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Abstract 

Background:  Pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns and 
activate downstream signalling pathways, resulting in modulation of host immunity against pathogens. Here, we 
investigated whether PRR-mediated recognition is involved in host immune responses to the blood-feeding nema-
tode Haemonchus contortus.

Methods:  During blood-feeding, H. contortus secretes immune-modulating antigens into host blood. Therefore, we 
stimulated sheep peripheral blood mononuclear cells (PBMCs) with H. contortus soluble extract (HcAg) and per-
formed transcriptional profiling.

Results:  HcAg upregulated two genetically linked CLRs (CLEC2L and KLRG2), two NLRs attenuating inflammation 
(NLRP12 and NLRC3) and one G protein-coupled receptor with potent anti-inflammatory effects (HCAR2). Further-
more, several Th2-related transcription factors (ATF3, IRF4, BCL3 and NFATC) were also upregulated, which may confer 
anti-inflammatory type 2 immune responses to HcAg.

Conclusions:  Together, our preliminary studies provide new insights into how the host innate immune system con-
trols type 2 immunity to H. contortus. Further work will be needed to identify H. contortus products recognized by the 
host innate immune system and determine the Th2 polarization ability of these putative PRR ligands.
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Background
Control of type 1 immunity against microbes by the 
innate immune system has been extensively studied. 
A set of host germline-encoded receptors, also known 
as pattern recognition receptors (PRRs), can recog-
nize pathogen-associated molecular patterns (PAMPs), 
which are conserved molecules derived from microbes 
[1]. The recognition of PAMPs by PRRs activates down-
stream signalling pathways, inducing the transcription 

of pro-inflammatory cytokines [2]. In contrast, parasitic 
worms have developed intricate strategies to shift host 
immune responses towards an anti-inflammatory type 2 
immunity [3–5], and little is known about how the innate 
immune system controls type 2 immunity.

Several immunomodulators derived from helminth 
products have been shown to be recognized by host 
PRRs. The excretory and secretory product ES-62 
from the rodent filarial nematode Acanthocheilonema 
viteae is recognized by TLR4, biasing the host immune 
response towards an anti-inflammatory/Th2 pheno-
type [6]. LNFPIII, a carbohydrate immunomodulator 
derived from soluble extracts of Schistosoma man-
soni eggs (SEA) drives Th2 polarization via activa-
tion of the atypical NF-kB family member BCL3 in a 
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DC-SIGN- and TLR4-dependent manner [7, 8]. Fur-
thermore, lyso-phosphatidylserine (PS), a lipid derived 
from S. mansoni eggs and adult worms, activates TLR2 
and polarizes the maturation of dendritic cells, result-
ing in Th2 skewing [9, 10].

Haemonchus contortus, due to its blood-feeding behav-
iour and the potential for rapid development of large 
burdens to the host, is recognized as one of the most 
pathogenic nematodes in small ruminants [11]. Con-
sistent with other helminth infections, H. contortus also 
polarizes host immune responses towards an anti-inflam-
matory/Th2 phenotype [12]. However, little is known 
about the mechanism of Th2 polarization and whether 
PRR-mediated recognition is involved.

Here, we tried to dissect host innate immune responses 
to H. contortus infection by RNA-seq. After H. contortus 
soluble extract (HcAg) stimulation, sheep PBMCs upreg-
ulated several germline-encoded receptors and Th2-pro-
moting transcription factors, repressing the transcription 
of the pro-inflammatory cytokine IL-12. Impaired IL-12 
signalling resulted in Th2 commitment, shifting host 
immune responses towards an anti-inflammatory type 
2 immunity. Our work suggests how the host innate 
immune system regulates type 2 immune responses to H. 
contortus infection.

Methods
Animals
Local female crossbred sheep (3 to 6  months old) were 
housed indoors at China Agricultural University (CAU). 
We fed these sheep with hay and whole shelled corn, and 
daily health observations were performed throughout 
the experiment. Faecal parasitic egg counts (FECs) were 
monitored for at least one week before starting the exper-
iment. Three sheep with no helminth eggs were used for 
blood collection and transcriptional profiling.

Cells
Peripheral blood mononuclear cells (PBMCs) were 
isolated from sheep peripheral blood by the standard 
Ficoll gradient centrifugation method and resuspended 
in RPMI 1640 medium (Macgene, Beijing, China) sup-
plemented with 10% FBS, 50  U/ml penicillin, 50  μg/ml 
streptomycin, 2 mM l-glutamine and 50 μM 2-mercap-
toethanol. PBMCs were seeded in 60  mm flat-bottom 
tissue culture dishes (Corning, New York, USA) (3 × 107 
cells/dish) and incubated at 37 °C with 5% CO2 for 1.5 h. 
Non-adherent cells were removed by washing twice with 
phosphate-buffered saline (PBS). Adherent cells were cul-
tured as above and rested overnight before stimulation 
with HcAg.

Preparation of H. contortus antigen (HcAg)
Haemonchus contortus soluble extracts used as HcAg 
were obtained as described previously with minor modi-
fications. Briefly, adult worms were obtained from a H. 
contortus-infected sheep abomasum, washed several 
times in PBS containing 50 U/ml penicillin and 50 μg/ml 
streptomycin, and then homogenized and centrifuged. 
The supernatant was collected after filtration (0.22  μm) 
and stored at −20 °C for subsequent use. Protein concen-
trations were determined by the bicinchoninic acid assay 
(BCA).

To determine the effects of carbohydrates in HcAg, 
periodate treatment was carried out as described by 
Velupillai et  al. [13]. Briefly, HcAg was initially dialyzed 
against 0.05 M acetate buffer (pH 4.5) before addition of 
100 mM sodium meta-periodate (Sigma-Aldrich, Shang-
hai, China). The reaction vial was then gently mixed for 
1  h in the dark and halted with sodium borohydride 
(Sigma-Aldrich) at a final concentration of 50  mM for 
30 min at room temperature. Finally, HcAg was dialyzed 
against PBS, and protein concentrations were measured 
by BCA.

To determine the effects of proteins in HcAg, HcAg 
(50  μg/ml) was treated with 50 μg/ml Proteinase K 
(Sigma-Aldrich, Shanghai, China) for 1  h, and the 
enzyme activity was heat inactivated.

To eliminate the effects of endotoxin contamination, 
HcAg (50  μg/ml) was mixed with polymyxin B (PMB, 
50 μg/ml) (InvivoGen, San Diego, USA), which is a cyclic 
cationic polypeptide antibiotic that blocks the biological 
effects of LPS through binding to lipid A.

In vitro stimulation of sheep PBMCs
Sheep PBMCs were left unstimulated or stimulated 
for 6 h with native HcAg (Native, 50 μg/ml), proteinase 
K-treated HcAg (PK, 50 μg/ml), periodate-treated HcAg 
(PI, 50 μg/ml), polymyxin B-treated HcAg (PMB, 50 μg/
ml) or LPS (10 ng/ml; InvivoGen).

RNA‑seq
Total RNA was isolated from stimulated or unstimulated 
cells and subjected to RNA sequencing on an Illumina 
HiSeq instrument (Beijing, China). Sequenced reads 
(40–50 million per sample) were aligned to the Ovis aries 
genome using the Tophat 2 program, and differences in 
gene expression between samples were analysed using 
the DEGseq R package (v.1.20.0) [14]. The P-values were 
adjusted using the Benjamini & Hochberg method. Cor-
rected P-values of 0.005 and log2 (fold change) of 1 were 
set as the threshold for significantly differential expres-
sion. Gene ontology (GO) enrichment analysis of differ-
entially expressed genes was implemented by the GOseq 
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R package, in which gene length bias was corrected. GO 
terms with a corrected P-value less than 0.05 were con-
sidered significantly enriched by differentially expressed 
genes. As the GO-term ‘response to molecule of bacterial 
origin’ was enriched in transcripts responding to each 
stimulation, we analysed the transcripts belonging to this 
GO term and filtered them out to eliminate the effects of 
bacterial stimulation.

Datasets for the reads are available from the NCBI 
Sequence Read Archive (SRA) submission (accession 
number SRP132649).

Quantitative real‑time PCR (qPCR)
RNA was extracted with chloroform, and RNA concen-
tration was determined using a DeNovix spectrophotom-
eter DS 11 (Wilmington, USA). Reverse transcription of 
total RNA was performed using the PrimeScript RT Kit 
with gDNA Eraser according to the protocol provided 
by the manufacturer (TaKaRa, Beijing, China). Gene 
expression was analysed on an ABI 7500 Real-Time PCR 
system (Applied Biosystems, Foster City, USA) using 
the SYBR Green method (TaKaRa). Data were normal-
ized to GAPDH, and the comparative ΔCT method (2−
ΔΔCt) was applied to determine relative quantification of 
gene expression (shown as fold change). Primers were 
designed using NCBI’s Primer-blast (details are shown in 
Additional file 1: Table S1).

Statistical analysis
Results are shown as the mean ± SEM. Statistical analy-
sis was performed with GraphPad Prism software v.7.0 
(GraphPad Software). qPCR data was analysed by the 
ordinary one-way ANOVA or two-way ANOVA. The 

results were considered significant at *P < 0.05, **P < 0.01, 
***P < 0.001; ns, not significant.

Results
Transcriptional profiling revealed that H. contortus soluble 
extracts modulated the immune responses of sheep 
PBMCs
To investigate whether PRR-mediated recognition regu-
lates the immune responses of sheep to its blood-feeding 
nematode H. contortus, we stimulated sheep PBMCs for 
6 h with H. contortus soluble extracts (HcAg) and probed 
gene expression of the stimulated PBMCs by RNA 
sequencing. Differential expression analysis revealed that 
HcAg modulated a substantial number of genes’ expres-
sion (Fig.  1a). Gene ontology-term analysis of differen-
tially expressed genes showed that HcAg modulated the 
host’s immune system processes (Fig.  1b). Proteinase K 
or periodate treatment reduced the immune-modulating 
capacity of H. contortus soluble extracts, indicating the 
necessity of proteins and carbohydrates in the extracts.

Haemonchus contortus soluble extracts upregulated 
several germline‑encoded receptors of sheep PBMCs
To investigate whether H. contortus soluble extracts can 
modulate PRR expression in sheep PBMCs, we analysed 
the transcripts related to germline-encoded receptors. 
Upon HcAg stimulation, sheep PBMCs up- or down-
regulated several germline-encoded receptors, includ-
ing C-type lectin receptors (CLRs), NOD-like receptors 
(NLRs), G protein-coupled receptors (GPCRs), scav-
enger receptors (SRs) and some undefined leucine-rich 
repeat containing proteins (LRRCs) (Fig.  2a). Quanti-
tative real-time PCR (qPCR) validated the expression 
pattern of most germline-encoded receptors (Fig.  2b). 

Fig. 1  Transcriptional profiling of sheep PBMCs stimulated by H. contortus soluble extract (HcAg). Sheep PBMCs were stimulated for 6 h with native 
HcAg (Native, 50 μg/ml), proteinase K-treated HcAg (PK, 50 μg/ml), periodate-treated HcAg (PI, 50 μg/ml) or polymyxin B-treated HcAg (PMB, 50 μg/
ml), and transcriptional profiling was determined by RNA-seq. a Venn diagram showing overlap between differentially expressed genes of sheep 
PBMCs after stimulation. b Gene ontology-term analysis of differentially expressed genes. Pcorrected < 0.001
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C-type lectin domain family 2 member L (CLEC2L) was 
the most significantly increased transcript (ANOVA: 
F(3,8) = 3188, P < 0.0001), followed by HCAR2 (hydroxy-
carboxylic acid receptor 2) (ANOVA: F(3,8) = 268.8, 
P < 0.0001) and KLRG2 (killer cell lectin-like receptor 2) 
(ANOVA: F(3,8) = 8.2, P = 0.0211). Furthermore, HcAg 
significantly downregulated the macrophage scavenger 
receptor CD163 (cluster of differentiation 163) (ANOVA: 
F(3,8) = 731.1, P < 0.0001). The activation or repression of 
these germline-encoded receptors may motivate specific 
signalling pathways, conferring the anti-inflammatory/
Th2 immune responses to H. contortus.

Haemonchus contortus soluble extracts upregulated 
several PRRs downstream signalling molecules in sheep 
PBMCs
We next sought to investigate whether H. contortus 
soluble extracts can modulate the downstream signal-
ling molecules of PRRs. Upon HcAg stimulation, sheep 
PBMCs upregulated the necessary signal transduction 
molecules involved in PRRs signalling (Fig. 3a). Further-
more, HcAg upregulated negative regulators of inflam-
mation (TOLLIP, ATF3 and BCL3), and transcription 
factors involved in Th2 skewing (IRF4, NFATC1 and 
NFATC2) (Fig.  3a, b). Notably, activating transcription 
factor 3 (ATF3) was the most significantly increased 

transcript among all the transcripts involved in signal 
transduction (ANOVA: F(3,8) = 897.8, P < 0.0001). Thus, 
HcAg modulated the expression of PRRs downstream 
signalling molecules to suppress inflammation and pro-
mote Th2 polarization.

Haemonchus contortus soluble extracts induced PRRs 
downstream effector molecules’ expression in sheep 
PBMCs
Given that HcAg modulated the expression of PRRs and 
downstream signalling molecules, we then analysed the 
effector molecules induced by HcAg. In addition to dif-
ferentially expressed cytokines and chemokines, HcAg 
also promoted the expression of effector molecules 
related to host immune responses to helminth infec-
tion, including prostaglandins, MMPs and NOS (Fig. 4a). 
The upregulation of IL4I1 (interleukin 4 induced 1) and 
downregulation of IFNGR1 (interferon gamma recep-
tor 1) indicated Th2 skewing after HcAg stimulation 
(Fig. 4a). We further confirmed this Th2 polarization by 
detecting the expression level of IL-12 and IL-4 of sheep 
PBMCs after stimulation (Fig.  4b). HcAg induced IL-4 
expression significantly, with a peak at 2 h after stimula-
tion (ANOVA: F(1,19) = 174, P < 0.0001). In contrast, the 
Th1 stimulus LPS tended to induce a high level of IL-12 
(ANOVA: F(1,4) = 580.7, P < 0.0001). IL-4 is a strong Th2 

Fig. 2  Detailed analysis and validation of differentially expressed germline-encoded receptors of sheep PBMCs after stimulation. a Heatmap 
showing differentially expressed transcripts related to LRRCs, CLRs, NLRs and GPCRs after native, proteinase K-treated (PK), periodate-treated (PI) or 
polymyxin B (PMB)-treated HcAg stimulation. b Quantitative RT-PCR (qPCR) analysis of selected genes in sheep PBMCs. Error bars show SEM (n = 3). 
qPCR data was analysed by ordinary one-way ANOVA. ***P < 0.0001, **P < 0.01, *P < 0.05. Abbreviation: ns, not significant
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polarization signal, whereas IL-12 is a strong Th1 polari-
zation signal, and impaired IL-12 signal would promote 
Th2 commitment [15, 16]. Thus, increased expression of 
IL-4 and decreased expression of IL-12 may contribute to 
HcAg-induced Th2 skewing.

Discussion
Our study revealed how host innate immune system 
respond to HcAg stimulation. Several germline-encoded 
receptors (CLEC2L, KLRG2, NLRP12, NLRC3 and 
HCAR2) and downstream signalling molecules (ATF3, 
IRF4, BCL3 and NFATC1) were upregulated, resulting in 
anti-inflammatory responses and Th2 skewing (Fig. 5).

Several CLRs have been shown to recognize helminth 
infection and inhibit NF-κB-mediated pro-inflammatory 
gene expression by activating specific transcriptional 
factors [8, 17–21]. Our study showed that HcAg stimu-
lation significantly upregulated the expression of two 
genetically linked CLRs (CLEC2L and KLRG2) in sheep 
PBMCs. However, little is known about their function 
[15]. We are particularly interested in identifying the 
function of CLEC2L and KLRG2 in recognizing H. con-
tortus infection.

Both NLRP12 (NLR family, pyrin domain-containing 
12) and NLRC3 (NLR family, CARD domain-containing 
3) can suppress inflammation by negatively regulating 

NF-κB signalling [16, 17]. HCAR2, previously termed 
GPCR109A, mediates profound anti-inflammatory 
effects in multiple tissues [18, 19]. The endogenous ligand 
for HCAR2 is beta hydroxybutyrate (β-OHB), a ketone 
body produced by the liver when an individual is in a 
negative energy balance [22]. HCAR2 is also a receptor 
for niacin and butyrate, which are commensal microbiota 
products [23]. It has been shown that HCAR2 signalling 
significantly reduced NF-κB activation levels, promoting 
anti-inflammatory responses [24, 25]. The main conse-
quence of helminth infection is nutritional disturbance 
or malnutrition [26]. It is yet to be determined whether 
hydroxybutyrate (produced by the host) or its analogue 
(produced by the parasite) is increased during H. contor-
tus infection, both of which activate HCAR2 and result in 
anti-inflammatory responses.

HcAg upregulated Th2-related transcription fac-
tors ATF3, IRF4, BCL3 and NFATC1. ATF3 is rap-
idly induced by various stress signals, including 
nutrient deprivation, oxidative stress and DNA dam-
age [27]. Induced ATF3 serves as a negative regu-
lator of NF-κB-related gene transcription, leading 
to the decreased production of pro-inflammatory 
cytokines after TLR activation [28, 29]. BCL3 is an 
atypical NF-κB family member, which can interfere 
with p65–p50 (classical NF-κB) binding and repress 

Fig. 3  Detailed analysis and validation of differentially expressed signalling pathways of sheep PBMCs after stimulation. a Heatmap showing 
differentially expressed transcripts related to signalling cascades and transcription factors. b Validation of selected genes by qPCR. Error bars show 
SEM (n = 3). qPCR data was analysed by ordinary one-way ANOVA. ***P < 0.0001, **P < 0.01, *P < 0.05. Abbreviation: ns, not significant
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TLR-induced pro-inflammatory cytokine expres-
sion [8]. BCL3 activation during S. mansoni infection 
represses IL-12 while enhancing Th2 cell-attracting 
chemokine expression, shifting Th cell differentiation 
from Th1 to Th2 polarization [8]. Both IRF4 and NFAT 
are key regulators of Th2 cell development [30–32]. 
IRF4 is required for the differentiation of PDL2+ DCs 
and M2 macrophages, which are important in immu-
nity to parasitic helminths [33–35]. Activation of the 
Ca2+-calcineurin-NFAT cascade was also seen dur-
ing the neuropeptide NMU-mediated ILC2 activation, 
which promotes the transcription of IL-5, IL-13 and 
amphiregulin [36]. Upregulation of the above transcrip-
tion factors in sheep PBMCs by HcAg reveals the intri-
cacy and complexity of the host’s immune network in 
response to this blood-feeding parasite infection.

Haemonchus contortus, the most widespread para-
site of ruminants, was previously known to be a good 
model for studying anthelmintic drug resistance. Here, 
we tried to dissect host innate immune responses to 
this blood-feeding parasite. Haemonchus contortus has 
a lancet tooth for piecing blood vessels when feeding. 
During blood-feeding, the salivary gland of this para-
site secretes immune-modulating antigens into the 
host blood, so we used host PBMCs to perform all of 
the assays. Indeed, it is better to use H. contortus sali-
vary gland soluble extracts to stimulate sheep PBMC 
and investigate how this parasite modulates host 
immune responses during blood-feeding. However, it 
is hard to collect enough parasite salivary glands which 
is why we chose whole parasite soluble extracts as 
stimuli.

Fig. 4  Detailed analysis and validation of differentially expressed effector molecules of sheep PBMCs after stimulation. a Heatmap showing 
differentially expressed transcripts related to signalling cascades and transcription factors. b Validation of selected genes by qPCR. Error bars show 
SEM (n = 3). qPCR data was analysed by two-way ANOVA. ***P < 0.0001, **P < 0.01, *P < 0.05. Abbreviation: ns, not significant
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Conclusions
Collectively, our preliminary work postulates a new 
picture of how the host innate immune system inte-
grates control of H. contortus infection. Haemonchus 
contortus soluble extracts triggered the upregulation of 
two genetically linked CLRs (CLEC2L and KLRG2), two 
NLRs attenuating inflammation (NLRP12 and NLRC3), 
and one G protein-coupled receptor with potent 
anti-inflammatory effects (HCAR2). These germline-
encoded receptors may activate Th2-related transcrip-
tion factors (ATF3, IRF4, BCL3 or NFATC1), repressing 
transcription of the pro-inflammatory cytokine IL-12. 
Loss of IL-12 signalling results in Th2 commitment, 
shifting host immune responses towards an anti-
inflammatory type 2 immunity. Further work will be 
needed to identify H. contortus products recognized by 
the host innate immune system and determine the Th2 
polarization ability of these putative PRR ligands.

Additional file

Additional file 1: Table S1. Primers used for real-time PCR.
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PRRs: pattern recognition receptors; PBMCs: peripheral blood mononuclear 
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NOD-like receptor; GPCRs: G protein-coupled receptors; SRs: scavenger recep-
tors; LRRCs: leucine-rich repeat containing proteins; PMB: polymyxin B; FECs: 
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saline; BCA: bicinchoninic acid assay; SRA: sequence read archive; qPCR: 
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Fig. 5  Postulated mechanisms of how the innate immune system controls type 2 immunity to H. contortus. Haemonchus contortus 
immunomodulators, when being secreted into blood during feeding, upregulate germline-encoded receptors (CLEC2L, KLRG2, NLRP12, NLRC3 and 
HCAR2) in circulating blood cells. These receptors activate downstream signalling molecules (ATF3, IRF4, BCL3 or NFATC) and subsequently repress 
the transcription of pro-inflammatory cytokines (IL-12). Loss of IL-12 signalling results in Th2 commitment, shifting host immune responses towards 
an anti-inflammatory type 2 immunity
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