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Targeted surveillance reveals native and
invasive mosquito species infected with
Usutu virus
Jeremy V. Camp1* , Jolanta Kolodziejek1 and Norbert Nowotny1,2

Abstract

Background: The emergence of Usutu virus (USUV) in Europe was first reported in Austria, 2001, and the virus has
since spread to many European countries. Initial outbreaks are marked by a mass die-off of European blackbirds
(Turdus merula) and other bird species. During outbreaks, the virus has been detected in pools of Culex pipiens
mosquitoes, and these mosquitoes are probably the most important enzootic vectors. Beginning in 2017, a second
wave of blackbird deaths associated with USUV was observed in eastern Austria; the affected areas expanded to the
Austrian federal states of Styria in the south and to Upper Austria in the west in 2018. We sampled the potential
vector population at selected sites of bird deaths in 2018 in order to identify infected mosquitoes.

Results: We detected USUV RNA in 16 out of 19 pools of Cx. pipiens/Cx. torrentium mosquitoes at sites of USUV-
linked blackbird mortality in Linz and Graz, Austria. A disseminated virus infection was detected in individuals from
selected pools, suggesting that Cx. pipiens form pipiens was the principal vector. In addition to a high rate of
infected Cx. pipiens collected from Graz, a disseminated virus infection was detected in a pool of Aedes japonicus
japonicus.

Conclusions: We show herein that naturally-infected mosquitoes at foci of USUV activity are primarily Cx. pipiens
form pipiens. In addition, we report the first natural infection of Ae. j. japonicus with USUV, suggesting that it may be
involved in the epizootic transmission of USUV in Europe. Ae. j. japonicus is an invasive mosquito whose range is
expanding in Europe.
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Background
Usutu virus (USUV) is a flavivirus (Flaviviridae) in the
Japanese encephalitis virus serogroup originating from
Africa [1]. In 2001, USUV was first identified in Austria,
associated with a large die-off of Eurasian (or common)
blackbirds (Turdus merula Linnaeus, 1758) [2], although
the initial emergence in Europe may have been earlier
[3]. Following the initial introduction, the virus spread
to many European countries and is typically associated
with the death of certain species of native birds, mainly
blackbirds [4–7]. An observed reduction of bird deaths
over time may be attributed to protection by herd immun-
ity [8]. Despite this, there exists evidence of continued

low-level virus activity in the years following the initial
outbreaks in the form of bird seroconversion and the de-
tection of viral nucleic acid in pools of mosquitoes [9, 10].
In 2016, USUV was reported from live and dead birds in
Austria, Belgium, Germany, Hungary, France, Germany
and the Netherlands [11, 12], as well as from human blood
donors in Germany in 2017 [13] and in Austria from
2016–2018 [14, 15]. Therefore, USUV has established
transmission in Europe.
The identification of USUV nucleic acid in field-captured

mosquito pools suggests that Culex pipiens Linnaeus, 1758
is the principal vector in Europe [16]. In regions where
West Nile virus (WNV, Flaviviridae) is endemic, USUV
and WNV have been observed to co-circulate in an
avian-mosquito transmission cycle [10, 16, 17]. Experimen-
tal vector competence studies have demonstrated that
European Cx. pipiens form pipiens populations are
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competent vectors of USUV [18, 19]. However, it is uncon-
firmed if natural populations of Cx. pipiens are infected
with USUV as only pooled adult females were tested in
mosquito surveillance efforts and their infection status
could not be determined [10, 16, 17].
Beginning in 2016, the presence of viral RNA in blood

from human donors and in tissue samples from dead birds
signaled increased transmission of USUV in Austria [12,
14]. In 2018, bird deaths in Austria increased over the
prior year, and multiple USUV-infected blackbirds were
confirmed from several sites including Linz, Upper
Austria and Graz, Styria. Furthermore, obligatory seasonal
blood donation screening in eastern Austria revealed 18
USUV infections among donors in 2018 [15], which is the
highest number of human infections reported since the
emergence of USUV in Austria in 2001 [2]. Recently, we
reported the analysis of integrated human-vector-host sur-
veillance for arboviruses in Austria [20]. Using this model,
we performed targeted entomological investigations at
sites where cases of blackbird deaths were confirmed to
be linked to USUV infection. The goal was to determine
the infection status of mosquitoes at sites of virus activity.

Results
In total, 380 mosquitoes were collected from the two sites
(Table 1). In Linz, 37 Cx. pipiens/Cx. torrentium Martini,
1925 were captured, 18 of which were gravid, and seven
Aedes japonicus japonicus (Theobald, 1901) were collected
(Table 1). In Graz, two nights of trapping resulted in 315
Cx. pipiens/Cx. torrentium (8 from the light trap, 2 of
which were gravid, and all except for 32 of the remaining
specimens collected in the gravid trap were gravid), 17 Ae.
j. japonicus (10 from the light trap, and 2 of 7 from the
gravid trap were gravid), three Aedes vexans (Meigen,
1830) captured in the light trap, and one An. maculipennis
(Meigen, 1818) captured in the light trap (Table 1). Mos-
quitoes were pooled by site and species, and then tested
for the presence of viral nucleic acids.

Two of the three pools containing seven and 15 Cx.
pipiens/Cx. torrentium mosquitoes, respectively, from
Linz were positive for USUV nucleic acid (Table 1). Fur-
ther testing of the individuals’ legs and wings revealed
that the pool consisted of 2 Cx. torrentium and 5 Cx.
pipiens form pipiens; USUV nucleic acid was found in
the legs and wings of a single Cx. pipiens form pipiens
individual (Table 2). Similarly, pooled bodies and pooled
legs and wings from the 7 Ae. j. japonicus specimens
captured in Linz were negative for flavivirus nucleic acid
(Table 1).
From Graz, 14 of the 16 pools of Cx. pipiens/Cx. torren-

tium were positive for USUV nucleic acid (Table 1), all of
which contained gravid individuals except for two pools
consisting of 25 and 7 non-gravid individuals, respectively.
The legs and wings from mosquitoes comprising two
USUV-positive pools of 15 gravid Cx. pipiens/Cx. torren-
tium each were then tested individually. The pools con-
sisted entirely of Cx. pipiens form pipiens, and USUV was
detected in the legs and wings of two of the 30 Cx. pipiens
form pipiens, indicating a disseminated infection (Table 2).
In addition, USUV nucleic acid was detected in a pool of
six Ae. j. japonicus; the legs and wings were tested separ-
ately and were positive for USUV nucleic acid, suggesting
that the infection was disseminated.
Partial sequences within the NS5 gene of six USUV

positive mosquito pools were determined, including 2
Cx. pipiens/Cx. torrentium pools from Linz (accession
nos. MK121948 and MK121949), 3 Cx. pipiens/Cx. tor-
rentium pools from Graz (accession nos. MK121944,
MK121946 and MK121947) and 1 Ae. j. japonicus pool
from Graz (accession no. MK121945). The sequences
were 99.5–100.0% identical to each other and to the
USUV sequences obtained from the birds found dead in
the corresponding sites, all belonging to USUV cluster
“Europe 2”. The sequence identities to the previous
Austrian strains were between 99.2–100.0%. All mos-
quito pools tested negative for WNV.

Table 1 Adult female mosquitoes collected from sites of Usutu virus-positive Eurasian blackbird deaths in Austria, 2018. Mosquitoes
were collected overnight (Linz, one trap-night; Graz, two trap-nights) with a CDC miniature light trap baited with CO2 (LT) or a
gravid trap containing hay infusion (GT)

Location Species Total LT (gravida) GT (gravida) USUV+ /pools tested

Linz Aedes j. japonicus 7 5 (0) 2 (0) 0/1

Culex pipiens/Cx. torrentium 37 7 (3) 30 (15) 2/3b

Graz Ae. j. japonicus 17 10 (0) 7 (2) 1/3c

Ae. vexans 3 3 (0) 0 (0) 0/1

Anopheles maculipennis 1 1 (0) 0 (0) 0/1

Cx. pipiens/Cx. torrentium 315 8 (2) 307 (275) 14/16d

Total 380 34 (5) 346 (292) 17/25
aThe number of gravid individuals from each trap is listed in parentheses following the total number
bUsutu virus nucleic acid was detected in two pools of Cx. pipiens/Cx. torrentium with 7 and 15 individuals, respectively
cUsutu virus nucleic acid was detected in one pool of six Ae. j. japonicus which was determined to be a disseminated infection
dUsutu virus nucleic acid was detected in 14 of 16 pools of Cx. pipiens/Cx. torrentium each containing between 7 and 25 individuals
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Discussion
In vector surveys, USUV is most frequently detected in
pools of Cx. pipiens/Cx. torrentium [16]. However, in
Italy for example, USUV nucleic acid was also identified
in pools of the invasive mosquito, Aedes albopictus
(Skuse, 1894), at relatively high frequency [21]. Other
species of mosquitoes have been occasionally identified
to be USUV-positive at a much lower frequency: Anoph-
eles maculipennis (s.l.), Culiseta annulata (Schrank,
1776), Ochlerotatus caspius (Pallas, 1771) and Ochlerota-
tus detritus (Haliday, 1833) in Italy, and Culex perexi-
guus (Theobald, 1903) in Spain [16]. However, it is
unknown whether these species are competent vectors.
The ability to identify naturally infected vectors repre-
sents a challenge to the study of the enzootic transmis-
sion cycles of arboviruses. Additionally, female Cx.
pipiens cannot be separated from Cx. torrentium by
morphology, and therefore the detection of arboviral nu-
cleic acid in mixed pools of Cx. pipiens/Cx. torrentium is
ambiguous.
To address these challenges, we used bird deaths to

identify foci of USUV transmission during the most re-
cent outbreak in Austria. We used gravid traps to in-
crease the likelihood that we would sample infected
mosquitoes, i.e. those that have already fed upon viremic
hosts. We tested for disseminated infection in selected
individual mosquitoes by analysing legs and wings separ-
ately. This also allowed us to determine the species of
mosquitoes that were infected with the virus, particularly
to distinguish Culex spp. using molecular tests. We
found disseminated infections in Cx. pipiens form
pipiens, which others have determined is a competent
vector species of USUV [18, 19], and thus this is most
likely the principal vector involved in USUV transmis-
sion. Neither of the Cx. torrentium (n = 2) individuals
were positive for USUV, although the number tested was
much lower than the number of individual Cx. pipiens
form pipiens tested (n = 35). The lower relative abun-
dance of Cx. torrentium at the sites of virus activity here
(Table 1) may suggest that they are not as important as
Cx. pipiens form pipiens in enzootic transmission and
maintenance of the virus.

In addition, we report the first natural infection of Ae.
j. japonicus with USUV. In Austria, Ae. j. japonicus was
first noted in southern Styria in 2011 near the Slovenian
border and has also been reported from multiple coun-
tries in central Europe, including Switzerland and Italy
[22–25]. It appears that multiple introductions into Eur-
ope have occurred [26] and the population in central
Europe is aggressively expanding in range and local
abundance [27]. It is a highly invasive mosquito and may
displace endemic species where it is introduced [28]. Ex-
perimental studies have shown that Ae. j. japonicus is a
competent vector of both WNV-lineage 1 in the USA
[29, 30] and WNV-lineage 2 in Europe [31, 32], as well
as chikungunya virus and dengue virus [33]. To our
knowledge, the vector competence of Ae. j. japonicus for
USUV has not yet been established.
Despite its wide distribution and high vector compe-

tence for many arboviruses, there is only a single report of
a field population of Ae. j. japonicus being positive for
WNV, identified in the USA during the initial outbreak of
WNV [34]. Ae. j. japonicus has a strong preference for
mammalian hosts [35–37], taking blood from many mam-
mal species including humans [38]. Although avian blood
meals have not been identified from field specimens, la-
boratory colonies take blood when offered captive birds
[39]. Therefore it is unlikely that Ae. j. japonicus will be an
important vector of enzootic transmission of USUV; how-
ever, this invasive species may be a bridge vector of USUV
and/or WNV.

Conclusions
Targeted entomological surveillance at foci of
USUV-associated bird deaths supports the hypothesis
that Cx. pipiens form pipiens is the major vector of
USUV in Austria. The surveillance also identified that
Ae. j. japonicus, an invasive species, was naturally in-
fected with USUV.

Methods
Through coordinated surveillance efforts, bird deaths in
2018 were investigated at the University of Veterinary
Medicine Vienna [40]. Sites with four or more dead
blackbirds testing positive for USUV were selected for
targeted entomological surveillance. This included a site
in Linz (Upper Austria; 48°17.001'N, 14°16.663'E; 1
trap-night) and a site in Graz (Styria; 47°04.995'N, 15°
27.865'E; 2 trap-nights). Traps were set between one and
three weeks following confirmed USUV-linked bird
deaths. To sample the general mosquito population a
CDC standard miniature light trap (“light trap”) baited
with 1 kg of dry ice was used. In order to target the
recently-infected mosquito population, an updraft gravid
trap using a 10-day-old hay infusion as an oviposition at-
tractant was used (both traps from J.W. Hock Co.,

Table 2 Molecular identification of Culex species with
disseminated Usutu virus infection at foci of transmission in
Austria, 2018

Species USUV+ / tested Linz Graz

Cx. pipiens form pipiens 3/35 1/5 2/30

Cx. torrentium 0/2 0/2 0/0

Notes: The legs and wings from mosquitoes taken from Usutu virus-positive
pools (USUV+) from each trap site (Linz: 1 pool with 7 mosquitoes; Graz: 2
pools with 15 mosquitoes each) were analysed individually to determine
species and to detect if the infection was disseminated. The values are the
number of individuals of a given species with a disseminated USUV infection /
total individuals tested by trap site
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Gainesville, FL, USA). Gravid traps baited with grass in-
fusion are known to be effective sampling methods for
both Cx. pipiens and Ae. j. japonicus [41]. Traps were
set 1 h before sunset and collected 1 h after sunrise.
Trap contents were cooled for 2 min at -20 °C, and

mosquitoes were sorted to species on dry ice using mor-
phological identification keys [42, 43]. Mosquitoes were
pooled by species, site, Sella stage, and trap-night. Spe-
cies identifications were confirmed by molecular barcod-
ing: a 684 bp portion of the mitochondrial cytochrome c
oxidase 1 (cox1) gene was amplified by PCR (GoTaq® G2
PCR master mix, Promega, Mannheim, Germany) using
VF1d and VR1d primers [44], sequenced by the Sanger
method and compared to available sequences in Gen-
Bank. The legs and wings were removed from some
specimens, selected haphazardly, and stored separately
to test for a disseminated viral infection. Selected indi-
vidual specimens identified as Cx. pipiens/Cx. torrentium
were identified to species based on amplicon length
polymorphism of the Ace2 gene using primers ACEpip,
ACEtorr and B1246s according to a published protocol
[45]. To differentiate biotypes of Cx. pipiens, a 650 bp
portion of the cox1 gene was amplified by PCR (primers
COIF and COIR) and then digested with HaeIII restric-
tion enzyme (New England Biolabs, Frankfurt, Germany)
according to a published protocol, which reveals a re-
striction site present in Cx. pipiens form pipiens but not
in form molestus [46].
Mosquito pools or mosquito parts were homogenised in

buffer on a bead mill (TissueLyser, Qiagen, Hilden,
Germany), and nucleic acid was extracted from the cleared
homogenate using a commercial kit (QIAamp viral RNA
kit, Qiagen). Virus nucleic acid was amplified using
real-time RT-PCR with a published ‘universal’ flavivirus pri-
mer set (PF1S and PF2Rbis) and SYBR green [47] (Luna®,
New England Biolabs). Two virus-specific primer-probe sets
were used to identify USUV or WNV nucleic acid [3, 48].
USUV-positive samples were further tested with conven-
tional RT-PCR [4]. Amplicons were sequenced by Sanger se-
quencing (Microsynth Austria GmbH, Vienna, Austria),
identified by nBlast search (https://blast.ncbi.nlm.nih.gov/
Blast.cgi), and aligned with published USUV sequences from
Austria (GenBank accession nos. MF063042, MF991886
and AY453411) in MEGA v.6 to determine sequence
similarity.
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