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Abstract

Background: Trypanosoma cruzi, a hemoflagellate protozoan parasite and the etiological agent of Chagas disease
(CD), exhibits great genetic and biological diversity. Infected individuals may present clinical manifestations with
different levels of severity. Several hypotheses have been proposed to attempt to correlate the diversity of clinical
signs and symptoms to the genetic variability of 7. cruzi. This work aimed to investigate the differential expression
of proteins from two distinct genetic groups of T. cruzi (discrete typing units Tcl and Tcll), isolated from chronically
infected individuals displaying the cardiac form of CD. For this purpose, epimastigote forms of the two isolates
were cultured in vitro and the cells recovered for protein extraction. Comparative two-dimensional (2D) gel
electrophoreses were performed and differentially expressed spots selected for identification by mass spectrometry,
followed by database searching and protein categorization.

Results: The 2D electrophoretic profiles revealed the complex composition of the T. cruzi extracted proteome.
Protein spots were distributed along the entire pH and molecular mass ranges attesting for the integrity of the
protein preparations. In total, 46 differentially expressed proteins were identified present in 40 distinct spots
found in the comparative gel analyses. Of these, 16 displayed upregulation in the gel from Tcl-typed parasites
and 24 appeared overexpressed in the gel from Tcll-typed parasites. Functional characterization of differentially
expressed proteins revealed major alterations associated with stress response, lipid and amino acid metabolism
in parasites of the Tcll isolate, whilst those proteins upregulated in the Tcl sample were primarily linked to
central metabolic pathways.

Conclusions: The comparative 2D-gel electrophoresis allowed detection of major differences in protein expression
between two T. cruzi isolates, belonging to the Tcl and Tcll genotypes. Our findings suggest that patients displaying
the cardiac form of the disease harbor parasites capable of exhibiting distinct proteomic profiles. This should be of
relevance to disease prognosis and treatment.
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Background

Chagas disease is caused by the hemoflagellate protozoan
parasite Trypanosoma cruzi. According to data from the
World Health Organization [1], 67 million individuals
are infected by the parasite throughout Latin America and
around 60-70 million people are at risk of infection.
Hampered by the high genetic variability of the parasite,
the afflicted population exhibits varying clinical forms of
the disease [2—4]. These are mostly refractory to treat-
ment, particularly for chronically infected individuals [5].

It has been established that the natural populations of T.
cruzi are represented by at least seven discrete typing units
(DTUs) TcI-TcVI and Tcbat [6]. Any possible correlation
between these DTUs and the occurrence of the different
clinical forms observed in chagasic patients is, to date,
quite controversial [7, 8]. Since regulation of gene expres-
sion in trypanosomatids operates post-transcriptionally,
molecular approaches to analyze and compare the pro-
teomes of 7. cruzi populations may be fundamental to
show the association between their genetic variability and
the clinical manifestations of Chagas disease [9].

In this regard, Telleria et al. [5] pioneered the use of
2D-gel electrophoresis to highlight differential protein
expression among nine 7. cruzi laboratory-cloned stocks.
Differences in spot volumes for several proteins allowed
the authors to highlight proteomic variability among the
clones and their grouping into four distinct DTUs. How-
ever, only a few representative spots (nine in total) of
major soluble components such as o-/B-tubulins and
heat-shock proteins were confidently identified by mass
spectrometry. This prevented major conclusions to be
drawn concerning the biological meaning of the prote-
omic dissimilarities observed for the distinct DTUs. A
more recent approach revealed that mass spectral librar-
ies generated with T. cruzi stocks representatives of the
distinct DTUs can be used to confidently distinguish
among the genotypes [10].

Towards a patient-oriented approach, we have previ-
ously reported a range of biological properties associated
to T. cruzi samples that were isolated from chronically-
infected individuals displaying the cardiac, indeterminate
and digestive forms of Chagas disease. Briefly, blood
samples were collected from patients living in Minas
Gerais, Brazil, and the recovered parasites genotyped as
belonging to DTUs I, II and VI. Marked differences in
their biological behaviour were observed when samples
belonging to these three DTUs were grown in vitro or
used to infect Vero cells [11]. Moreover, in vivo studies
of parasitemia, polymorphism of trypomastigotes, car-
diac inflammation and fibrosis contributed to pinpoint
major differences among those DTUs in the murine
model of infection.

In the present study, aiming to provide molecular in-
sights into the dissimilarities observed, we have selected
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two of those strains belonging to the distinct and phylo-
genetically polar groups (TcI and Tcll) for a comparative
2D-gel electrophoretic analysis. Mass spectrometry iden-
tification greatly expanded the number and the cellular
processes associated with differentially expressed proteins
observed between these two genetic groups. Understand-
ing the role such proteins play during parasitism should
be of relevance to disease outcome and treatment, in par-
ticular for cardiac chagasic patients.

Methods

Selection of Chagas disease patients

The two T. cruzi samples used in this study were iso-
lated from chronic Chagas disease patients (patients
code: PR150 and 452), living in different regions in the
state of Minas Gerais (MG), Brazil. The PR150 sample
(Tcl) was isolated from a female patient, living in
Janudria, northern MG [12], and sample 452 (Tcll) was
isolated from a patient living in Berilo, Vale do Jequiti-
nhonha, MG [13]. These two locations are geographic-
ally separated by 487 km. Both patients presented the
cardiac clinical form of the disease (moderate and se-
vere, respectively) and agreed to participate in the Cha-
gas Disease Programme.

The serological diagnosis for T. cruzi infection was con-
firmed according to the guidelines of the Ministry of
Health of Brazil [14] and the WHO [15]. In addition, the
patients were evaluated through anamnesis, clinical exam-
ination, posteroanterior chest X-ray, contrast-enhanced
X-ray of the esophagus and colon, electrocardiogram and
echocardiogram. After analyzing the results, the patients
were clinically classified according to the Brazilian Con-
sensus on Chagas Disease of 2015 [16].

Obtaining T. cruzi isolates

Trypanosoma cruzi isolates were obtained by using the
blood culture technique described by Chiari et al. [17].
Briefly, sterile tubes containing heparin (Vacuntainer
BD, New Jersey, USA) were used to collect approxi-
mately 30 ml of intravenous blood. The blood was trans-
ferred to a conical tube and immediately centrifuged at
2070x g for 10 min at room temperature. To the red
blood cell (RBC) concentrate obtained, 5 ml of LIT
medium [18] was added and followed by a new centrifu-
gation step performed under the same conditions. This
procedure was then repeated to obtain a clean leukocyte
layer that was removed for culture. The RBC layer was
resuspended in 5 ml of LIT medium and subdivided into
three new tubes containing 5 ml LIT medium each.
These tubes were incubated at 28 °C and homogenized
manually three times a week. One drop of the pellet
from each preparation was analyzed under an optical
microscope at 30, 60, 90 and 120 days after collection to
detect the presence of multiplying parasites.



DERDIDDIXRIXX]

Tavares de Oliveira et al. Parasites & Vectors

Acellular culture of T. cruzi

Trypanosoma cruzi isolates were maintained in expo-
nential growth by successive addition of LIT medium
until approximately 35 ml of culture were obtained. The
culture was transferred to tapered tubes and centrifuged
at 2070x g at 4 °C for 30 min. After centrifugation, the
supernatant was carefully discarded by inversion and 10
ml of sterile buffered saline (PBS, pH 7.2) was added to
the pellet. The mixture was subjected to a new centrifu-
gation step as before for 15 min. After repeating this
procedure, the pellet was transferred to a pre-weighed
1.5 ml microcentrifuge tube. The pellet was then washed
with sterile PBS and centrifuged at 6900x g for 10 min.
The supernatant was carefully removed, the tube re-
weighed, and the wet mass of parasites stored at -70 °C
for further proteomic analysis. This protocol was re-
peated for each of the three biological replicates used in
this study.

Protein extraction

Approximately 100 mg of epimastigote cell pellets were
used for the extraction of proteins. The samples were
homogenized in 500 pl rehydration solution (7 M urea,
2 M thiourea, 2% w/v CHAPS, 0.002% w/v bromophenol
blue; all from Sigma-Aldrich, Missouri, USA) containing
1x Protease Inhibitor Cocktail (Sigma-Aldrich) at a final
dilution of 1:25, for 10 min in an ice bath. The samples
were then sonicated by means of a series of three 15 s
pulses, each followed by 45 s resting on ice between cy-
cles. Homogenates were centrifuged at 20,000x g for 1.5
h at 4 °C to remove cell debris. The 1D electrophoretic
profiles were used to verify the integrity of the extracts
and to normalize, through densitometric analysis (soft-
ware Quantity one v.29.0), the total amount of protein
present in each sample. Briefly, a 5 pl aliquot of each
sample was separated under denaturing conditions using
12% SDS-PAGE. After 30 min in fixative solution (40%
ethanol/7% acetic acid), the gel was stained in 0.02%
Coomassie Blue G-250 solution (Sigma-Aldrich) for 2 h.

Two-dimensional gel electrophoresis

2D-gels were prepared using 150 pg of proteins ob-
tained for each isolate. First, a precipitation step was
performed on trichloroacetic acid/acetone (1:8), followed
by solubilization of proteins in rehydration buffer contain-
ing 1% DTT and 0.8% ampholytes (pH3-10 NL Buffer
IPG; GE Healthcare, Uppsala, Sweden) at a final volume
of 250 pl for each sample. The first dimension was per-
formed using 13 cm gel strips (pH3-10 NL, GE Health-
care). Proteins were isoelectrofocalized at 23 °C using
IPGphor 3 (GE Healthcare) according to the following
protocol: step 1, 14 h of passive rehydration; step 2, 1 h at
constant 500 V; step 3, gradient up to 1000 V in 1 h; step
4, gradient up to 8000 V for 2.5 h; step 5, held at constant
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8000 V until making a total of 29,500 V throughout
the isoelectrofocalization protocol. All steps were per-
formed at a maximum current of 50 pA per strip.
The isoelectrofocalized proteins were then reduced,
followed by alkylation using 1% DTT and 4% iodoaceta-
mide, respectively, in equilibration buffer (6 M urea, 75
mM Tris-HCI pH 8.8, 29.3% glycerol, 2% SDS, 0.002%
bromophenol blue) as described previously [19]. The sec-
ond dimension was performed at 5 °C on 12% SDS-PAGE
gel (18 x 16 cm) at 20 mA/gel, for approximately 6 h. The
gels were fixed in 2% v/v orthophosphoric acid/30% v/v
ethanol overnight, and then washed 3 x 10 min with 2%
v/v orthophosphoric acid. Staining was performed for 48
h in a Coomassie colloidal solution containing 2% v/v
orthophosphoric acid, 18% v/v ethanol, 15% w/v ammo-
nium sulfate and 0.002% w/v Coomassie blue G-250 (Sig-
ma-Aldrich). Excess stain was removed by washing the
gels in 20% v/v ethanol for 5 min before they were
scanned using ImageScanner III (GE Healthcare).

Densitometric analyses of 2D-gels were performed
using the SameSpots software (TotalLab Ltd., v.20, UK)
following the manufacturer's recommendations. Quanti-
tative analyses were performed on spots that presented >
1.5-fold change in comparison to the respective spots
found in the gel used as reference (the one from strain
452). The maximum standard deviation allowed per
spot, for triplicate gels, was 10%. The spots that met
these criteria were selected for protein identification by
mass spectrometry.

Protein identification by mass spectrometry and database
searching

Selected spots were manually excised and destained in
40% v/v ethanol/7% v/v acetic acid. After washing in ul-
trapure water they were submitted to gel digestion
according to Helman et al. [20]. The recovered peptides
were analyzed on a Q-Exactive hybrid quadrupole-orbi-
trap mass spectrometer (Thermo Fisher Scientific, Bre-
men, Germany). Seventeen pl of peptide samples were
injected into a nanoUHPLC instrument (Dionex UltiM-
ate 3000, Thermo Fisher Scientific) through a trapping
system (Acclaim PepMapl00, 100 um x 2 cm, C18, 5
pum, 100 A, Thermo Scientific) for 3 min using as solvent
98% water/2% acetonitrile (ACN) with 0.05% trifluorace-
tic acid (TFA) and subsequently directed into a capillary
column (Acclaim PepMapl100, 75 pm x 25 cm, C18, 3
pum, 100 A, Thermo Fisher Scientific). Reversed-phase
separation of peptides was performed at 40 °C in a gradi-
ent of solvent A (water, 0.1% formic acid) and B (80%
ACN / 20% water, 0.1% formic acid), at a flow rate of 0.3
ul/min. Peptides were sequentially eluted over a gradient
spanning from 4% to 15% of solvent B for 2 min, in-
creasing to 55% of B over additional 15 min. Then, pep-
tides were directed to the online coupled mass
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spectrometer by means of a nanospray ionization source.
Ions were detected under positive mode through data
dependent analysis. Resolution for precursor ions (MS1)
was set to 70,000 (FWHM at 200 m1/z) with an automatic
gain control target of 3e®, maximum injection time of 100
ms, scanning over 300-2000 m/z. The Topl0 most in-
tense precursor ions of each MS1 mass spectra were indi-
vidually isolated with a 2.0 Th window for activation via
higher-energy collisional dissociation (HCD) with normal-
ized energy of 30 V. Only peptides exhibiting charge states
of +2, +3, +4 and +5 were selected. Automatic gain con-
trol target was set to 5e° (minimum accumulation of
3.3e®) with maximum injection time of 75 ms. Dynamic
exclusion of 15 s was active.

MS1 and MS2 spectral data were submitted to Prote-
ome Discoverer v.2.1 (Thermo Fischer Scientific) plat-
form, underpinned by the SEQUEST HT searching
algorithm, using a compilation of T. cruzi databases down-
loaded from TriTrypDB (available at http://tritrypdb.org/
tritrypdb/ and containing 21,060 sequences/10,322,012
residues). This combined database contained equivalent
number of sequences from Tcl- and Tcll-typed parasites.
Search parameters included cysteine carbamidomethyla-
tion as a fixed modification, methionine oxidation as a
variable modification, up to one trypsin missed cleavage
site, tolerance set to + 10 ppm for precursor and + 0.1 Da
for product ions. Only proteins identified with peptides
exhibiting expected values < 0.05, false discovery rate <
1% and percentage coverage > 8%, with at least one
unique peptide, were considered in this study. Whenever
more than one protein identification were assigned to a
single spot, the major component was associated with the
higher total Area Under Curve (AUC) observed, and only
if the total AUC of a second protein represented at least
40% of the major area, it was indicated.

Functional categorization of proteins

The identified proteins were distributed into 9 categor-
ies, according to their biological function and termed as
follows: transcription and translation, heat-shock re-
sponse, protein synthesis and degradation, metabolism
(related to carbohydrates, nucleotides, amino acids and
lipids), cytoskeleton and cell signaling. Gene Ontology
information (available at http://geneontology.org/) was
used to support the protein categorization.

Statistical analysis

Data derived from the quantitative proteomic analyses
were examined using the Graph Pad Prism software (v.5).
The comparison between the two distinct groups of gels
was made through ANOVA. The significance level adopted
was P < 0.05.
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Results

Proteomic analysis of epimastigote forms of T. cruzi

The protein extracts obtained from three distinct epimas-
tigote samples resulting from the acellular cultivation of
each strain (PR150-Tcl and 452-Tcll) were submitted to
isoelectrofocalization and subsequent bidimensional elec-
trophoresis in 13 cm gel, pH3-10NL. Following Coomassie
staining, the gels obtained in triplicates were analyzed
using the SameSpots software. Overall, good reproducibil-
ity for the gels was achieved, with proteins covering the
entire pH and molecular mass ranges indicating adequate
protein integrity following extraction (Fig. 1).

Over 1700 spots were detected, with approximately
200 displaying > 1.5 fold change for each overlapping gel
pair. The comparison among the triplicates revealed 40
matched spots showing < 10% standard deviation.
Among them, 16 protein spots from gel PR150 appeared
upregulated relative to their corresponding spots in the
gel from strain 452, whereas 24 were found upregulated
in gel 452 relative to their respective pairs in gel PR150.

The spots revealing expression differences between
strains PR150 and 452 were then excised, digested with
trypsin and subjected to protein identification by mass
spectrometry. Positive identifications were categorized ac-
cording to their molecular function as shown in Table 1
(see also Additional file 1: Table S1 for mass spectrometric
data related to peptide/protein identifications).

Fold changes in expression for each protein described in
Table 1 were represented in a bar plot. As shown in Fig. 2,
proteins belonging to diverse functional groups had their
levels of expression altered when compared between the
two evaluated genotypes. Notably, the representative sam-
ple of the TclI genotype (patient 452 exhibiting severe car-
diac clinical form) demonstrated differential expression of
proteins related to stress response and metabolism of
amino acids and lipids. Concerning the representative Tcl
genotype (patient PR150 exhibiting moderate cardiac clin-
ical form), there was pronounced expression of proteins
linked to central metabolic pathways.

Discussion

Changes in expression of proteins related to stress re-
sponse are genetically correlated with biological aspects of
T. cruzi infection. Among the identified proteins, three
presented increased expression in the PR150 (TcI) sample
[heat-shock protein 85 (Hsp85), heat-shock protein 60 —
(Hsp60) and thiol-dependent reductase 1 (TDR1)], and
five proteins, known to perform related molecular func-
tions, were also found at higher levels in strain 452 (TclI)
[heat-shock proteins 85 and 70 (Hsp85 and Hsp70,
respectively), IgE-dependent histamine-releasing factor
(HREF), iron superoxide dismutase (SODB) and glutathione
peroxidase-like protein (GPX)].
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Fig. 1 Comparative two-dimensional gel electrophoretic profiles for samples Tcl (PR150) and Tcll (452). Protein fractions from both samples were
isoelectrofocalized on a 13 cm pH3-10NL IPG strip and subsequently proteins separated according to their molecular masses using 12% SDS-
PAGE. After Coomassie staining, the gel images were aligned using the SameSpots software for identification of differentially expressed spots
(numbered). These were then processed for in gel digestion and the resulting peptides submitted to mass spectrometric identification. The figure
is a representative of a pair of gels

As for heat-shock proteins, Urményi et al. [21] reviewed
their relevance in the context of T. cruzi biology. It is
known that this protozoan parasite has a complex life-cycle
involving invertebrate and vertebrate hosts being subject to
several types of stress. Thus, molecular chaperones and
proteases are highly expressed in order to assist in the
maintenance of cellular homeostasis. Some families of
HSPs, especially Hsp70, Hsp90, Hsp100, Hsp40 and small
HSPs, have conserved and unique sequences for 7. cruzi
and demonstrate specific expression patterns among the
different strains. In addition, the different expression pat-
terns observed are relevant to parasite biology, particularly
concerning resistance to treatment [21, 22]. It has also been
demonstrated that parasites expressing higher levels of
HSPs have a greater capacity to transit between the wild
and domestic cycle of Chagas disease, since they present
greater multiplication and metacyclogenesis in the triato-
mine vector. This favors an enhanced capacity for infection
of the vertebrate hosts (man and domestic/wild ani-
mals) through the mechanism of natural transmission.
This family of proteins has been associated with mecha-
nisms of intracellular survival, metacyclogenesis and
virulence [21, 23-25].

According to previous work by our research group,
PR150 (TcI) and 452 (TclII) strains have demonstrated
capacity to infect Vero cells [11]. However, when we
compared the infection in the murine model, only strain
452 (Tcll) was able to infect mice and generate patent
parasitemia. This might be related to a higher expression

of heat-shock proteins and other molecules related to
stress resistance shown herein. Several studies have re-
ported that TcIl parasites isolated from humans are, in
fact, the most likely to infect and present patent parasit-
emia in mice [26, 27]. Therefore, they are more capable
of infecting vectors in view of this characteristic and
the predominance of larger blood trypomastigotes in
acute, subacute and chronic infections successively.
This, in turn, facilitates the infectivity to new vectors,
again allowing parasite dissemination in nature [28].
In addition to protecting the parasite against thermal
stress, such proteins play an important role during the
oxidative burst that occurs during infection of mam-
malian cells by T. cruzi [21, 25]. During this process,
the parasite is phagocytosed by macrophages and
retained in parasitic vacuoles where they are attacked
by lysosomal enzymes and reactive oxygen species.
Thus, strain 452 (Tcll) parasites can escape from the
parasitic vacuole with greater ease, ensuring their
intracellular life-cycle [21] by multiplying more in-
tensely in the host and, consequently, resulting in
higher levels of parasitemia [8, 26, 27].

TDRI1, also classified as a stress response protein and
identified in the PR150 (Tcl) strain, is homologous to
TC52 protein in 7. cruzi. This protein is also related to
parasite’s protection against oxidative stress during host
cell infection [29]. A study that evaluated TDR1 expres-
sion in different strains of 7. cruzi submitted to treat-
ment with benznidazole observed higher expression in
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Table 1 Identities associated with differentially expressed proteins in the comparison between Tcl and Tcll genotypes
Spot no./Strain Accession number  Description Gene Unique Coverage (%) pl Observed
peptides MW (kDa)
Translation/Transcription
22/PR150 TCSYLVIO_990036  Elongation factor 2 EF2 31 42.25 6.04 7570
101/PR150 TcCLB.503419.50 RNA-binding protein RGGm RGG2 8 27.51 8.76 3445
139/PR150 TcCLB.506925.130  Eukaryotic translation initiation factor 5a EIF5A 7 58.68 500 988
56/452 TcCLB.509583.10 Chaperonin TCP20 TP20 22 41.07 769  51.11
72/452 TCSYLVIO_002198  Elongation factor 1-alpha (EF-1-alpha) EF1A 1 4479 898 4399
Heat-shock response
28/PR150 TCSYLVIO_008621  Heat shock protein 85 HSP85 6 10.99 635 7376
43/PR150 TCSYLVIO_004969  Chaperonin HSP60, mitochondrial precursor HSP60 44 66.55 550 6535
44/PR150 TCSYLVIO_004969  Chaperonin HSP60, mithocondrial precursor HSP60 36 75.09 550 6535
71/PR150 TCSYLVIO_004831  Thiol-dependent reductase 1 TDR1 11 36.63 597 4604
26/452 TcCLB.507713.30 Heat-shock protein 85 HSP85 33 43.18 515 7441
35/452 TcCLB.511211.170  Heat-shock protein 70 (HSP70) HSP70 6 48.01 557 69.23
41/452 TCSYLVIO_003281  Heat-shock 70 kDa protein, mithocondrial precursor  HSP70 33 46.56 6.13 6729
42/452 TCSYLVIO_003281 Heat-shock 70 kDa protein, mithocondrial precursor — HSP70 15 2794 6.13  66.00
125/452 TcCLB.506207.50 IgE-dependent histamine-releasing factor HRF 1647 464 1835
131/452 TcCLB.506207.50 IgE-dependent histamine-releasing factor HRF 6 21.18 464 16.00
131/452 TcCLB.509775.40 Iron superoxide dismutase SODB 3 56.65 860 16.00
140/452 TcCLB.503.899.130  Glutathione peroxidase-like protein GPX 8 3933 600 847
Cell signalling
105/452 TcCLB.503855.20 Spermidine synthase SPSYN 1 35.14 541 2761
140/452 TcCLB.503715.30 Ras-related protein RABTA RABIA 3 15.71 777 847
143/452 TcCLB.511407.60 Small GTP-binding protein RAB11 RABTIT 7 4378 813 336
Protein synthesis/Degradation
59/PR150 TCSYLVIO_005562  Hypothetical protein (Metalocarboxypeptidase1) MCP1 19 50.21 586 4866
108/PR150 TCSYLVIO_001046  Peptidase M20/M25/M40 MT2598 8 17.78 543 2761
137/PR150 TcCLB.507639.40 Proteasome beta 5 subunit PSMB5 9 27.01 590 1347
127/452 TCSYLVIO_005774  Proteasome beta 2 subunit PSMB2 9 24.66 9.19 1835
Carbohydrate metabolism
24/PR150 TCSYLVIO_008551  Pyruvate phosphate dikinase PPDK 3 37.18 6.73 7505
99/PR150 TCSYLVIO_002700  Cytosolic malate dehydrogenase MDH 9 3524 6.73 3445
42/452 TCSYLVIO_004608  Phosphoglycerate mutase PGMI 26 61.01 592 66.00
51/452 TcCLB.507547.90 Glycosomal phosphoenolpyruvate carboxykinase PEPCK 18 38.86 837 6276
106/452 TcCLB510105230  Glyceraldehyde 3-phosphate dehydrogenase GAPDH 19 55.92 846 2807
Nucleotide metabolism
34/PR150 TCSYLVIO_003291  Tetrahydrofolate synthase MTHFD1 10 16.67 768 69.23
46/452 TcCLB.508731.60 Adenylosuccinate synthetase ADSS 7 4513 821 6346
Aminoacid metabolism
34/PR150 TCSYLVIO_006380  Urocanate hydratase UROCT 10 1467 6.86 69.23
36/PR150 TCSYLVIO_006380  Urocanate hydratase UROCT 16 20.74 686 69.23
38/PR150 TCSYLVIO_006380  Urocanate hydratase UROCT 37 44.74 6.86 6858
80/PR150 TCSYLVIO_000769  Tyrosine aminotransferase TAT 7 49.05 6.54 4238
56/452 TCSYLVIO_004599  Histidine ammonia-lyase HAL 16 29.59 834 51.11
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Table 1 Identities associated with differentially expressed proteins in the comparison between Tcl and Tcll genotypes (Continued)

Spot no./Strain Accession number  Description Gene Unique Coverage (%) pl Observed
peptides MW (kDa)
93/452 TCSYLVIO_001538  Aspartate aminotransferase GOT1 13 4234 881 36.50
111/452 TCSYLVIO_006042  Arginase ARG 12 54.22 646 25.88
112/452 TCSYLVIO_003182  Pyridoxal kinase PDXK 1 23.00 644 2023
Lipid metabolism
113/452 TcCLB.506213.50 Prostaglandin F synthase PGFS 4 15.66 882 2400
115/452 TcCLB.511693.90 Electron-transfer-flavoprotein, alpha polypeptide ETFA 4 57.01 827 2400
116/452 TcCLB.506213.50 Prostaglandin F synthase PGFS 8 3025 882 2400
118/452 TcCLB.510105.240  Short chain 3-hydroxyacyl-coa dehydrogenase HCD?2 9 34.69 863 2350
Cytoskeleton
28/PR150 TCSYLVIO_007343  Calpain-like cysteine peptidase SMP-1 10 15.03 505 7376
102/452 TcCLB.506563.40 Beta tubulin TUBB 9 33.26 481 2992
142/452 TCSYLVIO_008641 Epsilon tubulin TUBET 6 15.58 6.52 705

strains considered resistant to the specific treatment,
typical of TcI samples [30]. The same authors also sug-
gested that strains or clones that overexpress TDR1 can
escape from the immune system more easily and have
high virulence [7, 31].

Another important overexpressed protein in strain 452
(TcIl) is IgE-dependent histamine-releasing factor. This
protein has been linked to the ability of parasites to gener-
ate chronic inflammation [32]. This increase in expression
may explain the pronounced ability of this strain to gener-
ate inflammation in the cardiac tissue of infected mice,

both in the acute and chronic phases of infection [10]. In
humans, Tcll parasites cause more marked pathology due
to inflammation later replaced by fibrosis, mainly in the
heart [33, 34]. In addition, the expression of this gene has
been associated with chronic inflammatory processes of
the airways, such as allergic responses and asthmatic
symptoms [35].

The enzymes SODB and GPX, both overexpressed in
the Tcll strain (452), confer protection against oxidative
stress. Their expression is frequently related to an ampli-
fied immune response and consequent generation of
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reactive oxygen species, justifying their relevance in the
pathogenesis of Chagas disease [36, 37].

The SOD enzymes catalyze the conversion of super-
oxide radicals (O,") into oxygen (O,) and hydrogen per-
oxide (H,O,). Thus, for T. cruzi parasites they provide
the ability to withstand the highly oxidative environ-
ment rich in NADPH oxidase and nitric oxide synthase
found in macrophages during phagocytosis [38]. It was
demonstrated by Martinez et al. [39] and Piacenza et al.
[40] that expression of SODB isoform correlates with
high levels of resistance to oxidant treatment when
compared to other isoforms (SODA and SODC) found
in T. cruzi.

In terms of central metabolic pathways we observed
increased expression of proteins linked to the metabol-
ism of amino acids [histidine ammonia lyase (HAL), as-
partate aminotransferase (GOT1), arginase (ARG) and
pyridoxal kinase PDXK)] and lipids [prostaglandin F-
synthase (PGFS), electron transfer flavoprotein (ETFA)
and 3-hydroxyacyl-Coa dehydrogenase (HCD2)] in the
Tcll strain (452) relative to the Tcl strain (PR150).

Trypanosomatids alternate the main form of energy
production according to the availability of substrates
found in the environment. When sugar is available, T.
cruzi uses aerobic fermentation to metabolize it. How-
ever, whenever needed, it can activate the mitochondrial
pathway and oxidize amino acids with the concomitant
production of ammonia for energy generation [41-43].
It is also postulated that amino acid metabolism is in-
volved with the cytosolic reoxidation of NADH and the
recycling of methionine [44]. The amino acid proline ap-
pears to be very closely associated with 7. cruzi metacy-
clogenesis when the parasite is present on a nutrient-
poor environment (e.g. absence of blood supply in the
vector) or an aged culture medium [22, 45].

Glutamate is also another important amino acid used
in oxidative metabolism and histidine is one of its pre-
cursors [41]. The biochemical pathway involved in such
conversion employs some of the enzymes identified in
this work as HAL and UROCI; these are commonly
found overexpressed in the T. cruzi stages involving the
insect vector [46]. Proline, another amino acid metabol-
ically related to glutamate, seems to contribute through
the supply of energy, allowing parasite growth in ener-
getically unfavorable environments [47]. Additionally,
proline has been linked to resistance to oxidative stress
[48]. Aspartate aminotransferases carry out amino acid
transamination producing 2-oxo acids used up in the
Citric acid cycle. In addition, they apparently have the
ability to convert 2-oxo-4-methylbutyrate to methionine,
thus participating in the protection against oxidative
stress [49, 50].

Arginase is one of the enzymes responsible for compet-
ing with iNOS to counterbalance the defensive action of
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NO in infectious diseases by promoting parasite prolifera-
tion and differentiation. In addition, the enzyme sup-
presses T cell response through the production of
polyamines with anti-inflammatory and immunosuppres-
sive activities and influences, through arginine metabolism,
the relationship between innate and acquired immune
responses [51-53]. Although arginase activity has
proven essential for 7. cruzi infection, our study pro-
vides relevant data on the differential expression of this
enzyme associated to a specific genotype. This observa-
tion merits attention and could have implications for
the proposal of novel therapeutic approaches (e.g. argi-
nase inhibitors) for patients harboring parasites belong-
ing to distinct DTUs.

Overexpression of the PDXK enzyme associated with
the TclI strain is also of interest. It is involved in the
production of vitamin B6 (pyridoxal 5'-phosphate) from
its precursors pyridoxal, pyridoxamine and pyridoxine
[54]. This vitamin is a coenzyme for transaminases,
assuming a crucial role in transamination, decarboxyl-
ation, racemization and amino acid substitution reac-
tions, as well as being implicated in the antioxidant
defense [55].

As for lipid metabolism, ETFA and HCD2 proteins are
involved in the generation of ATP through [-oxidation
of fatty acids. In its turn, PGFS oxidoreductase plays an
important role in evasion of the host immune response
through prostaglandin synthesis, as demonstrated in
Leishmania infantum by Aratjo-Santos et al. [56]. The
ability of T. cruzi to metabolize arachidonic acid into
eicosanoids has been demonstrated to play an im-
portant role in parasite invasion and survival in the
host [57-60].

Our comparative 2D-gel electrophoresis provided a re-
liable tool to visualize and measure pronounced differ-
ences in protein expression associated to distinct T.
cruzi genotypes (Tcl and Tcll), isolated from chronically
infected patients displaying the cardiac form of CD. The
high levels of proteins associated to stress response and
the key aspects of amino acid and lipid pathways over-
represented in the TclIl genotype might contribute to ex-
plain the differential biological behavior observed for
strain 452 during our preliminary in vitro and in vivo
studies [10].

Conclusions

Here we have expanded the repertoire of protein mole-
cules distinctly expressed in the two T. cruzi genotypes
mostly associated to disease in South America, particu-
larly in the Brazilian population [59]. The search for ef-
fective methods to analyze and compare the proteomes
of T. cruzi strains may be fundamental to show the asso-
ciation between the parasite's genetic variability and the
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clinical manifestations resulting from the infection. Pro-
filing the differential proteome of the distinct 7. cruzi
genotypes may shed light on novel approaches for prog-
nosis and clinical management of those affected by Cha-
gas disease.
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