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Abstract

Background: Aedes aegypti is the main vector of the dengue, Zika and several other arboviruses. It is highly adapted
to urbanized environments and can be found worldwide. Mosquito population control is considered the best strategy
for fighting mosquito-borne diseases, making an understanding of their population dynamics vital for the development
of more effective vector control programs. This study therefore sought to investigate how different levels of
urbanization affect Aedes aegypti populations and modulate population structure in this species with the aid of
wing geometric morphometrics.

Methods: Specimens were collected from eleven locations in three areas with distinct levels of urbanization in
the city of Sdo Paulo, Brazil: conserved, intermediate and urbanized. The right wings of female mosquitoes
collected were removed, and photographed and digitized. Canonical variate analysis and Mahalanobis distance
were used to investigate the degree of wing-shape dissimilarity among populations. Thin-plate splines were
calculated by regression analysis of Canonical Variation Analysis scores against wing-shape variation, and a cross-
validated reclassification was performed for each individual; a neighbor-joining tree was then constructed.

Results: Metapopulation and individual population analysis showed a clear segregation pattern in the Canonical
Variation Analysis. Pairwise cross-validated reclassification yielded relatively high scores considering the microgeographical
scale of the study and the fact that the study populations belong to the same species. The neighbor-joining tree showed
that mosquitoes in the intermediate urban area segregated in the metapopulation and individual population analyses.
Our findings show significant population structuring in Aedes aegypti mosquitoes in the areas studied. This is related to
the different degrees of urbanization in the areas where the specimens were collected along with their geographical
location.

Conclusions: Urbanization processes in the study areas appear to play an important role in microevolutionary processes
triggered by man-made modifications in the environment, resulting in a previously unknown population structuring
pattern of major epidemiological importance.
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Background

Dengue fever is considered the most common mosquito-
borne disease in the world. An estimated 3.9 billion people
are at risk of infection, and there have been 390 million
cases reported annually, primarily in tropical and sub-
tropical regions [1-3]. The main vector of the disease is
Aedes (Stegomyia) aegypti (Linnaeus), a mosquito with
a worldwide distribution that is highly adapted to ur-
banized environments [4, 5]. It is also responsible for
transmission of several other epidemiologically import-
ant arboviruses such as yellow fever virus, chikungunya
virus and Zika virus [6—12].

Aedes aegypti can complete its entire life-cycle within
a single household, using artificial breeding sites and
blood-feeding on human hosts [13-15]. Moreover,
man-made changes to the environment benefit it, as an
increase in population density and the number of arti-
ficial breeding sites have been shown to be directly as-
sociated with a high abundance of this mosquito in
urban areas [16-19]. The great abundance of Ae.
aegypti mosquitoes, together with the multiple blood-
feeding behavior of females, tend to increase host-vec-
tor interaction, in turn increasing the dissemination of
pathogens [20, 21].

Mosquito population control is considered the best
strategy for fighting mosquito-borne diseases, making
an understanding of Ae. aegypti population dynamics
vital for the development of more effective vector con-
trol programs. Population genetics studies provide im-
portant information about how mosquitoes react to
selective pressures. One technique used in this type of
study is wing geometric morphometrics based on
quantitative analysis of wing venation characters,
which has proved sensitive enough to detect fine-scale
structuring on a microgeographical scale [22, 23]. The
technique has been widely used in taxonomic and
phylogenetic studies on micro- and macrogeographical
scales [24-28].

Several studies using wing geometric morphomet-
rics indicate that urbanization processes may have
been modulating mosquito population dynamics [22,
25, 28, 29], leading to population structuring. This is
clearly relevant to disease epidemiology, since popula-
tion structuring can influence the dynamics of disease
transmission. As variation in wing shape is modu-
lated by genes, and is therefore less susceptible to se-
lective pressures when compared with variation in
wing size [30], geometric morphometric analysis of
wing shape can be used to study mosquito popula-
tion dynamics.

Our hypothesis is that Ae. aegypti is adapting locally
to different urban build environments, and that wing
geometric morphometrics may be able to provide im-
portant information about the population dynamics and
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population structuring of this species. The present study
sought to use this technique to investigate how Ae.
aegypti populations are structured in the city of Sao
Paulo and how their interaction with areas with dif-
ferent levels of urbanization can modulate this struc-
ture [31-33].

Methods

Specimen collection

Aedes aegypti mosquitoes were collected in eleven
areas, no more than 30 km apart with three distinct
levels of urbanization in the city of Sdo Paulo, Brazil
(Fig. 1, Table 1).

Conserved areas (CON): five municipal parks (large
green areas) open to the public from 5:00 to 20:00 h.
No chemical or biological control measures are used
in the parks. The wild fauna includes birds, reptiles
and mammals.

Intermediate areas (INT): four collection sites on the
University of Sdo Paulo Armando de Salles Oliveira
campus. The campus covers 3,648,944.40 m?, of which
approximately 800,000 m?> has been built on. More than
100,000 people visit, pass through or study or work on
the campus every day.

Urbanized areas (URB): two collection sites on the
University of Sdo Paulo health sciences campus. This is
in a highly urbanized, densely populated area and ex-
tends over 83,050.82 m?, of which 79,923.72 m” has been
built on (Table 1).

Mosquitoes were collected between 2012 and 2015.
Adult specimens were collected with portable battery-pow-
ered aspirators [34], and immature mosquitoes were col-
lected using different collection tools (Additional file 1:
Table S1). In the areas where the ovitraps were used, traps
were put in shaded areas at least 50 meters apart, each with
500 ml of water and hay infusion. The immature forms
were kept under laboratory conditions and fed with fish
food (Tetra BettaMin, Melle, Germany) until they reached
adulthood. All mosquitoes collected were identified using
taxonomic keys by Forattini [14] and stored in silica gel
until the wings were removed. For this study, all specimens
were collected during larval stages except for the popula-
tion collected at Previdencia Park (CON-5), in which only
adult mosquitoes were collected. Specimens were ran-
domly selected to avoid testing siblings.

Wing preparation and data acquisition

The right wing of each female mosquito was removed,
mounted on a microscope slide with a cover slip and
photographed at a magnification of 45x with a Leica
DFC320 digital camera coupled to a Leica S6 microscope.
Eighteen landmarks were digitized on each wing image by
one of the authors (RWS) using TpsDig (v.1.40) [35], fol-
lowing Louise et al. [22]. The selection of landmarks was
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Fig. 1 Aedes aegypti sampling locations in the city of S&o Paulo, Brazil
- J

based on wing venation intersection as follows: 1st, inter-  Cubital anterior; 12th, Mediocubital + Media 3+4; 13th,
sections of veins Radius + Radial sector; 2nd, Costa + Media + Media 1+2; 14th, Radiomedial crossvein + Media
Sub-costa; 3rd, Radius 1; 4th, Radius 2; 5th, Radius 3; 6th,  1+2; 15th, Radiomedial crossvein + Radius 4+5; 16th, Ra-
Radius 4+5; 7th, Media 1; 8th, Media 2; 9th, Media 3+4;  dial sector + Radius 2+3; 17th, Radius 2+3 + Radius 2 and
10th, Cubitus anterior; 11th, Mediocubital crossvein +  3; 18th, Media 1+2 + Media 1 and 2 [36].

Table 1 Aedes aegypti collection sites and collection data

Collection site Code Coordinates Stage n Year
Anhanguera Park CON-1 23°24'54"S, 46°47'6"W Immature 13 2013
Eucalipto Park CON-2 23°36'54"S, 46°45'18"W Immature 30 2012
Independéncia Park CON-3 26°35'6"S, 46°36'18"W Immature 26 2015
Piqueri Park CON-4 23°31'30'S, 46°35'30"W Immature 30 2013
Previdéncia Park CON-5 23°35'6"S, 46°43'30"W Adult 30 2015
University of Sao Paulo Student Accommodation INT-1 23°33'18'"S, 46°43'30"W Immature 30 2014
Communication and Art School INT-2 23°33'18'S, 46°43'30"W Immature 29 2014
Physics Institute INT-3 23°33'54"S, 46°44'6"W Immature 30 2014
Veterinary School INT-4 23°33'54"S, 46°44'6"W Immature 29 2014
Public Health School URB-1 23°33'18'S, 46°40'30"W Immature 30 2015
Medicine School URB-2 23°33'18"S, 46°40'30"W Immature 30 2015

Abbreviation: n number of specimens used
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Geometric morphometric analysis

Procrustes coordinates referent to wing shape were ob-
tained through the superimposition of landmark coor-
dinates. Multivariate regression of the Procrustes
coordinates against centroid size (10,000 randomiza-
tions) was used to assess the allometric influence of
wing size on wing shape. Canonical variate analysis
(CVA) was applied and the Mahalanobis distances cal-
culated to investigate the degree of dissimilarity in wing
shape between the study populations. To visualize
shape disparity, thin-plate splines were generated by re-
gression analysis of CVA scores against wing-shape
variation. Cross-validated reclassification based on the

Mahalanobis distance was carried out for each individ-
ual, consisting on the blinded reclassification of each
specimen taking into account only the variations in
wing shape, thereby making it possible to identify levels
of similarity in wing shape between populations. A
Neighbor-Joining (NJ) tree was constructed with 1000
bootstrap replicates to illustrate the patterns of vari-
ation among the populations (27 specimens of Ae.
albopictus were used as outgroup), and an UPGMA
dendrogram was also constructed based on geograph-
ical distances between collection sites (Additional file
2: Figure S2). The analyses were carried out and graphs
plotted with Morpho] (v.2.0) [37] and PAST (v.3.16)

Table 2 Results of pairwise cross-validated species reclassification (%) based on collection site. Values below the diagonal correspond to
mosquitoes from group 1 compared with group 2 and correctly identified; values above the diagonal correspond to mosquitoes from
group 2 compared with group 1 and correctly identified. P-value (parametric) < 0.0001

Group 2
CON-1 CON-2 CON-3 CON-4 CON-5 INT-1 INT-2 INT-3 INT-4 URB-1 URB-2
Group 1 CON-1 - 90 69 66 66 63 68 76 65 76 66

CON-2 84 - 73 66 83 83 72 83 62 66 80
CON-3 61 70 - 66 66 76 65 80 68 63 60
CON-4 61 83 73 - 63 76 65 76 55 60 73
CON-5 46 90 69 60 - 80 68 70 79 60 63
INT-1 46 86 73 66 73 - 55 73 48 70 70
INT-2 53 80 65 60 70 73 - 63 65 56 73
INT-3 76 93 88 66 63 70 65 - 58 70 70
INT-4 46 80 65 60 63 50 62 56 - 53 56
URB-1 38 66 73 63 56 63 51 70 48 - 63
URB-2 69 86 76 76 63 63 75 56 65 76 -
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Table 3 Results of pairwise cross-validated species reclassification
(%) for the three urban areas. Values below the diagonal
correspond to mosquitoes from group 1 compared with
those from group 2 and correctly identified; values above the
diagonal correspond to mosquitoes from group 2 compared
with group 1 and correctly identified. P-value (parametric) < 0.0001

Group 2
CON INT URB
Group 1 CON - 70 67
INT 69 - 66
URB 56 58 -

[38]. A linear correlation analyses between Procrustes
values and geographical distance (km) was performed
using PAST (v.3.16).

Results
Wing shape
The allometric effect in the populations tested was 9.5%
(P < 0.0001) and was mathematically excluded from the
subsequent analysis. When the populations in each
urban build environment (CON, INT and URB) were
considered as a metapopulation, wing geometric mor-
phometrics showed a clear pattern of segregation in all
analyses. There was a significant correlation between the
wing shape variation (Procrustes) and the geographical
distance between populations (r = 0.44; r* = 0.20; P <
0.001) and the CVA revealed wing-shape variations in
the Ae. aegypti populations considering both collection
sites and population structuring induced by the different
levels of urbanization in the collection areas (Fig. 2).
Cross-validated reclassification of the eleven popula-
tions yielded significantly high scores. Of 110 comparisons
(P < 0.0001) only 6 had accuracies of less than 50%, and 15
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had accuracies of more than 80%, indicating that there are
significant differences in the wing shapes of these popula-
tions. The CON-2 population had significantly higher re-
classification values (more than 80% reclassification
accuracy) than all the other populations apart from URB-1,
for which the reclassification score was 66%. In contrast,
the CON-1 population had the lowest reclassification
scores, with four comparisons yielding scores of less than
50% (Table 2).

The reclassification scores based on urban build envi-
ronments ranged from 56% (URB vs CON) to 70% (INT
vs CON), with an average of 64% indicating significant
differences between metapopulations according to the
urban build environment in which they had been col-
lected (Table 3).

The NJ tree for all the populations shows that the
INT populations segregated into a distinct branch,
while there was partial overlap between the CON and
URB populations (P < 0.005) (Fig. 3a). The CON-1 and
CON-2 populations segregated into a single branch
with 100 bootstrap value, indicating a high level of dis-
similarity to the other populations. A second branch
contained both populations from the most urbanized
area, URB-1 and URB-2, and the CON-3 population.
Furthermore, the subsequent analysis of metapopula-
tions showed similar results, with INT segregated in a
single branch with 100 bootstrap value (Fig. 3b). The
complete segregation of the INT population found in
the NJ analysis corroborates previous analyses and
highlights the fact that they are dissimilar to the other
populations.

Subsequent analysis considering the variation in popu-
lations from each urban build environment individually
revealed significant dissimilarity between the CON pop-
ulations, as shown by the complete segregation between

CON-1

100 46

CON-2

Aedes albopictus

Fig. 3 Neighbor-joining trees based on Mahalanobis distance with 1000 bootstrap replicates. a For collection sites. b For urban build environment

CON
55|
URB
100
INT
100

Aedes albopictus
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Fig. 5 Wireframe representation of shape variations between the three metapopulations. @ CON vs INT; b CON vs URB; ¢ URB vs INT

CON-2 and CON-5 and the significant partial segrega-
tion between CON-1 and CON-3, CON-1 and CON-5,
and CON-2 and CON-3 in the CVA analysis (Fig. 4a). The
INT populations occupied the largest area in the morpho-
space, displaying significant wing shape variations despite
their proximity (Fig. 4b). The URB populations were al-
most completely segregated, as seen in the wing-shape
diagram of the first canonical variable where only two
wing shapes overlap, indicating a high degree of shape sin-
gularities despite the fact that they were collected in areas
no more than 1 km apart (Fig. 4c).

Wing-shape variation within each metapopulation was
also compared with the aid of a thin-plate spline and re-
vealed that the INT metapopulation had the greatest
variation in wing shape. The greatest variation between
metapopulations was between URB and INT and be-
tween CON and INT, while the smallest was between
CON and URB (Fig. 5).

Discussion

Aedes aegypti is an urban mosquito that is highly
adapted to man-made changes and can be found in a
wide range of urbanized environments. To thrive in

these environments, it must cope with the intense se-
lective pressures such changes bring about. This is
reflected in our results, suggesting that different levels
of urbanization may have been modulating the popu-
lation dynamics of Ae. aegypti mosquitoes, agreeing
with a previous study that used microsatellite markers
to analyze Ae. aegypti populations from the same col-
lection sites used in this study [39].

Populations from the environments with an inter-
mediate level of urbanization had a significantly wider
variety of wing shapes than the other populations. This
phenomenon may be explained by the environmental
heterogeneity in these areas, which have features of con-
served and urbanized environments and a greater range
of selective pressures, reflected in a wider variety of
wing shapes. This hypothesis is supported by the results
of the metapopulation analysis and the analysis of all
the study populations individually. In contrast, environ-
ments with higher levels of urbanization exert stronger
selective pressures, imposing a greater thermal ampli-
tude variation resulting from the so-called “heat islands”
[18], fewer resting places and availability of sugar
sources, as well as pollution resulting from human
action and mechanical removal of breeding sites. In
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addition, the frequent chemical interventions during
control campaigns also account for the population
structuring [39].

However, rather than increasing wing-shape vari-
ability, these stronger selective pressures increase the
rate at which changes in wing shape occur, corrobor-
ating the findings of Louise et al. [22]. On the other
hand, populations in conserved areas showed moder-
ate wing-shape variation, which may be explained by
the inherently more complex habitats with higher
levels of biodiversity and density-dependent pressures
[40-42]. This hypothesis is corroborated by a previ-
ous study for the same geographical region, in which
the drivers for species richness and composition
were found to be associated with urbanization pro-
cesses [43].

The results of the cross-validated reclassification in-
dicate a very significant variation in wing shape be-
tween the populations. Of 110 possible population
comparisons, cross-validated reclassification scores for
15 were above 80% and only 6 below 50%. Considering
that these populations belong to a microgeographical
region, these results indicate significant population
structuring in Ae. aegypti as a result of urbanization
processes.

Uncovering the mechanisms by which urbanization
processes interact with mosquito populations, especially
on a small scale, is of great epidemiological importance,
particularly in the case of Ae. aegypti. A previous study
conducted by Araujo et al. [44] found that urban heat
islands have a higher incidence of dengue than other
urban areas, indicating that variations in urbanization
may be modulating dengue transmission. Similar find-
ings were reported in a study by Lambrechts et al. [45],
who found that temperature variations may influence
dengue transmission patterns.

Conclusions

Areas with different levels of urbanization have differ-
ent features and selective pressures. These pressures
act on Ae. aegypti, modulating the population struc-
turing in this species. Furthermore, the fact that Ae.
aegypti thrives in the urban environment, which pro-
vides a virtually unlimited number of breeding sites
and human hosts for blood-feeding, may lessen the
need for this species to migrate to new areas in
search of food and breeding sites [46—48]. Finally,
variations in environmental features, such as those
caused by urbanization, appear to play an important
role in the dynamics of Ae. aegypti populations. Wing
geometric morphometrics was successfully used in
this study to glimpse microevolutionary processes on
Ae. aegypti populations in urban areas.

Page 8 of 9

Additional files

Additional file 1: Table S1. Collection of immature Aedes aegypti
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