphic variables, identifying regions at risk of YF spill-
over throughout the year. In addition to the Amazon
River basin, our maps highlight periods when the urban
coastal region, a densely-populated area at the edge of
YF expansion, is at an increased risk of disease spillover
from NHP reservoirs. This approach can be expanded to
incorporate near real-time data for risk mapping and de-
cision support.

While most municipalities did not experience a
long-term increase or decrease in intensity of spillover
over the study period, those that did increase are in the
southeastern and northern regions of Brazil. This agrees

with other studies that have found YF virus to be
spreading towards the southeast region in the past two
decades, expanding from the enzoonotic zone to the
transition zone [2, 39]. Our model found municipalities
to have the highest predicted intensity of YF spillover in
2008, which corresponds to a large outbreak in Brazil’s
southern states during that year [40]. Interestingly, we
found the predicted intensity of a yellow fever spillover
event to increase in July and August from 2001 to 2013,
suggesting a lengthening of the season during which yel-
low fever is transmitted. However, this may also be an
artefact of the time period used in our analysis, which
ended with multiple consecutive La Nina years. La Nina
years are characterized by a lengthening of the rainy sea-
son [41], during which vectors of YFV may be more
abundant, leading to higher incidence of spillover into
human populations. Regional climate cycles have been
linked to transmission of vector-borne diseases else-
where [29, 42, 43], and it is likely that changes in pre-
cipitation and temperature resulting from La Nina and
El Nifo events drive YF spillover in Brazil as well.

By modeling regional spillover risk separately in high
and low NHP richness regions, we identified different
seasonal patterns between regions. The largest difference
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richness (LRR), and high reservoir richness (HRR) Regional models based on 100 permutations per variable within a model. Values are the decline
in AUC (AAUC) due to permutation from the original model scaled to the largest AAUC within each model
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in seasonal patterns between the National and Regional
model is in the Amazon River basin, which shifts from a
consistently high risk area in the National model (Fig. 4a)
to alternating between high and low risk through the
year in the Regional model (Fig. 4c). We found different
patterns in the seasonal peaks of high spillover propen-
sities when comparing between the LRR and HRR re-
gions within the Regional model. This asynchrony of
peak spillover propensity implies that at given times in
the year, spillover risk can be higher in the urban, coastal
regions than the Amazon River basin. This is contrary to
contemporary maps of YF distribution in Brazil [14], but
is consistent with the geographic distribution of the re-
cent outbreaks of YF in 2016-2018.

There was a stark difference in the variables driving
spillover in the National and LRR Regional models (which
had a similar ranking of variable importance), and the
HRR Regional model (Fig. 5). For the National and LRR
Regional models, rainfall, temperature, and NHP species
richness were the three most important variables. These
variables were chosen a priori to represent vector and res-
ervoir dynamics, and their ranking suggests that it is the
combination of the presence of NHP reservoirs and high
environmental suitability for mosquito vectors that leads

to YF spillover. Other mosquito-borne diseases in South
America are strongly correlated with climatic variables
[38, 44, 45]. Similarly, we find evidence that YF spillover
events are driven by temperature and rainfall in the LRR
region. However, rainfall is less important in the HRR Re-
gional model. Unlike the LRR region, the HRR region is
composed entirely of Amazon rainforest, which receives
over 4m of rainfall annually and has low potential evapor-
ation rates [46], allowing standing water, which serves as
mosquito habitat, to remain throughout the year. Al-
though the onset of the rainy season in the Amazon can
lead to an increase in the abundance of YFV vectors [47],
this is dependent on species, and vectors of YF persist year
round [48]. In the HRR region, therefore, it is likely that
vector populations are not strongly limited by rainfall,
supporting our results. This context-dependence of the ef-
fect of individual environmental variables on mosquito-
borne disease has been shown for malaria [49] and should
be further explored for the case of YF.

Further, landscape characteristics such as NDVI and fire
density are more informative than climatic variables in the
HRR region of the Regional model. NDVI is a measure of
vegetative cover that, in Brazil, is a lagged response to glo-
bal climate that represents seasonal climate conditions
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corresponding to the wet and dry season [50, 51]. In this
way, it can be thought of as another climatic variable. In
addition to climate, NDVI values are strongly influenced
by land clearing techniques that rely on fire [51]. Given
the relationship between NDVI and fire-fallow agriculture,
and the importance of fire density in the HRR Regional
model, human modification of the landscape via deforest-
ation could be driving spillover events in this region. Mal-
aria prevalence and the abundance of anopheline species
often increases following human migration and conver-
sion of land from forest for agricultural development in
the Amazon [52, 53] and spillover of another vector-borne
disease of NHP origin, Plasmodium knowlesi, is driven by
deforestation in Southeast Asia [54]. Similarly, human en-
croachment into and conversion of NHP habitat may be
driving YF spillover from NHP to humans in the Amazon
basin.

While the boundary separating high and low NHP reser-
voir richness regions was based on data, there may be
scope for further development of this feature of the model.
Specifically, the different seasonality of spillover risk be-
tween the regions highlights the need to study individual
NHP species’ ability to transmit YFV. This is particularly
important given that potential non-human primate reser-
voirs are present in all but 21 municipalities in Brazil. The
NHP species included in the model are from genera
known to be susceptible to YF as detected by active infec-
tion or antibody titers [3, 16, 55]. However, little is known
about individual species’ competencies, which is especially
important given the known role of highly competent spe-
cies in sustaining transmission amongst reservoirs of other
vector-borne diseases [56—58]. In addition to competency,
data on the relative abundance of NHP populations and
mosquitoes’ biting preferences would help identify NHP
species most likely to contribute to YF spillover. A better
understanding of species’ competencies and ability to
transmit YFV to mosquitoes would narrow down the
current list of NHP reservoirs to those which genuinely
play a role in viral transmissions. This could identify other
municipalities without a ‘true’ NHP reservoir present, and
therefore not at risk of YF spillover. Future work should
address the variation in reservoir competency between
species, and the impact of NHP community composition
on sylvatic transmission.

Our logistic bagging approach performs well given that
the dataset was extremely sparse, with municipalities
reporting spillover events approximately 0.01% of the
time. The lower testing AUC for the HRR Regional
model (AUC = 0.63) is likely due to the sparse dataset.
This region only had 20 spillover events during the 13
year period, which was further split into training and
testing observations (Table 2). The model performance
is based on accurately classifying five presences from the
9926 background points.
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Logistic bagging may be useful in other situations where
over fitting models to sparse data is a concern, such as St.
Louis encephalitis, Lassa fever, or Rift Valley fever. Add-
itionally, a binary response variable can be more robust
than a continuous response variable. First, a binary re-
sponse buffers against gradual improvements in surveil-
lance practices, which is most likely the case for YF in
Brazil, since single and multiple cases per an observational
unit are equally weighted. This is supported by the lack of
an overall increase in risk over the study period. Additional
precaution, however, would be needed if a surveillance
practices were to dramatically change. For example, this ap-
proach would not be suitable to handle case data spanning
the implementation of surveillance infrastructure develop-
ment completed in the early 2000s [59]. Secondly, for the
sylvatic YF spillover system, the logistic response variable
avoids classifying cases resulting from sylvatic and urban
transmission. While the most recent YF outbreaks in Brazil
may include cases resulting from both urban and sylvatic
transmission, it is doubtful that urban transmission oc-
curred during our study (2001-2013) [5].

This approach is limited by the availability of environ-
mental and epidemiological data that are both continuous
and have high temporal and spatial resolution. For
neglected diseases, epidemiological data at the sub-adminis-
trative level is not always available nor current. Further, re-
motely sensed environmental data are often at spatial
resolutions that are coarser than the disease data, or are av-
eraged over time. For example, daily variation in
temperature is shown to have larger effects on mosquito
dynamics than mean daily temperature alone [27], but sat-
ellite imagery collected daily is unable to measure such
daily variation. Processing of satellite imagery is rarely stan-
dardized and is not continuous over time due to changes in
satellite technology [60], making comparisons across data-
sets difficult [61]. This limitation is reflected in the current
study, whose study period coincides with that of the avail-
ability of land cover data, preventing us from predicting YF
spillover into the present.

Conclusions

The spillover risk of YF in Brazil varies in space and time.
When spillover risk is modeled using separate models for
different ecological contexts (i.e. low vs high NHP species
richness), differing seasonal patterns emerge. Specifically,
when combining predictions across low and high non-hu-
man primate richness regions, the asynchrony of spillover
seasonality can lead to intermittent hot spots of YF spill-
over along urban coastal areas, which coincide with 2016/
2017 and 2017/2018 YF outbreaks. These seasonal pat-
terns may be due to differences in environmental drivers
across a large geographic area and should be further ex-
plored through ecological and entomological studies. Un-
derstanding these patterns of YF spillover could better
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inform allocation of public health services and resources,
such as vaccination campaigns, which is particularly im-
portant given the current shortage in the YF vaccine [62].
Predictive models of disease spillover should incorporate
fine-scale temporal and spatial resolutions to better ap-
proximate the ecological context and processes driving
spillover events.
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