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Abstract

Background: Human schistosomiasis is a neglected tropical disease caused by parasitic worms of the genus
Schistosoma that still affects some 200 million people. The mainstay of schistosomiasis control is a single drug,
praziquantel. The reliance on this drug carries a risk of resistance emerging to this anthelmintic, such that research
towards alternative anti-schistosomal drugs is warranted. In this context, a number of studies have employed
computational approaches to prioritise proteins for investigation as drug targets, based on extensive genomic,
transcriptomic and small-molecule data now available.

Methods: Here, we established a customisable, online application for the prioritisation of drug targets and applied
it, for the first time, to the entire inferred proteome of S. haematobium. This application enables selection of
weighted and ranked proteins representing potential drug targets, and integrates transcriptional data, orthology
and gene essentiality information as well as drug-drug target associations and chemical properties of predicted
ligands.

Results: Using this application, we defined 25 potential drug targets in S. haematobium that associated with
approved drugs, and 3402 targets that (although they could not be linked to any compounds) are conserved
among a range of socioeconomically important flatworm species and might represent targets for new
trematocides.

Conclusions: The online application developed here represents an interactive, customisable, expandable and
reproducible drug target ranking and prioritisation approach that should be useful for the prediction of drug
targets in schistosomes and other species of parasitic worms in the future. We have demonstrated the utility of this
online application by predicting potential drug targets in S. haematobium that can now be evaluated using
functional genomics tools and/or small molecules, to establish whether they are indeed essential for parasite
survival, and to assist in the discovery of novel anti-schistosomal compounds.
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Background
Human schistosomiasis is a neglected tropical disease
(NTD) caused by parasitic flatworms of the genus Schis-
tosoma [1]. This disease affects some 200 million people,
predominantly in Africa, and is mainly caused by two
species, Schistosoma mansoni and S. haematobium [2,
3]. The mainstay of schistosomiasis control is a single

drug, praziquantel, which, due to its low cost, effective-
ness and safety, is being used widely in mass drug ad-
ministration (MDA) programmes worldwide [4–6].
Arguably, the reliance on a single drug can increase the
likelihood of selecting for resistant worms, given the
knowledge of rapid and widespread resistance against all
major drug classes in many parasitic worms of animals
[4, 7]. Thus, research towards the discovery and develop-
ment of alternative anti-schistosomal drugs, including
the repurposing of drugs that are approved for use in
humans, is on-going [4, 8, 9].
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In this context, a number of studies (e.g. [10–12]) have
employed computational approaches to prioritise pro-
teins for investigation as drug targets, using extensive
genomic and transcriptomic data now available for
schistosomes [11, 13–15]. Similar approaches [16, 17]
have been applied to other parasites of socioeconomic
importance. Additionally, the online resource TDRtar-
gets [18], although mainly established for unicellular
pathogens, allows for the prediction of drug targets for a
number of parasitic helminths that cause neglected trop-
ical diseases [19, 20]. Another target prioritisation ap-
proach, which relies on both filtering and ranking of
weighted gene/protein features, has been applied to pre-
dict kinases as drug targets in Haemonchus contortus, an
economically important parasitic roundworm (nema-
tode) [21]. However, this refined approach has, to our
knowledge, not yet been applied to the protein comple-
ment of the flatworm S. haematobium. Here, we extend
and enhance this approach by establishing an online ap-
plication which allows for interactive weighting and
ranking of features using parameters defined by the re-
searcher. Using this application, we identified potential
drug targets in S. haematobium that could be linked to
approved drugs and inferred novel targets that are con-
served among socioeconomically important parasitic
flatworms, for which no known ligands exist.
In order to prioritise drug targets employing customis-

able prioritisation criteria, we first inferred
sequence-based features using genomic and transcrip-
tomic data, and then linked sequences to pathways and
drugs. All of these features were then integrated into an
online application.

Transcription levels
To prioritise drug targets according to gene transcrip-
tion in adult stages of S. haematobium, we recorded
transcription levels for all 11,140 S. haematobium genes
(PRJNA78265) from published data (accession numbers:
SRR6655497 and SRR6655495) [11, 12, 22].

Inferring orthologs in metazoan model organisms and S.
haematobium-related flatworms
To determine amino acid sequence similarity between
11,140 individual S. haematobium proteins
(PRJNA78265) and those of other species, we employed
the program blastp v.2.2.28+ applying an E-value cut-off
of 10-5 and considering only the best matches. We car-
ried out these comparisons using protein sequences
from WormBase (Caenorhabditis elegans, WS262,
PRJNA13758) [23], FlyBase (Drosophila melanogaster,
release FB2017_06, dmel_r6.19) [24], Ensembl (release
91.38; Mus musculus GRCm38.p5 and human GRCh38)
[25] and WormBase Parasite (WBPS9; accession num-
bers: PRJEA36577, S. mansoni; PRJEA34885, S.

japonicum; PRJDA72781, Clonorchis sinensis;
PRJNA222628, Opisthorchis viverrini and PRJNA179522,
Fasciola hepatica) [13–15, 26–28]. For each pair of
query-hit sequences obtained from the blastp analysis,
we then calculated a pairwise global alignment using the
program NEEDLE from the EMBOSS package v.6.4, to
determine global sequence similarity and coverage,
which were used to define groups of orthologous se-
quences via the user interface of the online application.

Inferring essentiality and functional annotation
Next, we inferred genes with a lethal phenotype in C.
elegans, D. melanogaster and/or M. musculus, employing
gene perturbation data and information from the
WormBase, FlyBase and Ensembl databases, respectively,
to allow for the prioritisation (i.e. selection or high
weighting) of parasite orthologs with lethal phenotypes
in one or more of these species. We then annotated S.
haematobium proteins by matching them with their
closest homologs in the Swiss-Prot [29] and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [30] data-
bases (releases 05/2017) using blastp, and by domain
searches using InterProScan v.5.15.54 [31]. To prioritise
proteins that represent pathway ‘choke-points’ (cf. [32–
34]), we inferred proteins linked to a unique KEGG
orthologous gene (KO) term within a KEGG pathway
and/or annotated with a unique InterPro identifier.

Predicting drug-drug target associations
To infer associations between parasite proteins and
known drug targets, we matched S. haematobium pro-
teins to known drug targets and associated drugs in the
ChEMBL (release 23) [35] and DrugBank v.5-0-11 [36]
databases using the program psiblast v. 2.2.26+, applying
a stringent E-value cut-off of 10-30. For the ChEMBL
database, we included only targets for which data from
at least one drug screening assay were available, as
otherwise no connection between a target (in a parasite)
and a drug could have been made. In addition, we ap-
plied the following default selection criteria (cf. [37]): we
only considered binding assays (“B”) that reported “activ-
ity” (in %), “inhibition” (in %), “Kd” (dissociation con-
stant in nM), “Ki” (inhibitor constant in nM), “IC50”
(half-maximal inhibitory concentration in nM) or “po-
tency” (in nM). For all values reported in nM, we set the
cut-off at ≤ 10,000 nM (10 mM) and, for all percentage
values, we set the cut-off at ≥ 70%, in order to pre-filter
the ChEMBL database for compounds that showed ac-
tivity against an associated target and are thus predicted
to have an effect on an orthologous protein in the para-
site. Of these 109,712 compounds, we labelled 30,169
compounds as “previously screened in Schistosoma spe-
cies”, as they were (in ChEMBL) either linked to Schisto-
soma as the test organism (n = 30,158) or had been
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screened against S. mansoni in a recent study (n = 11)
[38]. In addition, we retrieved information from both da-
tabases on the clinical phase or status of approval of all
compounds and the number of violations of the
rule-of-3/rule-of-5 [39]. We also assessed whether small
molecules in the ChEMBL database represented natural
products and inferred the ‘drug-likeness’ of compounds
in the DrugBank database based on their similarity to
compounds from the MDL Drug Data Report (MDDR)
[40].

Online application to predict and prioritise drug targets
in S. haematobium and to infer associated drugs
To enable the customisable prioritisation of drug targets
based on all inferred target/compound properties, we de-
veloped an online application (available via [41]; source
code available via [42]) using the shiny package [43] of the
R programming language v.3.5.0, which allows for the in-
clusion of 29 gene/protein features (Table 1 and Fig. 1) in
five different ways (Fig. 2). The first option is to assign a
weighting to a particular property by means of a slider
(Fig. 2a). The second option allows for a particular prop-
erty to be required by selecting a check-box (Fig. 2b), thus
removing (i.e. filtering) from the results all proteins/com-
pounds that do not satisfy the required feature. The third
option (Fig. 2b) excludes proteins that satisfy any feature
that is deemed disadvantageous for a prospective drug tar-
get (e.g. high sequence similarity to a host ortholog). Using
the fourth option, features that are (according to the in-
vestigator’s aims/priorities) deemed unimportant for the
prioritisation process can be ignored (Fig. 2b). When this
option is selected, no weightings are assigned to the fea-
tures, regardless of whether a protein satisfies them or
not. For some features, a fifth option allows for a range of
values (e.g. clinical phase of a drug; Fig. 2c) or a subset of
properties (e.g. a subset of InterPro domains of interest)
to be selected. The final score for each protein that is not
excluded from the results during the selection process is
then determined by calculating the sum of weighting fac-
tors for all individual features. Subsequently, genes/pro-
teins are ranked from highest to lowest overall scores, as
described previously [21]. In the following, we describe
and justify the weightings, parameters and cut-offs that we
selected in the online application to prioritise drug targets
in S. haematobium. The user interface of the application
developed here consists of five panels (Fig. 2d) that repre-
sent the different steps in the prioritisation process as well
as two additional panels (Fig. 2e) that visually summarise
and display the prioritised proteins and drugs.

Transcription of target genes (panel 1)
In the first panel, “Transcription”, genes can be filtered
(i.e. “required” or “excluded”) or assigned a weighting ac-
cording to their transcription level in at least one adult

stage (male and/or female) of S. haematobium. For the
present analysis, we selected the option “required”, as we
considered target transcription in at least one adult stage
to be a minimum requirement for a compound to have
an effect against this target in the parasite within the hu-
man host.

Sequence comparisons of target genes with orthologs of
other species (panel 2)
The panel “Orthology” allows for the prioritisation of
targets based on their conservation among multiple
‘model’ organisms (C. elegans, D. melanogaster and M.
musculus), flatworms related to S. haematobium (S.
japonicum, S. mansoni, C. sinensis, O. viverrini and F.
hepatica), as well as orthologs that have been experi-
mentally verified (i.e. Swiss-Prot orthologs) and host (i.e.
human) orthologs. This panel also allows for the selec-
tion of cut-offs used to define which S. haematobium
proteins have orthologs in other species. Here, we se-
lected a minimum of 80% amino acid sequence similarity
across the entire sequence and a minimum of 50% of se-
quence coverage as the cut-off for proteins to be re-
corded as orthologs.
Although proteins conserved across a broad range of

taxa are suggestive of being essential [16], this character-
istic might also indicate that the parasite protein cannot
be safely and selectively targeted by a small molecule,
which could lead to adverse or toxic effects when the
drug also targets an ortholog in a host animal (verte-
brate). Thus, here, we selected a weighting of five points
for the presence of both C. elegans and D. melanogaster
orthologs and excluded any targets that had an inferred
ortholog in M. musculus. For the same reason, we re-
quired that there was no human ortholog and that any
existing homologs were ≤ 46.2% (75th percentile) similar
to the target sequence. Furthermore, we gave seven and
eight points for the presence of orthologs in S. japoni-
cum and S. mansoni respectively, given that S. haemato-
bium and S. mansoni are often co-endemic [1, 2] and a
novel anthelmintic should be able to target all species.
In addition, we awarded six points to targets with ortho-
logs in two other flatworm species (C. sinensis and O.
viverrini) and eight points to targets with an ortholog in
the liver fluke F. hepatica, given the major socioeco-
nomic importance of this parasite [44, 45]. An ortholog
in the Swiss-Prot database was given seven points, rea-
soning that an experimentally verified and/or manually
curated ortholog provides additional confidence to the
accuracy of the annotation of a parasite protein.

Inference of essentiality (panel 3)
In the “Essentiality” panel, we gave nine points to targets
with C. elegans and D. melanogaster orthologs that ex-
hibited lethal phenotypes upon perturbation by RNA
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interference (RNAi) of their respective genes. We ex-
cluded any targets that had an ortholog in a representa-
tive vertebrate (M. musculus) that exhibited a lethal
phenotype upon gene knock-down or knock-out. In
addition, we gave eight points to targets with a unique
KEGG pathway term, reasoning that they might repre-
sent indispensable ‘choke-points’ that would lead to a
major pathway disruption if inhibited or knocked down.
For the same reason, proteins with a unique InterPro
protein annotation were given seven points.

Selection of potential targets based on annotation (panel 4)
The “Annotation” panel allows the user to select a sub-
set of proteins with a particular annotation as predicted

targets. The selection panel can be searched by simply
typing keywords into it; for example, typing “kinase” lists
all InterPro terms containing “kinase” and allows indi-
vidual terms to be selected. Multiple terms can be se-
lected and the check-box “All of selected” allows for the
selection of proteins that have been assigned to all of the
listed annotation terms. In contrast, the check-box “Any
of the selected” selects all proteins with one or more of
the listed terms, and the check-box “None of the se-
lected” excludes any protein annotated with any of the
terms listed. As we did not want to restrict our selection
to a particular group or family of proteins, we chose the
default selection (“All identifiers” and “Any of the se-
lected”) for this field.

Table 1 Ranking and prioritisation features employed to infer drug targets and associated drugs in S. haematobium

Feature Default
(cut-off) value

Ranking type Weighting

Transcribed in adult worms? Yes Require na

Sequence similarity to C. elegans ortholog ≥ 80% Weighted 5

Sequence similarity to D. melanogaster ortholog ≥ 80% Weighted 5

Sequence similarity to M. musculus ortholog ≥ 80% Exclude na

Sequence similarity to S. japonicum ortholog ≥ 80% Weighted 7

Sequence similarity to S. mansoni ortholog ≥ 80% Weighted 8

Sequence similarity to C. sinensis ortholog ≥ 80% Weighted 6

Sequence similarity to O. viverrini ortholog ≥ 80% Weighted 6

Sequence similarity to F. hepatica ortholog ≥ 80% Weighted 8

Sequence similarity to Swiss-Prot ortholog ≥ 80% Weighted 7

Sequence coverage of C. elegans ortholog ≥ 50% Weighted 5

Sequence coverage of D. melanogaster ortholog ≥ 50% Weighted 5

Sequence coverage of M. musculus ortholog ≥ 50% Exclude na

Sequence coverage of S. japonicum ortholog ≥ 50% Weighted 7

Sequence coverage of S. mansoni ortholog ≥ 50% Weighted 8

Sequence coverage of C. sinensis ortholog ≥ 50% Weighted 6

Sequence coverage of O. viverrini ortholog ≥ 50% Weighted 6

Sequence coverage of F. hepatica ortholog ≥ 50% Weighted 8

Sequence coverage of Swiss-Prot ortholog ≥ 50% Weighted 7

Sequence similarity to human ortholog ≤ 75th percentile? Yes Require na

Lethal phenotype for C. elegans ortholog? Yes Weighted 9

Lethal phenotype for D. melanogaster ortholog? Yes Weighted 9

Lethal phenotype for M. musculus ortholog? No Exclude na

KEGG ‘choke-point’? Yes Weighted 8

Unique InterPro identifier? Yes Weighted 7

One associated compound in ChEMBL? Yes Require na

More than five associated compounds in ChEMBL? Yes Weighted 5

One associated compound in DrugBank? Yes Require na

More than five associated compounds in DrugBank? Yes Weighted 5

For each feature, the default value or cut-off value, the ranking type chosen in this work and the assigned weighting are given. For the inference of de novo drug
targets (i.e. those without associated drugs), the last four listed features (i.e. those describing the number of associated compounds) were all set to “exclude”
Abbreviation: na, not applicable

Stroehlein et al. Parasites & Vectors          (2018) 11:605 Page 4 of 12



Drug-drug target associations and chemical properties of
predicted ligands (panel 5)
To select both targets with or without associated com-
pounds, we carried out two independent rounds of rank-
ing. In the first round, we linked compounds to selected
drug targets based on sequence similarity between para-
site proteins and proteins deposited in the two data-
bases, ChEMBL and DrugBank. The “Drugs” panel
allows for further prioritisation of targets based on the

presence and chemical properties of associated com-
pounds in these databases. For both databases, we re-
quired each target to have at least one associated
compound and assigned additional five points to the
overall target score, provided that five or more such
compounds were found, respectively. Additional infor-
mation about these compounds was then used to further
filter the results: for compounds in the ChEMBL data-
base, we required the drug phase to be between phase II
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and phase IV [46]. The maximum number of rule-of-5
violations was set at zero. For DrugBank, we included
only compounds that had the status “approved”.
In the second round, we excluded all targets that had

compounds associated with them in either of the two
databases by checking the “exclude” check-box for the
“At least one associated compound in ChEMBL/Drug-
Bank” features. All other parameters remained the same
as in the first round of ranking. Using these settings, we

ranked targets solely considering homology-based fea-
tures and selected proteins that might represent poten-
tially new drug targets for which no known ligands exist.

Prioritised proteins/targets (panel 6)
The “Summary and Analysis” panel contains three main
elements: a summary table (Table 1) that lists all weight-
ings and ranking modes that have been set for individual
features. All changes made to these parameters by an

a

c

b

d e

Fig. 2 User interface of the online application. The weighting of features can be set via a slider (a) or features can be excluded, ignored or
required (b). Additionally, feature restrictions/filters for associated drugs can be defined using a range slider (c) or check-boxes. Of the five panels
that represent different steps in the ranking/prioritisation process (d) and the two panels that visually summarise and display the resulting
proteins and drugs (e), the “Drugs” panel is shown here as an example
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investigator can be reset to the parameters applied in
this study by clicking the “Reset weightings” button.
Clicking the “Calculate ranking” button reveals a range
of additional elements in this panel: a histogram (Fig. 3a,
b) summarises the number of proteins that satisfy the
applied criteria and the distribution of scores for all pre-
dicted targets. The detailed score and annotation data
can be downloaded as a tab-separated text file for a spe-
cified number of proteins (default: top 10% of all in-
ferred proteins) or for all proteins by selecting a cut-off
and clicking “Download protein data”. In addition, the
applied ranking parameters can also be downloaded
using the “Download ranking parameters” button. At the
bottom of the panel, a table (Additional file 1: Table S1
and S2) lists all results, including the total score, infor-
mation on protein annotation and scores for individual
criteria. Criteria that are excluded or are required (which
means they are not weighted) are not shown in the re-
sults list, as their values would be identical for all se-
lected proteins. Entries in this table can be ordered
according to the values within individual columns using
the up- and down-arrows next to the column names,
and can be searched using the text field at the top right
of the table.

Predicted/prioritised drugs (panel 7)
The “Drug Results” panel contains two sub-panels, one
for ChEMBL and one for DrugBank, and lists informa-
tion on all associated compounds that satisfy the selec-
tion criteria chosen in the “Drugs” panel for each
predicted target. In addition to summarising the proper-
ties of the resultant compound-target relationships, the
ChEMBL result table contains patent information as well
as web-links to data sheets of compounds and associated
screening assays. Both result tables are searchable and
can be downloaded by clicking the “Download
ChEMBL/DrugBank data” button. For both databases,
the number of targets for which associated compounds

are shown can be selected (default: top 10% of all in-
ferred targets). We investigated further the top five com-
pounds from each of the two sub-panels.

Results
Predicted targets associated with drugs (‘repurposing’)
The filtering and ranking criteria applied in the first
round yielded 25 potential targets that had one or more
drugs associated with them (Fig. 3a; Additional file 1:
Tables S1 and S3). Most of these targets (76%) had a
score of < 50 (Fig. 3a). We selected the five targets that
had the highest scores (58 to 71) for further assessment.
Among them were a G protein-coupled receptor
(MS3_07429), two protein kinases (MS3_03067 and
MS3_07186), a “major facilitator superfamily” protein
(MS3_09816) and a peptidase (MS3_02082). The latter
two were excluded from the target list during the com-
pound association process because, although compounds
were linked to them, they did not meet requirements set
for the drug phase and/or rule-of-5 violations. The three
most highly ranked targets inferred were linked to 104
distinct compounds in the ChEMBL database (Add-
itional file 1: Table S3). Of all 127 predicted associations,
77 compounds were linked to MS3_07429, whereas 27
and 23 compounds were associated with the two kinases,
respectively. Of all predicted drugs, three compounds
[CHEMBL490 (paroxetine), CHEMBL607707 (pelitinib),
CHEMBL513909 (Bi-2536)] predicted to target one or
more of the top three targets showed activity against
schistosomes in vitro in previous studies [38, 47]. How-
ever, for all of these drugs the predicted targets differed
from those reported earlier. For paroxetine, a G
protein-coupled serotonin receptor was predicted to be
the target, whereas Neves and colleagues [47] reported a
serotonin transporter as the putative target. Similarly,
the two targets [a SNF-related serine/threonine-protein
kinase (SNRK) and a brain-selective kinase 2 (BRSK2)]
predicted for the other two compounds were distinct
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Fig. 3 Score distributions for inferred Schistosoma haematobium drug targets. The distributions of scores for targets with associated drugs (n =
25; a) and those without associated drugs (n = 3402; b) are shown
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from those reported earlier, i.e. a polo-like kinase 1
(PLK1) and an epidermal growth factor receptor (erbB1),
respectively [38]. In the DrugBank database, 42 com-
pounds were associated with MS3_07429, three with
MS3_07186 and one with MS3_09816 (Additional file 1:
Table S4). Of all 46 compounds inferred from DrugBank,
ten were identical to those in the ChEMBL database, in-
cluding paroxetine.

Predicted targets for novel drugs (‘de novo discovery’)
In contrast, excluding all targets with associated com-
pounds yielded 3402 potential targets (Additional file 1:
Table S2). Despite this relatively high number of selected
proteins (30.5% of the entire proteome), the score distri-
bution was clearly skewed towards lower values, with
the majority of predicted targets (n = 3034; 89.2%) hav-
ing a score of ≤ 40. We selected the top five targets that
had a score of ≥ 71 for further evaluation. Among them
were two NADH-ubiquinone oxidoreductase subunits
(MS3_05808 and MS3_02704), two ribosomal proteins
(L1; MS3_01508 and L9; MS3_07928) and a protein an-
notated as a “dehydrogenase/reductase SDR family
member 12” based on its closest homolog (11% sequence
similarity; A6QP05) in the Swiss-Prot database. How-
ever, using InterProScan, this predicted target was anno-
tated as a “transcription initiation factor IIF, alpha
subunit” (IPR008851). Upon closer inspection, this pro-
tein and its closest homolog in Swiss-Prot showed se-
quence similarity in a section of the protein that
represented a “NAD(P)-binding domain” (homology
superfamily IPR036291), explaining the difference in an-
notation between the Swiss-Prot and InterPro databases.

Discussion
Here, we established an improved approach for the pre-
diction of potential drug targets in parasitic worms, and
created an online application for the reproducible and
customisable prioritisation of putative targets of
small-molecule schistosomicidal agents in S. haemato-
bium. Prediction and prioritisation are guided by infor-
mation obtained from the analysis and comparison of
genomic and transcriptomic data sets for S. haemato-
bium and those of relevant related organisms. The cus-
tomisable nature of the prioritisation approach might be
beneficial to researchers wanting a means of prioritising
drug targets of S. haematobium based on sequence- and
compound-based criteria.
We presented one possible prioritisation strategy, as

an example, and have given reasons for the selection of
weightings, cut-offs and other parameters. Our priori-
tisation strategy might not necessarily reflect the way
other researchers might wish to prioritise targets, based
on their unique research questions and/or capacity to
further investigate drug target candidates. For example,

here, we gave eight points to potential targets for which
an F. hepatica ortholog existed, reasoning that a novel
target should be present in most or all trematodes of
major socioeconomic importance (providing an in-
creased financial incentive for companies to pursue drug
development efforts). Another example relates to the
cut-offs set for minimum similarity (80%) and minimum
coverage (50%) for a sequence to be considered an ortho-
log. These values might be more stringent, depending on
the judgements of, or considerations by, other investiga-
tors. Importantly, the interactive, online application read-
ily allows for such adjustments to be made (and saved as a
parameter file) via the user interface, thus enabling differ-
ent prioritisation approaches and parameter settings to be
compared or contrasted. Similarly, the criteria for the se-
lection of compounds considered to be suitable candidates
as anti-schistosomal (or trematocidal) drugs can vary
markedly from investigator to investigator. The current
platform provides a range of customisation options, in-
cluding setting requirements for the approval status of a
drug, patents, previous screening results and/or (bio-)-
chemical properties.
The ability to adjust the ranking and prioritisation, ac-

cording to the perceived importance of individual prop-
erties of a target or drug, is considered to represent a
‘transparent’ way to select targets for future investiga-
tions. However, although selection parameters can be
justified, they are often arbitrary and depend on a re-
searcher’s subjective notion of the importance of individ-
ual criteria, as indicated in earlier studies [16, 34]. In
practice, this means that investigators tend to adjust
their parameters, so that the number of predicted targets
match their desired outcome by heavily weighting or fil-
tering according to the most selective predictors. Choos-
ing stringent filtering options will reduce the number of
targets, reducing or eliminating the need to choose a
cut-off score. In contrast, assigning weightings to indi-
vidual features/categories does not initially exclude any
proteins, thus resulting in a large number of targets, re-
quiring a subsequent selection of a small number of the
highest-ranked targets for further pursuit. Importantly,
the ability to compare and contrast a range of prioritisa-
tion scenarios, in association with experimental valid-
ation, can objectively assess the validity of the perceived
importance of individual properties, and thus enhance
future in silico prioritisation. Experimental validation
should also inform about the reliability of different selec-
tion and ranking features and parameters, by showing
how changes to the weighting of individual features can
affect the variability of the resultant ranking, and thus
revealing features that have the greatest effect(s) on the
distribution of scores.
In this context, the visual representation of clusters of

categories for all proteins investigated (Fig. 1) is a useful
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tool to gauge the number of genes/proteins filtered
when a particular feature is set to “required”, and how
weightings given to individual categories affect the over-
all score. This representation of features also summa-
rises, visually, the relationships among and/or
dependencies of features. For example, prioritising pro-
teins which are conserved in primary sequence among
flatworms but not present in mouse and other model or-
ganisms ranks these molecules in the lower third of the
heatmap (Fig. 1) most highly; in contrast, additionally fil-
tering these proteins for those having compounds linked
to them removes most targets from the results, as evi-
denced in the last four columns of the lower section of
the heatmap (Fig. 1). On the other hand, selecting pro-
teins that associate with known drugs is more likely to
prioritise proteins that are conserved among all species
compared (including mouse and human), which cluster
in the upper two thirds of the heatmap (Fig. 1).
We emphasise that the present study presents a

tool for drug target prioritisation, but does not deter-
mine which features are verifiably the most inform-
ative for determining viable or genuine drug targets.
Such an endeavour would require the experimental
validation of a range of different prioritisation scenar-
ios via drug screening, biochemical investigations
and/or functional genomics, which is beyond the
scope of this bioinformatic investigation. However,
importantly, the present application does allow for
different scenarios to be simulated, and thus might
underpin the selection of features that consistently
enrich viable drug targets among the most highly
ranked putative targets.
A comparison of the present approach to previous ef-

forts of computationally prioritising drug targets, guided
by genomic and transcriptomic data, suggests that there
is merit in ‘data-driven’ selection of potential targets. For
example, a similar ranking approach inferred a number
of protein kinases as putative drug targets in H. contor-
tus and linked them to small molecules that were later
verified as promising lead candidates in an in vitro study
[48]. However, this finding is somewhat anecdotal and
requires a large-scale, comprehensive evaluation to show
that the present ranking approach produces a statisti-
cally significant enrichment of promising targets and/or
compounds. Additionally, some of the ranking features
applied to drug target prediction in H. contortus might
have performed well due to a relatively close genetic
similarity to C. elegans. Whether the present, enhanced
approach performs equally well for flatworms remains to
be assessed in future evaluations. In this context, the in-
ference of evolutionarily distant orthologs in flatworms
might be achieved by employing a recently-developed
taxon sampling approach [49], which can overcome long
evolutionary distances and identify putative hidden

orthologs by employing a transitive homology approach
[49].
In addition to such challenges, differences in method-

ology, data sets and applied parameters of in silico drug
target prediction approaches make it difficult to directly
compare studies, even for predictions made for the same
species, as indicated earlier [50]. For example, at the
time of in silico-drug target prediction efforts carried
out for S. mansoni or S. haematobium [10, 11, 14], gen-
omic and transcriptomic data were largely unavailable
for other flatworm species of socioeconomic importance
(e.g. C. sinensis, O. viverrini, F. hepatica). Data for these
species are now accessible, and integrating them in the
prioritisation strategy applied here had a substantial ef-
fect on the score distribution (Table 1 and Fig. 1). Add-
itionally, the quality of draft genomes is continually
evolving, mainly due to concerted curation efforts by in-
dividual curators and the scientific community [23, 51,
52]. Taken together, the differences in the amount and
quality of data that were integrated into the prioritisa-
tion approaches is likely to have led to some discrepan-
cies in the prediction of drug targets between the
present and earlier studies. In the future, the assembly of
novel and curation of existing draft genomes and their
improved annotation should enhance the accuracy with
which we are able to infer the function of proteins and
the essentiality of genes, thus making drug target predic-
tion more reliable.
Despite current challenges, some overlaps were appar-

ent in the target and compound lists between this and
earlier studies. For example, most studies reporting pu-
tative drug targets in schistosomes, including the present
investigation, consistently rank highly enzymes involved
in phosphorylation-dependent signalling, such as kinases
[10, 12, 14] and phosphatases [11]. Other examples of
commonly prioritised targets include proteases [10, 14],
proteins and enzymes with roles in G protein signalling
[10, 14], reductases [14, 50] and transporters [10, 14,
50]. For transporters and kinases, in particular, there is
accumulating evidence that they are amenable to target-
ing by small molecular drugs in schistosomes [38, 47,
53, 54]. The finding that a number of drugs predicted
here and in a previous study [12] (including dasatinib,
imatinib, pelitinib, Bi-2536 and paroxetine) have known
anti-schistosomal activity in vitro [38, 47, 53, 55] instils
confidence that a bioinformatics approach identifies
compounds that merit further pursuit. Interestingly, our
approach did not predict praziquantel as a drug in either
of the two drug databases. Although ChEMBL contains
264 results for binding assays (“B”) for praziquantel
(CHEMBL976), no activity values are recorded. Thus, in
our approach (i.e. selecting compounds for which assays
are recorded that report an activity value of ≤ 10 mM),
praziquantel entries were ‘filtered out’ and, thus, are
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absent from the candidate list, irrespective of the rank-
ing strategy. For DrugBank, the target annotation for
praziquantel (DB01058) is “schistosome calcium ion
(Ca2+) channels”, but no sequence data is associated with
this annotation, thus preventing a link between prazi-
quantel and a target sequence. These findings reflect the
need for the curation and/or correct submission of
(meta-)data to the ChEMBL and DrugBank databases, in
order to improve the accuracy and sensitivity of predic-
tions reliant on such data.
Additionally, there should be a focus on expanding the

capabilities of the present online application by includ-
ing protein structure modelling (cf. [56, 57]). Such an
approach, combined with refined structural prediction
strategies, such as the comparison of binding pockets in-
ferred for different proteins and the identification of par-
ticular ‘sub-pockets’ [58, 59] followed by virtual
screening and/or docking approaches [60], might be
employed to indicate the binding mode of a ligand to a
predicted structural element, without requiring prior
evidence of a target-compound relationship. A limitation
of such approaches is the lack of experimentally deter-
mined three-dimensional (crystal) structures for most
proteins of parasitic worms and a reliance on the com-
putational modelling based on structural homology [57].
This aspect highlights the need for structural investiga-
tions of proteins of parasitic worms to assist in assessing
their potential as drug targets. Nevertheless, the pro-
posed computational modelling approach would enable
the ‘pre-screening’ of large compound libraries against
predicted target structures (cf. [61, 62]), possibly repre-
senting a cost- and time-efficient step prior to costly and
time-consuming in vitro screening or functional genom-
ics experiments.
For schistosomes, there are numerous reports of the

successful application of RNAi [63–66] and
lentiviral-based knockdown [67, 68], and CRISPR/
Cas-9-based approaches are currently undergoing devel-
opment [69]. Extending the present study, one or more
of these functional genomics tools could be used to
study the roles and essentiality of predicted targets [66,
70]. Such experiments would provide crucial evidence to
gain confidence about essentiality predictions using
computational means. In addition to knockdown experi-
ments, the use of small-molecular chemicals to elicit le-
thal or sub-lethal phenotypes, would also have merit,
and could support essentiality and drug target predic-
tions. In this context, compounds that have been linked
to five prioritised targets in the present study appear to
represent prime candidates for in vitro-testing against
schistosomes using established methods [53, 71, 72].
Subsequently, RNA-sequencing and proteomic analyses
of treated, untreated and/or knocked-down schistosomes
might provide some additional support to the

target-compound relationships predicted here, could in-
form about possible limitations of computational predic-
tions and would likely stimulate areas worthy of
improvement.

Conclusions
The online application developed here represents an
interactive, customisable, expandable and reproducible
drug target prioritisation and ranking approach that, we
believe, should be useful for the prediction and priori-
tisation of drug targets in schistosomes and, after expan-
sion, other species of parasitic worms. Using the
established online application, we have predicted ten tar-
gets that can now be evaluated using functional genom-
ics tools and/or small molecules, to establish whether
they are indeed essential for parasite survival in S.
haematobium.
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