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Culicoides paolae and C. circumscriptus as
potential vectors of avian haemosporidians
in an arid ecosystem
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Abstract

Background: Haemosporidians are the most important vector-borne parasites due to their cosmopolitan distribution
and their wide range of hosts, including humans. Identification of their vectors is critical to highlight ecologically and
epidemiologically relevant features such as host specificity or transmission routes. Biting midges of the genus Culicoides
are considered the main vectors of Haemoproteus spp., yet important information on aspects such as vector feeding
preferences or vector-host specificity involving haemosporidian parasites is frequently missing.

Methods: We assessed the abundance of Culicoides circumscriptus and C. paolae and blood sources of the latter at the
nests of cavity-nesting bird species (mainly the European roller Coracias garrulus) and in their surroundings. We also
explored the prevalence and genetic diversity of avian haemosporidians in parous females of both species.

Results: Both C. circumscriptus and C. paolae were abundant in the study area and common at European roller nests.
Culicoides paolae had a diverse ornithophilic diet, feeding on at least seven bird species. Human DNA was also
detected in the blood meal of some individuals. Four Haemoproteus lineages, including a new one reported here for
the first time, were isolated from parous females of both biting midges.

Conclusions: Culicoides circumscriptus and C. paolae can play a locally important role in the transmission dynamics of
Haemoproteus parasites in a community of cavity-nesting bird species in an arid ecosystem.
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Background
Biting midges of the genus Culicoides are small, cosmo-
politan blood-sucking insects playing an important role
as vectors of numerous viruses, filarial nematodes and
protozoa affecting human, livestock and wildlife [1, 2].
Culicoides are regarded as the main vectors of Haemo-
proteus (class Aconoidasida, order Haemosporidia, sub-
genus Parahaemoproteus) [3]. Still, they are the least
studied of the major dipteran vector groups and our
knowledge of their vectorial role is biased. On one side,
their participation in the transmission of livestock and
human viruses has received much attention (e.g. blue-
tongue virus [4], African horse sickness virus [5], Oro-
pouche virus [6]). On the other side, much less is known

about their role in the transmission of avian haemospo-
ridians. In particular, malaria-like parasites of the genus
Haemoproteus are highly prevalent avian haemoparasites
[7] with a relevant impact on the health status, longevity
and fitness of their avian hosts [8–14]. Haemoproteus
presents a high diversity in host-parasite associations [7]
and it is unclear to what extent this diversity is due to
host-parasite, host-vector or vector-parasite specificity
[15–20]. Moreover, the vector identity and ecology of
most Haemoproteus lineages is unknown [7, 21].
Tracing the feeding preferences (i.e. feeding patterns) of

female Culicoides is critical to identify host-vector-parasite
associations as well as ecologically and epidemiologically
relevant features such as host specificity or transmission
routes. Biting midges have a clear preference to feed
mainly on either birds or mammals, with some species
showing an opportunistic behaviour [22]. Traditionally,
the feeding preferences of Culicoides have been assessed
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based on morphological characterization of the sensory
structures (i.e. palps and antennae [23–25]). Other methods,
such as the precipitin test [26–28], immunological assays
[29, 30], and more recently, MALDI-TOF [31] and molecu-
lar tools [32, 33], have been applied to specifically identify
the blood meal sources of female Culicoides and other in-
sect vectors. Methods like the immunological assays are
useful when the suitable hosts are suspected, which is com-
monly the case for the Culicoides surveys done in relation
with livestock [34–37]. Yet, biting midges trapped in the
wild may have a broad range of potential hosts, supporting
the necessity to use approaches allowing the identification
of a wide range of vertebrate species [22]. Studies on Culi-
coides feeding preferences in natural areas are especially
scarce, although they provide a more complete view of the
circulation of the blood parasites in the wild.
Here we studied the role of two common ornithophilic

species of Culicoides in the transmission of avian hae-
mosporidians in the driest European area, the Desert of
Tabernas (south-eastern Spain). In this area, the preva-
lence of infection by Haemoproteus spp. varies between
avian species, with a total absence of parasites found in
adult Trumpeter finches (Bucanetes githagineus) while
all the adult European rollers (Coracias garrulus) sam-
pled showed evidence of infection [38, 39]. The haemo-
sporidian species described for rollers in this area
(Haemoproteus coraciae) was clustered, based on phylo-
genetic analysis, with other Haemoproteus spp. vectored
by Culicoides [39], although the dipteran species in-
volved in its transmission remains unidentified.
At least 81 species of the genus Culicoides are present

in Spain [40]. In south-eastern Spain, different ornitho-
philic Culicoides species have been recorded including
Culicoides paolae. This species, registered for first time
in Spain in 2008 [41], has been frequently associated
with livestock farms [34, 42, 43]. However, analysis of
the sensory structures suggests an ornithophilic prefer-
ence in this species [44], although the host sources of
blood remain unidentified, and its role for the transmis-
sion of avian haemosporidians is completely unknown.
This contrasts with other well-known, sympatric ornitho-
philic species such as C. circumscriptus, a common species
in southern Spain which may be involved in the transmis-
sion of Haemoproteus parasites [18, 45, 46].
To assess the potential of C. paolae and C. circum-

scriptus as the vectors of blood parasites in a commu-
nity of birds in south-eastern Spain we: (i) collected the
specimens of the two species inside and in the
surroundings of the nests of the European roller, one of
the locally most abundant troglodytic species; (ii) iden-
tified the blood meal sources of engorged females; and
(iii) studied the prevalence and genetic diversity of
Haemoproteus parasites harboured by parous biting
midge females.

Methods
Study area
This study was performed in an approximately 50 km2 area
located in the Desert of Tabernas (Almería, SE Spain, 37°
05'N, 2°21'W). The landscape mostly consists of open
shrubland with olive and almond groves interspersed among
numerous dry riverbeds (ramblas). Inhabited farms are
scarce and scattered along the study area. The climate is
temperate, semiarid Mediterranean with a strong water def-
icit during the long, hot summer months (June to Septem-
ber), when the absolute maximum monthly temperature is
higher than 40 °C and the monthly average of the maximum
daily temperatures remains above 30 °C [47]. The average
annual temperature is 18 °C, with mild inter-annual oscilla-
tions of 3–4 °C and significant intra-annual fluctuations
[47]. The mean annual rainfall is c.230 mm with high
inter-annual and intra-annual variability [48].
The bird community comprises species that breed

mainly in cavities in the study area (e.g. the little owl
Athene noctua, scops owl Otus scops, Eurasian jackdaw
Corvus monedula, common kestrel Falco tinnunculus
and feral pigeon Columba livia), chiefly in natural holes
in sandy cliffs but also in cavities in human construc-
tions [49]. The European roller (hereafter roller) is a
common breeding species in the study area where it is
distributed patchily according to distinct geomorpho-
logical units [50]: (i) ramblas (dry stream channels with
steep sandstone banks), which are linear, continuous
geographical units separated from neighbouring ramblas
by hills and human settlements; (ii) individual bridges
with numerous, densely spaced cavities (c.2–3 m apart);
and (iii) spatial aggregations of suitable nesting places,
mostly trees with nest boxes but also small sandstone
banks with natural cavities and isolated country houses
with cavities. Wooden nest boxes have been placed in
these habitat types and most rollers individuals are cur-
rently breeding in them (height × length × width: 310 ×
232 × 230 mm, entrance diameter: 60 mm, with a re-
movable upper lid to allow nest monitoring) installed on
isolated eucalyptus trees, sandstone banks and isolated
and deserted country houses [49, 50]. Rollers are migra-
tory birds wintering in Africa and arriving at the breed-
ing grounds in the study area when resident, secondary
cavity-nesting birds are already settled. Eggs (mean
clutch size = 4.23) [51] are incubated by both sexes [52]
during c.21 days. Rollers rear a single brood per year
[52] with fledglings leaving the nest approximately 20–
22 days after hatching in the studied population [50].

Culicoides trapping
Culicoides spp. specimens were trapped using two
methods: sticky traps and CDC light traps. Sticky traps
were placed in nest boxes occupied by rollers during the
2016 and 2017 breeding seasons (from 18 May to 4 July

Veiga et al. Parasites & Vectors  (2018) 11:524 Page 2 of 10



in 2016 and from 2 June to 18 July in 2017). Specifically,
sticky traps were fixed under the upper lid of 69 nest
boxes (32 in 2016 and 37 in 2017). In 2016 we took ad-
vantage of a pair of kestrels breeding in a next box close
to a breeding pair of rollers, thus resembling natural
nesting conditions with different cavity nesting bird spe-
cies breeding in close proximity [50]. We followed the
method described by Tomás et al. [53] (i.e using Petri
dishes smeared with body gel-oil as a non-attractant
glue) but replacing Petri dishes by white vegetal papers
that were fixed by thumbtacks on the inner side of the
upper lid. In 2016, these sticky traps (size = 63.6 cm2)
were kept for three days in two periods of the breeding
cycle: (i) at the end of the incubation phase (18–20 days
after the first egg was laid); and (ii) during the nestling
phase, when all chicks had already hatched (13–15 days
after the first egg hatched). In 2017, sticky traps were
only placed during the nestling stage, because most vec-
tors were captured during this stage in 2016, and the
trap size was increased (size = 175.5 cm2). Thus, in
2017, a first trap was set 13 days after the first egg
hatched and kept for four days. Then, it was replaced by
a new trap that was kept for a second period of four
days. Additionally, opportunistic catches of Culicoides at
the nests were made by hand during routine visits.
Additionally, CDC traps were set throughout the study

area during 2016 and 2017. We used traps with UV light
as they are recommended to attract Culicoides [54].
Moreover, since this study is part of a broader one aimed
at studying the community of dipteran vectors, we also
used incandescent light traps. Both trap types were put
together and were also baited with CO2 in order to use
as many different stimuli as possible. Dry ice was used
as source of CO2 (1 kg of dry ice per night and pair of
traps to ensure the continued emission of CO2 until the
collection of the traps at dawn). Thus, 20 pairs of CDC
traps (each pair formed by one trap with incandescent
light and one with UV light, c.50 cm apart from each
other, both baited with CO2) were set all over the study
area and in the main breeding habitats of the roller,
namely trees, ramblas and bridges (see above), so that
eight traps were located on ramblas, eight on trees and
four on bridges during 2016 and 2017. The traps were
powered by a 6 V battery of 12 Ah. The trapping ses-
sions were adjusted according to the breeding season of
rollers and the moon calendar, so that traps were active
on the days during or close to the period of the new
moon (reducing the effect of ambient light [55]), and
avoiding windy nights. In 2016 we placed one group of
10 pairs of traps from 8 June to 10 June and a second
group of 10 trap pairs from 7 July to 8 July. In 2017, all
20 trap pairs were set from 22 June to 1 July. Most traps
(82.5%) were set before dusk or shortly after and were
removed after sunrise. Captured insects were moved to

the Estación Experimental de Zonas Áridas and frozen
in 70% ethanol until identification.

Morphological identification
Biting midges were identified to the species level based
on González & Goldarazena [56] and Mathieu et al. [57]
taxonomic keys under a Zeiss Discovery V8 stereomicro-
scope. Culicoides circumscriptus and C. paolae were the
most abundant biting midges at the nests (see Results),
and individuals of these species collected at the nests
and with CDC light traps were analysed for blood meal
origin (engorged females) or Haemoproteus detection
(parous females). Engorged females were identified based
on the presence of blood remains in the abdomen. The
abdomen of each C. paolae engorged female was sepa-
rated from the head-thorax using sterile tips on chilly
Petri dishes and, subsequently, maintained in individual
vials. Diet analyses were restricted to C. paolae as only
two engorged C. circumscriptus females were captured.
Parous females were identified based on the presence of
burgundy-red pigmented abdomen that develops during
the first gonotrophic cycle [58]. As previous studies have
reported a low prevalence of avian haemosporidians in
Culicoides from southern Spain ([46], our unpublished
observations], parous females were grouped in pools
from 1 to 11 individuals according to species, date and
site of capture.

DNA extraction and molecular analyses
Genomic DNA from the abdomen of each engorged C.
paolae females and biting midge pools was extracted
using the DNeasy Blood and Tissue® kit (Qiagen, Hilden,
Germany) following company specifications. Negative
controls (reagents without a template) were used to de-
tect possible contaminations. DNA was stored at -20 °C
until PCR amplification. To confirm the morphological
identification of Culicoides species, we amplified a 658
base pair (bp) fragment of the mitochondrial cytochrome
c oxidase 1 (cox1 gene, barcoding region) of four individ-
uals following Gutiérrez-López et al. [59]. The vertebrate
hosts of Culicoides females were identified by amplifica-
tion of a fragment of 758 bp of the vertebrate cox1 gene
following Alcaide et al. [32]. Finally, the presence and
identity of Haemoproteus and Plasmodium spp. were
assessed for the pools of parous female Culicoides speci-
mens using the protocol by Hellgren et al. [60]. Parasite
determination was conducted at least twice per sample
to avoid false negative results [61]. The presence of
amplicons was verified on 1.8% agarose gels. Positive
amplifications were sequenced using the Macrogen la-
boratories sequencing service (Madrid, Spain) and se-
quences were edited using the software Sequencher™
v.4.9 (Gene Codes Corp, Ann Arbor, MI, USA).
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The identity of Culicoides species and their vertebrate
hosts were established by comparison with sequences de-
posited in GenBank DNA sequence database (National
Center for Biotechnology Information BLAST) or the Bar-
code of Life Data Systems (BOLD). The molecular identi-
fication of two female C. paolae and two female C.
circumscriptus confirmed the morphological identifica-
tions. Vertebrate species were confirmed if agreement was
≥ 98% with deposited sequences. Parasite lineages and
morphospecies were identified by BLAST comparison
with the sequences available in GenBank and MalAvi [62].

Statistical analyses
The abundance of parous C. paolae and C. circumscrip-
tus captured in CDC traps were analysed with a general-
ized linear mixed model (GLMM) with the negative
binomial distribution of errors. Year (2016 and 2017)
and biting midge species were included as independent
variables. Scaled and centred date of sampling was in-
cluded in a GLMM as a covariate. The number (log--
transformed, scaled and centred) of blood-feeding
parasitic dipterans captured per pair of traps was in-
cluded as an offset variable to correct for their abun-
dance in each sampling point. Trap location, identical
during both years, was included as a random factor. The
interaction between sampling date and Culicoides spe-
cies was introduced to explore a seasonal effect in the
capture of the two species. One outlier due to the cap-
ture of 94 parous C. paoale was detected and the ana-
lyses were run with and without this datum. Given that

the results obtained were qualitatively comparable, we
report the analysis including this datapoint.
The prevalence of Haemoproteus spp. in Culicoides

pools was estimated considering variable pool sizes and
100% test specificity and sensitivity following Sergeant
[63]. Statistical analyses were performed using the R envir-
onment [64] with the lme4 and effects packages [65, 66].

Results
Abundance of Culicoides spp. in avian nests
Overall, 57 Culicoides spp. were collected in avian nest
during both years (n = 42 in 2016 and n = 15 in 2017,
Table 1). From the 57 captures, four individuals were
collected opportunistically in the nest and 53 were col-
lected by sticky traps. In addition, Simuliidae (n = 230)
and Phlebotominae (n = 105) were other blood-feeding
dipterans collected with the sticky traps at the nests.
The most abundant biting midges were C. paolae

(57.9%, 33 out of 57) and C. circumscriptus (22.8%, 13
out of 57). Twenty-seven C. paolae specimens were par-
ous and six were engorged, whereas 11 C. circumscriptus
specimens were parous, two nulliparous (not included in
Table 1) and no engorged individual was captured.
Twenty-two out of the 32 C. paolae collected in 2016
were captured in a common kestrel nest.

Abundance of Culicoides spp. in CDC traps
Overall, 7764 Culicoides spp. were captured using CDC
traps (Table 1). Of them, 341 were parous females of C.
paolae and C. circumscriptus, representing 4.4% of the

Table 1 Abundance, mean ± SD, and range (in parentheses) for Culicoides spp. (overall data set) and for the subset of parous and
engorged females of C. paolae and C. circumscriptus trapped in avian nests and their surroundings during 2016 and 2017

Inside nest Outside nest

2016 (n = 33a nests) 2017 (n = 37 nests) 2016 (n = 20 trap pairs) 2017 (n = 20 trap pairs)

Culicoides spp. 42 15 3585 4179

1.27 ± 4.38 0.41 ± 0.90 179.25 ± 160.77 208.95 ± 187.31

(0–25) (0–4) (0–423) (2–380)

C. paolae parous 26 1 77 180

0.79 ± 3.56 0.03 ± 0.164 3.85 ± 6.79 9 ± 20.59

(0–20) (0–1) (0–27) (0–94)

C. circumscriptus parous 3 8 34 50

0.09 ± 0.29 0.22 ± 0.75 1.70 ± 3.42 2.5 ± 3.01

(0–1) (0–4) (0–15) (0–11)

C. paolae engorged 6 0 14 16

0.18 ± 0.58 0.7 ± 0.92 0.8 ± 1.06

(0–2) (0–3) (0–3)

C. circumscriptus engorged 0 0 0 2

0.1 ± 0.45

(0–2)
aAll nests corresponded to European roller nests with the exception of a single common kestrel nest sampled in 2016
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total Culicoides spp. specimens captured (Table 1). The
average number of parous females per pair of traps was
3.8 of C. paolae and 1.7 of C. circumscriptus in 2016 and 9
of C. paolae and 2.5 of C. circumscriptus in 2017. Further-
more, 30 engorged females of C. paolae and two engorged
females of C. circumscriptus were also captured (Table 1).
The abundance of parous biting midges (C. paolae and

C. circumscriptus) was greater in 2017 and decreased
through the breeding season. Culicoides paolae was
significantly more abundant than C. circumscriptus
(Table 2). The interaction between Culicoides species
and sampling date was also significant (Table 2), because
parous C. paolae was more abundant late in the roller
breeding season and parous C. circumscriptus was more
abundant early in the season (Fig. 1).

Culicoides paolae feeding patterns
Blood meals of 21 (58.3%) out of the 36 engorged C.
paolae were successfully identified. Of them, the six fe-
males captured in avian nests fed on the species breed-
ing in these nest boxes (two on common kestrels and
four on rollers) (Table 3). Culicoides paolae females cap-
tured with CDC traps (n = 15) fed mainly on birds
(66.7% of the identified blood meals) corresponding to
five different species including cavity-nesting and
open-nesting species. Finally, human DNA was found in
five (33.3%) out of 15 C. paolae collected with CDC
traps (Table 3).

Prevalence and identification of haemosporidian parasites
The prevalence of Haemoproteus spp. was 4.4% (95% CI:
1.39–9.95%, n = 95 individuals) and 0.7% (95% CI: 0.12–
2.21%, n = 284 individuals) for C. circumscriptus and C.
paolae pools, respectively. Overall, four Haemoproteus
and one Plasmodium lineages were found. Of them, the
three Hemoproteus lineages, TURDUS2, GAGLA03 (=
GAGLA05, both sequences with equal coverage and
identity) and AEFUN03, and the Plasmodium lineage
SYAT05 (Plasmodium vaughani), were identified with
100% coverage and identity. The three Haemoproteus
lineages, TURDUS2, GAGLA03 (=GAGLA05) and

AEFUN03, were isolated from C. circumscriptus speci-
mens (Table 4). The Haemoproteus lineage TURDUS2
and the Plasmodium lineage SYAT05 were isolated from
C. paolae specimens (Table 4). In addition, a new lineage
(CUPAO-01, GenBank: MH237967) was isolated from a
C. paolae specimen. This lineage showed 93% overlap
and 99% similarity with the Haemoproteus coraciae
lineage H1CG.1 (GenBank: KU297278) (Table 4). In fact,
six nucleotide bases differed between both lineages.

Discussion
This study reveals that C. circumscriptus and C. paolae
are common endophagous insects at the nests of
cavity-nesting species, with C. paolae being identified for
the first time, using identification of blood meals, as a
potential vector of avian haemosporidians. This assertion
is supported by detecting a high diversity of avian hosts
including cavity-nesting and open-nesting species and
the identification of avian haemosporidian parasites for
C. paolae.
Whereas C. circumscriptus is common in Spain [56,

67–72], C. paolae was detected for the first time in 2008
[41]. It has been proposed that the latter species was in-
troduced into Europe by Columbus’s travels from
America five centuries ago [44, 73]. In spite of some
morphological differences, C. paolae is very similar to
the American Culicoides jamaicensis [44] and a recent
phylogenetic study related the former species with Culi-
coides from the New World [73]. Nowadays, in addition
to Spain, where C. paolae is currently expanding its dis-
tribution range [41], this biting midge is the most wide-
spread and abundant species of all Culicoides in Malta
[34] and one of the most abundant species in central
Tunisia [74] and Sardinia [75], where its importance on
the local transmission of avian vector-borne pathogens
should be considered. Culicoides paolae is commonly
found near livestock farms [34, 74, 75], but according to
our results, this species may also be widespread in the
wild and, at least for the study period, it is even more
abundant than C. circumscriptus (Tables 1, 2). Data from
two breeding seasons suggest that the two species exhibit
different phenologies, C. paolae being more abundant late in
the roller breeding season whereas the opposite is true for
C. circumscriptus. Furthermore, whereas the ability of some
ornithophilic biting midges to feed inside enclosed places
(endophagy) has been previously shown [39, 53, 69, 76], to
our knowledge this is the first time that endophagy has been
recorded for C. paolae.
Culicoides paolae is defined as ornithophilic according

to its sensory structures [44]. Here we provide for the
first time, unequivocal identification of its hosts, includ-
ing seven different bird species within the study area.
This broad spectrum of hosts has already been described
for other ornithophilic Culicoides species [22, 77].

Table 2 Results of a generalised mixed model analysing the
abundance of parous Culicoides paolae and C. circumscriptus
collected using CDC traps in relation to year (2016, 2017), date
of capture, and the interaction between date of capture and
the species of Culicoides biting midges

Fixed effects Estimate SE z-value P

Intercept 0.043 0.28 0.16 0.88

Species (C. paolae) 0.64 0.29 2.26 0.024

Date -0.63 0.23 -2.71 0.007

Year (2017) 0.56 0.29 1.92 0.053

Species (C. paolae)*Date 1.10 0.31 3.57 0.0004
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Interestingly, some of the host species are not particularly
abundant in the study area, suggesting a remarkable feed-
ing range of this biting midge and excellent host-searching
abilities. Nonetheless, a greater effort in sampling engorged
females C. paolae together with an analysis of the bird
community composition around the traps is still necessary
for a better knowledge of host selection by this dipteran.
Our results also suggest that C. paolae could feed on
humans. Even though we tried to minimize the risk of con-
tamination, we did not type the human-positive samples
with DNA samples of the experimenters (e.g. [78]). Thus,
we cannot discard the possibility of sample contamination.
Nonetheless, other ornithophilic species like C. kibunensis

[79, 80], C. circumscriptus [81], or C. pictipennis [82], have
previously been reported to feed on humans. The broad
range of hosts could help biting midges to face environ-
mental changes [79], and in our case, it could have facili-
tated the establishment of C. paolae in a new area.
DNA from four Haemoproteus lineages and one

Plasmodium lineage was detected in parous C. paolae
and C. circumscriptus. Even though multiple Plasmo-
dium lineages have been molecularly detected in Culi-
coides [18, 46], this does not imply vector competence
[83]. Plasmodium is mainly transmitted by Culex mos-
quitoes [7] and our result could simply reflect the pres-
ence of abortive stages of P. vaughani in C. paolae [84].

Fig. 1 Relationship between capture date and abundance of parous females of Culicoides circumscriptus (estimate ± SE = -0.63 ± 0.23, P < 0.01)
and C. paolae (estimate ± SE = 0.48 ± 0.21, P = 0.022) captured with CDC traps in south-eastern Spain during 2016 and 2017. Date of capture was
scaled and centred. Lines represent fitted values with shaded regions showing areas delimited by 95% confidence intervals

Table 3 Hosts of C. paolae based on the molecular identification of blood meal origin. The number of successfully identified blood
meals is shown for each species

Host Cavity/open nester No. of successful amplifications

Inside nests European roller (Coracias garrulus)a Cavity nester 4

Common kestrel (Falco tinnunculus)a Cavity nester 2

CDC traps Humans (Homo sapiens) – 5

House sparrow (Passer domesticus) Cavity nester 4

Common blackbird (Turdus merula) Open nester 3

Eurasian hoopoe (Upupa epops) Cavity nester 1

Eurasian collared dove (Streptopelia decaocto) Open nester 1

Common linnet (Linaria cannabina) Open nester 1
aThe blood in the abdomen of the biting midge belonged to the avian species breeding at the nest where the biting midge was collected
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We isolated four different Haemoproteus lineages from
six pools of Culicoides females. A lineage of H. minutus
(TURDUS2) was detected both in C. paolae and C. cir-
cumscriptus. This is a geographically widespread lineage
(northwest Africa, northwest Iberia, Transcaucasia and
western Greater Caucasus) infecting different avian spe-
cies, with Turdus merula probably playing a central role
as reservoir [85]. Additionally, GAGLA03 (=GAGLA05)
was previously isolated in Bulgaria from Garrulus glan-
darius [86], C. circumscriptus in Spain ([46], this study)
and Turkey (GenBank: MF594402 and MF095639). The
lineage AEFUN03 that had been only detected previ-
ously in Aegolious funereus [87] was found in C. circum-
scriptus in south-eastern Spain. This bird species is
absent from the study area and probably this Haemopro-
teus lineage is infecting another locally abundant owl
(e.g. little owl Athene noctua). Finally, we also detected a
new Haemoproteus lineage highly similar (99% similar-
ity) to the one corresponding to the haplotype H1CG.1
(identified as H. coraciae), which was detected previously
in the same roller breeding population by Václav et al.
[39]. Microscopic examination of smears suggested that
this lineage might correspond to the species Haemopro-
teus coraciae [39], a parasite identified in rollers in

Bulgaria [88] and Kazakhstan [89]. For the case of avian
malaria parasites and related haemosporidians, different
lineages are described with differences of a single nu-
cleotide base in their sequences [62]. However, different
lineages showing few differences may correspond to the
same parasite morphospecies. Thus, it is likely that the
new lineage reported here (H1CG.1) corresponds to the
H. coraciae morphospecies. Further analyses are neces-
sary to confirm this possibility. Haemoproteus coraciae
were widely prevalent in adult rollers and also present in
nestlings, suggesting the presence of a competent vector
in the breeding area [39]. Václav et al. [39] pointed out
that the detection of a Haemoproteus species only infect-
ing adult rollers was intriguing because all the Culicoides
species studied by Bobeva et al. [82] were feeding on a
wide range of avian host. Our results suggest that C.
paolae may be a competent vector for H. coraciae prob-
ably playing a role on the transmission of locally circu-
lating parasites that could be amplified by the migratory
behaviour of rollers. Further analyses are necessary to
confirm the vector competence of this Culicoides species
for the transmission of the lineages isolated here [83].
The prevalence of Haemoproteus in C. circumscriptus

in the study area (4.4%) is slightly lower than the one

Table 4 Molecular identification of haemosporidians in pools of parous C. circumscriptus and C. paolae females trapped in avian nests and
surroundings. Lineages and accession numbers from GenBank sequences showing the highest percentage of coverage and identity to
those found in this study are shown. Previous information regarding these sequences is reported including the parasite morphospecies
(when described), avian hosts and potential insect vectors (in bold) according to information of the reported sequences

Pool code Host in this study Closest lineages
(morphospecies)

GenBank ID Potential avian hosts
and vectors described

Coverage/identity (%)

N7c35
(Accession no.: MH237967)

C. paolae H1CG.1
(Haemoproteus coraciae)

KU297278 C. garrulus 93/99

N26c1
NFc1

C. circumscriptus
C. paolae

Turdus2
(H. minutus)

MF625183
KM361485
KJ488583
KC818452
JN819398
JN819388
JN819383
HQ398208
DQ630013
DQ060772

E. rubecula
G. glandarius
M. striata
T. merula
T. assimilis
T. icterocephala
B. lineola

100/100

NEc3
NEc4

C. circumscriptus GAGLA05
GAGLA03
(Haemoproteus sp.)

KX831071
KJ488735
GU085197
MF594402
MF095639

G. glandarius
C. circumscriptus

100/100

AGALM4 C. circumscriptus AEFUN03
(Haemoproteus sp.)

KP715101 A. funereus 100/100

N31c2 C. paolae SYAT05
(Plasmodium vaughani)

MF817773
MF347700
KJ488789
JF411406
AB477124
DQ847271

C. caeruleus
S. maurus
S. unicolor
S. atricapilla
T. merula
T. migratorius
T. philomelos
T. viscivorus
C. pipiens

100/100
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observed in central Spain (16.7% [18]) and southwestern
Spain (10.3% [46]), yet it is higher than the prevalence
found in the sympatric C. paolae (0.7 vs 4.4%). On the
other hand, C. paolae is seemingly locally more abun-
dant than C. circumscriptus both at the nests and in
their surroundings. Therefore, both species could play
an important role in the transmission dynamics of hae-
mosporidian parasites in the study area. Nevertheless,
other factors such as the efficiency of parasite transmis-
sion or seasonality in vector abundance should be con-
sidered. Concerning the latter, our study reveals that
differential exposure of the hosts to individual biting
midge species along the season is worth studying to fully
understand the risk of haemosporidian transmission by
each species.

Conclusions
Vectors for most haemosporidians are unidentified [7, 90]
and thus parasite-vector associations remain an enigmatic
aspect of haemosporidian parasite ecology [17, 19, 91].
Here, we provide valuable information about the Haemo-
proteus lineages potentially transmitted by two biting
midges species. Culicoides paolae and C. circumscriptus
were abundant both at the nests of cavity bird species and
in their surroundings, with seasonal differences in abun-
dance during the study period. We assessed the ornitho-
philic diet of C. paolae that fed on at least seven bird
species and possibly also on humans. Both biting midge
species harboured several Haemoproteus lineages. These
findings provide an important first step towards the iden-
tification of C. paolae and C. circumscriptus as potential
vectors of avian haemosporidian parasites.
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