
Chard et al. Parasites Vectors          (2019) 12:216  
https://doi.org/10.1186/s13071-019-3471-2

RESEARCH

Associations between soil‑transmitted 
helminthiasis and viral, bacterial, and protozoal 
enteroinfections: a cross‑sectional study in rural 
Laos
Anna N. Chard1, Kelly K. Baker2, Kevin Tsai2, Karen Levy1, Jeticia R. Sistrunk1, Howard H. Chang3 
and Matthew C. Freeman1*

Abstract 

Background:  Humans are susceptible to over 1400 pathogens. Co-infection by multiple pathogens is common, and 
can result in a range of neutral, facilitative, or antagonistic interactions within the host. Soil-transmitted helminths 
(STH) are powerful immunomodulators, but evidence of the effect of STH infection on the direction and magnitude of 
concurrent enteric microparasite infections is mixed.

Methods:  We collected fecal samples from 891 randomly selected children and adults in rural Laos. Samples were 
analyzed for 5 STH species, 6 viruses, 9 bacteria, and 5 protozoa using a quantitative reverse transcription polymerase 
chain reaction (qRT-PCR) assay. We utilized logistic regression, controlling for demographics and household water, 
sanitation, and hygiene access, to examine the effect of STH infection on concurrent viral, bacterial, and protozoal 
infection.

Results:  We found that STH infection was associated with lower odds of concurrent viral infection [odds ratio (OR): 
0.48, 95% confidence interval (CI): 0.28–0.83], but higher odds of concurrent bacterial infections (OR: 1.81, 95% CI: 
1.06–3.07) and concurrent protozoal infections (OR: 1.50, 95% CI: 0.95–2.37). Trends were consistent across STH 
species.

Conclusions:  The impact of STH on odds of concurrent microparasite co-infection may differ by microparasite taxa, 
whereby STH infection was negatively associated with viral infections but positively associated with bacterial and 
protozoal infections. Results suggest that efforts to reduce STH through preventive chemotherapy could have a spillo-
ver effect on microparasite infections, though the extent of this impact requires additional study. The associations 
between STH and concurrent microparasite infection may reflect a reverse effect due to the cross-sectional study 
design. Additional research is needed to elucidate the exact mechanism of the immunomodulatory effects of STH on 
concurrent enteric microparasite infection.
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Background
Humans are susceptible to over 1400 known parasite spe-
cies, including viruses, bacteria, protozoa, helminths and 
fungi [1]. Co-infection by multiple pathogens is common 
and is often considered the rule rather than the excep-
tion among populations living in socially and economi-
cally marginalized communities, rural areas, and tropical 
or subtropical climate zones [2]. Co-infections result in a 
range of neutral, facilitative, or antagonistic interactions 
[3, 4]. These interactions have important implications for 
host susceptibility to infection, disease severity [3, 4], and 
treatment efficacy [5–7].

Soil-transmitted helminth (STH) infections are one 
of the most ubiquitous human infections, affecting over 
one billion people worldwide [8, 9]. It is estimated that 
STH co-infections occur in over 800 million people [10]. 
However, interactions between STH and microparasites 
(defined here as a virus, bacteria, or protozoa) within 
the human host and the impacts of these interactions on 
human health are poorly understood [11].

Helminths are powerful immunomodulators [12, 13] 
and can affect microparasite infections via at least two 
distinct immune mechanisms. First, helminths usually 
induce a type 2 (Th2) immune response, including eleva-
tions in cytokines such as interleukin 4 (IL-4), IL-5, and 
IL-13, as well as development of Th2 helper T cells [11, 
14, 15]. Microparasites generally induce a type 1 (Th1) 
immune response, which elevates cytokines IL-12, IL-17, 
IL-23, interferon-γ (IFN-γ) and tumor necrosis factor 
(TNF)-α [11, 14]. The Th2 cytokines downregulate the 
Th1 cytokines that enable hosts to fight microparasite 
infection, resulting in a dampened immune response 
[14]. Secondly, to protect themselves from host immu-
nity, helminths, like microparasites, suppress both Th1 
and Th2 responses by enhancing regulatory T cell (Treg) 
activity, which causes the release of regulatory cytokines 
such as IL-10 and transforming growth factor (TGF)-β, 
and leads to reduced immune responses against micro-
parasite infection [15]. Helminths may also interact with 
microparasites via shared resources [13, 16, 17] by, for 
example, reducing the surface area availability for micro-
parasite attachment or by monopolizing a cell type nec-
essary for microparasite replication [18]. Such disparate 
responses may lead to within-host interactions by alter-
ing host susceptibility to infection [11, 19], altering the 
virulence of co-infecting pathogens [11, 19], and affecting 
the host’s ability to clear co-infecting pathogens [19, 20].

Understanding the impact of pathogen co-infection on 
human health is difficult due to the diversity of co-infect-
ing species and their numerous possible interactions 
[16]. Even though many humans typically harbor multi-
ple pathogens [15], most studies of co-infection measure 
interactions between pairs of parasites [16]. In this study, 

we examine co-infection between five STH species and 
20 microparasites, including six viruses, nine bacteria, 
and five protozoa in human hosts. To identify trends in 
pathogen interaction, we evaluate interspecific associa-
tions between STH and enteric microparasite infection at 
the at the taxa level (e.g. viruses, bacteria, and protozoa).

Methods
Study setting and design
This cross-sectional study was nested within the Water, 
Sanitation, and Hygiene for Health and Education in Lao-
tian Primary Schools (WASH HELPS) study, a longitudi-
nal cluster-randomized trial evaluating a comprehensive 
school-based water, sanitation, and hygiene (WASH) 
intervention in 100 schools in Saravane Province, Lao 
People’s Democratic Republic (Lao PDR; Laos). Detailed 
methods of the parent study are described elsewhere 
[21]. The WASH HELPS study is registered at clinicaltri-
als.gov (NCT02342860).

Of the 100 schools participating in the WASH HELPS 
study, 50 (25 intervention and 25 comparison) were 
selected using stratified random sampling based on dis-
trict size and WASH HELPS study intervention status. 
In each school-hosting village (there is only one school 
per village), we randomly selected 25 households. House-
holds were eligible for inclusion if they had a child 
attending the primary school participating in the WASH 
HELPS study, and that pupil had a sibling < 5 years-old 
living in the household. At each household, the female 
head of household was surveyed on household demo-
graphics, asset and animal ownership, recent illness 
among household members, and WASH access and 
behaviors. Structured observations of WASH facilities 
were made when available.

In conjunction with the household survey, we collected 
stool samples from the pupil, the pupil’s parent/caregiver 
(preference was given to female parent/caregiver), and 
the pupil’s sibling < 5 years-old (if there were multiple 
siblings, preference was given to youngest sibling). To 
collect the stool samples, the female parent/caregiver was 
given three pre-labeled, resealable plastic bags each con-
taining a plastic spoon. Caregivers were given diapers to 
collect stool from infants, when applicable. Written and 
pictorial instructions for stool collection were printed 
on the plastic bag, and participants were also provided 
verbal instructions. Participants were instructed to col-
lect their first morning stool, and were informed that 
the field team would return to the household the follow-
ing morning to collect all samples. If households did not 
return all three stool samples on the first day, partici-
pants were reminded of the stool collection procedures, 
provided new bags and spoons if needed, and a second 
return visit was made the following day. Stool samples 
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were transported with a cold chain to the field laboratory 
within two hours of collection.

Upon collection, all samples were tested for STH using 
the Kato-Katz method [22]. For this sub-study, stool 
samples from a subset of 297 households were randomly 
selected for additional enteropathogen analysis via quan-
titative reverse transcription polymerase chain reac-
tion (qRT-PCR). Households were eligible for inclusion 
in this sub-study only if all three subjects in the house-
hold (adult, school-aged child, and child < 5 years-old) 
returned their stool sample on the same day. Households 
were randomly selected, proportional to district size, vil-
lage size, and WASH HELPS intervention status, from 
households participating in the household survey and 
STH testing by Kato-Katz.

All data were collected between February-April 2017 
(dry season), prior to annual school-based preventa-
tive chemotherapy (PC) for STH. The time frame cor-
responded with the final round of data collection and 
conclusion of the WASH HELPS study [21].

Laboratory analysis
Following analysis for STH via Kato-Katz, 200 mg of 
stool was aliquoted into a DNA/RNA Shield Collection 
and Lysis Tube (Zymo Research, Irvine, CA, USA) con-
taining a lysis buffer and bead beating system, and beaten 
for 20  min using a Disrupter Genie vortexer (Scientific 
Industries, Bohemia, NY, USA) [23]. One field control 
was processed each day using DNA/RNA-free water to 
evaluate the possibility of false positives from contami-
nation in the field laboratory during sampling. Samples 
were kept frozen at − 20 °C until transported to a labora-
tory at Emory University, where they were subsequently 
stored at − 80 °C until extraction.

Total nucleic acid was extracted from samples using the 
ZymoBIOMICS DNA/RNA Mini Kit (Zymo Research, 
Irvine, CA, USA), according to manufacturer instruc-
tions. Samples were spiked with bacterophage MS2 
(ZeptoMetrix, Buffalo, NY, USA), an external control, to 
monitor extraction and amplification efficiency [23]. One 
extraction blank was included per batch to exclude the 
possibility of false positives from contamination during 
extraction. Extractions were stored at − 80 °C until trans-
ported on dry ice to the University of Iowa for qRT-PCR 
analysis.

We created a custom TaqMan Array Card (TAC) 
(Thermo Fisher, Carlsblad, CA, USA) with compartmen-
talized, probe-based qPCR assays for 25 enteropathogens, 
including: five STH (Ancylostoma duodenale, Ascaris 
lumbricoides, Necator americanus, Strongyloides ster-
coralis and Trichuris trichiura); six viruses (astrovirus, 
adenovirus, norovirus GI, norovirus GII, rotavirus, sapo-
virus); nine bacteria (Aeromonas spp., Campylobacter 

jejuni, Clostridium difficile, enteroaggregative Escherichia 
coli (EAEC), enterohemorrhagic E. coli (EHEC), atypical 
or typical enteropathogenic E. coli (EPEC), heat-labile- 
(LT) or heat-stable (ST) enterotoxigenic E. coli (ETEC), 
Salmonella enterica and Shigella spp./Enteroinvasive 
E. coli (EIEC); and five protozoa (Cryptosporidium spp., 
Cryptosporidium hominus, Cryptosporidium parvum, 
Entamoeba histolytica and Giardia intestinalis) [24, 25]. 
The TAC included probes for the MS2 external control, 
as well as an 18S rRNA internal control. The TAC primer 
and probe sequences are listed in Additional file  1: 
Table S1.

TAC preparation was prepared based on the protocol 
described by Liu et  al. [24]. Ag-Path-ID One-Step RT-
PCR kit (Thermo Fisher, Waltham, MA) was used as the 
master mix reagent for the TAC analysis. Bovine serum 
albumin (BSA) was also applied into the TAC master-mix 
to prevent the possibility of PCR inhibition that may arise 
in nucleic acids extracted from stools [26, 27]. For each 
sample, 40 µl of DNA/RNA extract of equal volumes of 
DNA and RNA was mixed with 50  µl of 2× RT-buffer, 
4  µl of 25× AgPath enzyme, 5.4  µl of nucleic acid-free 
water, and 0.6 µl of 50 mg/ml BSA to a total volume of 
100 µl. All TAC runs were completed in a ViiA7 instru-
ment with QuantStudio 7 software (Thermo Fisher, 
Waltham, MA), and the cycling conditions were as fol-
lows: holding stages of 45  °C for 20  min and 95  °C for 
10 min, followed by 45 cycles of 95 °C for 15 s and 60 °C 
for 1 min.

TAC data were manually read by two independent 
researchers. True amplification was validated by inspect-
ing the multicomponent plot for increases in fluoresce for 
the FAM-based gene-specific probe. Conflicting results 
were resolved by a third independent researcher. Samples 
were considered positive only when the corresponding 
field and extraction blanks were negative, otherwise the 
data were considered invalid [25].

Measures
Adult participants reported the age and sex of them-
selves, their primary school-aged child, and their child 
under five years-old. The following variables were 
reported by the female head of household: household 
ethnicity, in which households of non-Lao-Tai ethnicity 
were considered ethnic minorities; the number of house-
hold members, which was derived by listing and counting 
all people currently living in the household full time; ani-
mal ownership, which was defined as owning any cows, 
goats, sheep, poultry (chickens or ducks), or pigs; and the 
main source of household drinking water, which was fur-
ther classified as improved/unimproved according to the 
World Health Organization/United Nations International 
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Children’s Fund (WHO/UNICEF) Joint Monitoring Pro-
gramme (JMP) standard definitions [28].

The following variables were reported by enumerators 
using structured observation: the presence of a house-
hold toilet, which was further classified as improved/
unimproved according to WHO/UNICEF JMP standard 
definitions [28]; and the presence of a household basic 
handwashing facility, classified according to WHO/
JMP standard definitions as having soap and water [28]. 
Socioeconomic status was determined through a series 
of questions and observations about household construc-
tion materials (roof, floor, and walls), ownership of a 
mobile phone, and presence of electricity. These variables 
were chosen based on those used in the Demographic 
and Health Surveys for measures of wealth in Laos [29]. 
We used principal components analysis to derive one sin-
gle wealth metric from all of the wealth assets combined 
[30].

Escherichia coli pathotypes were classified according 
to the following gene targets: EAEC (aatA and/or aaiC), 
EHEC (eae with stx1 and/or stx2, and without bfpA), typ-
ical EPEC (bfpA with or without eae), atypical EPEC (eae 
without bfpA, stx1, or stx2), ETEC (eltB for heat-labile 
toxin [LT] and estA with or without eltB for heat-stable 
toxin [ST]) [31]. The number of microparasite infections 
was derived by summing all positive pathogens (range: 
zero to 20). We chose to use the ipaH gene target to be 
consistent with approaches used in other recent enteric 
disease studies of under-five children. However, ipaH 
occurs in Shigella spp. and EIEC, and does not validate 
the presence of the large virulence plasmid of other viru-
lence genes that are unique to Shigella spp.

Statistical analysis
All data were analyzed using Stata Statistical Software: 
Release 15 (StataCorpLP, College Station, TX, USA).

We estimated the odds of concurrent microparasite 
infection using three separate logistic regression models 
for viral, bacterial and protozoal infection outcomes. For 
the primary analysis, the main exposure of interest was 
any STH infection, as determined by qRT-PCR detec-
tion. Secondary analyses examined specific STH species 
(i.e. hookworm, A. lumbricoides, T. trichiura or S. sterc-
oralis) as main predictors. We controlled for the presence 
of the non-outcome microparasite taxa (e.g. the model 
of the association between STH and viral infection also 
controlled for concurrent bacterial and protozoal infec-
tion), as well as the following covariates determined a 
priori based on biological plausibility of affecting odds 
of both outcomes and STH infection: age group (i.e. 
adult, school-aged child, child < 5 years-old), sex, socio-
economic status, ethnic minority status, household 
population size, improved household toilet, improved 

household drinking water source, basic household 
handwashing facility, household animal ownership, and 
whether the school in the village was a beneficiary of a 
UNICEF WASH in Schools intervention. Random inter-
cepts were included at the village and household levels to 
account for clustering.

The associations between STH infection or STH spe-
cies and the number of concurrent microparasite infec-
tions were determined using separate Poisson regression 
models and are reported as beta coefficients represent-
ing the change in number of microparasite infections 
among subjects with STH (or specific STH species) infec-
tion compared to those without. Models included ran-
dom intercepts at the village and household levels, and 
included the same covariates as the logistic regression 
models.

All models were assessed for effect modification by age 
group. All analyses were evaluated for statistical signifi-
cance at P < 0.05.

Results
We collected a total of 2269 fecal samples from the same 
number of participants. Of these, 891 participants from 
297 households were eligible for inclusion in this study 
because all three participants in the selected house-
hold (adult, school-aged child, and child < 5 years-old) 
returned their stool sample on the same day. Data from 
746 participants were included in the analysis [n = 1 
excluded due to insufficient sample amount for nucleic 
acid extraction; n = 144 excluded due to suspected 
field (n = 66) or laboratory (n = 78) contamination of 
one or more target pathogens]. The study population is 
described in Table 1.

At least one STH was present in 61.3% of participants 
(Table 2); hookworm was the most prevalent STH infec-
tion (43.6%). Of the microparasites, bacterial infections 
were the most common (86.8%), followed by protozoal 
infections (72.8%), then viral infections (33.2%). Preva-
lence of individual microparasites are described in 
Table 2. EAEC was the most common bacterial infection 
(47.3%), Giardia was the most common protozoal infec-
tion (68.9%), and rotavirus was the most common viral 
infection (24.1%). Kato-Katz results are presented in 
Additional file 2: Figure S1.

Associations between STH infection and viral, bacte-
rial, and protozoal infection are described in Table 3. Age 
was not a significant effect modifier for any primary or 
secondary outcomes, so we present unstratified results. 
STH infections were associated with lower odds of con-
current viral infection; this trend was consistent across all 
STH species and was statistically significant for any STH 
infection [odds ratio (OR) = 0.48, 95% confidence inter-
val (CI): 0.28–0.83] and S. stercoralis (OR= 0.52, 95% CI: 
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0.29–0.95). STH infections were associated with higher 
odds of concurrent bacterial infection. This trend was 
statistically significant for any STH infection (OR= 1.81, 
95% CI: 1.06–3.07) and T. trichiura (OR= 5.97, 95% CI: 
2.05–17.40). STH infections were associated with higher 
odds of concurrent protozoal infection; this trend was 
consistent across all STH species and was statistically sig-
nificant for hookworm (OR= 1.78, 95% CI: 1.11–2.84).

STH infections were associated with a higher number 
of total concurrent microparasite infections (Table  3). 
This trend was consistent across all STH species, and was 
statistically significant for any STH infection (change in 
number of microparasite infections among subjects with 
STH infection compared to those without (β)= 0.11, 
95% CI: 0.01–0.21) and T. trichiura (β = 0.18, 95% CI: 
0.03–0.33).

Discussion
Within-host interactions between helminths and micro-
parasites can affect a range of factors, including whether 
a pathogen can establish itself in a host, rate of growth 
and replication within a host, rate of clearance from the 
host, and severity of disease [19]. Evidence supporting 
whether such co-infections result in beneficial, harmful, 
or neutral interactions is mixed [3, 4, 18], and the mecha-
nisms by which helminths and microparasites interact 
are not clearly established [11, 18]. Most studies of co-
infection have examined interactions between two spe-
cies [16], often utilizing in vitro or animal models and/
or employing helminths and microparasites that are not 
commonly found in humans [12, 32–37]. Our approach 
addresses the limitations of these previous studies by 
taking a macro approach to co-infection in humans. 
Rather than examining pairwise associations between 

pathogens, we enhance our generalizability by examin-
ing the associations between STH and microparasite 
taxa. Additionally, we control for the presence of other 
pathogen taxa beyond those of immediate interest, which 
is more realistic for low-income settings where humans 
harbor multiple infections that may have antagonistic or 
synergistic interactive effects [2–4]. Our analysis revealed 
a clear trend in which STH infection was associated with 
reduced odds of concurrent viral infection and increased 
odds of concurrent bacterial infection. STH infection was 
also associated with increased odds of protozoal infec-
tion, although this association was statistically significant 
only for the most prevalent STH, hookworm.

Our results are consistent with previous research 
reporting that helminths impair host immunity to 
concurrent enteric bacterial infection [7, 37, 38]. Hel-
minth infection causes intestinal barrier dysfunction 
and increased “leakiness” of the intestinal epithelium 
[37, 39], which is one mechanism by which STH infec-
tion may increase odds of concurrent bacterial infec-
tion. For many enterobacteria to infect a host, the 
pathogen must exit the intestinal lumen and cross the 
epithelial barrier to invade cells in the small and large 
intestine [37, 40]. Intestinal epithelial cells are critical 
for gut homeostasis because they form physical and 
chemical barriers that protect the intestinal epithelia 
from invading pathogens [40]. For example, the Ly6/
Plaur domain-containing 8 (Lypd8) protein, which is a 
physical barrier found in the uppermost epithelial layer 
of the large intestine, inhibits invasion of the colonic 
epithelia by bacteria in the genera Escherichia, Proteus 
and Helicobacter [41]. Antimicrobial peptides (AMPs) 
are chemical barriers found in the small intestine that 
include defensin proteins, which cause cell disruption 

Table 1  Description of study population, Saravane Province, Laos, 2017

Values for household-level covariates vary across age groups due to exclusion of some samples for suspected contamination
a  Defined as those not belonging to the Lao-Tai ethnic group
b  Interquartile range (IQR); water, sanitation, and hygiene (WASH)
c  Classified according to WHO/UNICEF Joint Monitoring Programme standard definitions [28]

Characteristics Total (N = 746) Child < 5 years 
(N = 249)

School-aged child 
(N = 247)

Adult (N = 250)

Female, n (%) 496 (66.5) 121 (48.6) 125 (50.6) 250 (100)

Median (IQRa) age (yrs) 9 (24.5) 4 (2.0) 9 (3.0) 32 (11.0)

Ethnic minorityb, n (%) 351 (47.1) 119 (47.8) 114 (46.2) 118 (47.2)

Household has improved toiletc, n (%) 230 (30.1) 75 (30.1) 77 (31.2) 78 (31.2)

Household utilizes improved drinking water sourcec, n (%) 355 (47.6) 118 (47.4) 117 (47.4) 120 (48.0)

Household has basic handwashing facilityc, n (%) 262 (35.1) 87 (34.9) 89 (36.0) 86 (34.4)

Median (IQR) number of people living in household 6.5 (4) 6 (4) 6 (4) 7 (4)

Household owns animals, n (%) 713 (95.6) 238 (95.6) 236 (95.6) 239 (95.6)

Beneficiary of school WASHb intervention, n (%) 374 (50.1) 126 (50.6) 122 (49.4) 126 (50.4)
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and protect against pathogenic bacterial invasions such 
as S. typhimurium [40, 42]. Therefore, the enhanced 
permeability of the intestinal barrier due to helminth 
infection may facilitate the penetration of bacterial 
endotoxins [39, 43]. Further, hosts rely on their innate 
immune system to respond to such attacks through 

activation of Toll-like receptors, secretion of chemoat-
tractant molecules and cytokines, and recruitment of 
cells such as neutrophils, monocytes, dendritic cells 
and lymphocytes [37]. However, helminths can modu-
late this innate immune response to bacterial enter-
opathogens by stimulating regulatory cytokines (such 

Table 2  Prevalence of soil-transmitted helminth (STH), viral, bacterial, and protozoal infections, Saravane Province, Laos, 2017

a  Soil-transmitted helminth (STH) includes one or more of the following helminths: hookworm (N. americanus and/or A. duodenale), A. lumbricoides, T. trichiura, or S. 
stercoralis
b  Virus includes one or more of the following pathogens: astrovirus, adenovirus, norovirus GI, norovirus GII, rotavirus, or sapovirus
c  Bacteria includes one or more of the following pathogens: Aeromonas, C. difficile, C. jejuni, EAEC, EHEC, EPEC (typical or atypical), LT- or ST-ETEC, Shigella spp./
Enteroinvasive E. coli, or Salmonella
d  Protozoa includes one or more of the following pathogens: non-hominus and non-parvum Cryptosporidium spp., C. hominus, C. parvum, E. histolytica, and G. 
intestinalis

All data come from quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis

Infections Total (N = 746) Child < 5 years (N = 249) School-aged child (N = 247) Adult (N = 250)

n (%) n (%) n (%) n (%)

Any STHa 457 (61.3) 133 (53.4) 154 (62.4) 170 (68.0)

 Hookworm 325 (43.6) 81 (32.5) 118 (47.8) 126 (50.4)

 A. lumbricoides 61 (8.2) 23 (9.2) 19 (7.7) 19 (7.6)

 T. trichiura 119 (16.0) 40 (16.1) 46 (18.6) 33 (13.2)

 S. stercoralis 154 (20.6) 38 (15.3) 45 (18.2) 71 (28.4)

Any virusb 248 (33.2) 90 (36.1) 78 (31.6) 80 (32.0)

 Astrovirus 18 (2.4) 8 (3.2) 6 (2.4) 4 (2.0)

 Adenovirus 6 (0.8) 0 (0.0) 4 (1.6) 2 (0.8)

 Norovirus GI 8 (1.2) 1 (0.4) 4 (1.6) 3 (1.2)

 Norovirus GII 55 (7.4) 21 (8.4) 15 (6.1) 19 (7.6)

 Rotavirus 180 (24.1) 61 (24.5) 58 (23.5) 61 (24.4)

 Sapovirus 11 (1.5) 8 (3.2) 3 (1.2) 0 (0)

Any bacteriac 640 (86.8) 216 (86.8) 206 (83.4) 218 (87.2)

 Aeromonas spp. 224 (30.0) 54 (21.7) 70 (28.3) 100 (40.0)

 Clostridium difficile 8 (1.1) 3 (1.2) 3 (1.2) 2 (0.8)

 Campylobacter jejuni 163 (21.9) 69 (27.7) 55 (22.3) 39 (15.6)

 EAEC 353 (47.3) 113 (45.4) 109 (44.1) 131 (52.4)

 EHEC 91 (12.2) 21 (8.4) 29 (11.7) 41 (16.4)

 EPEC 262 (35.1) 94 (37.8) 91 (36.8) 77 (30.8)

 Typical 60 (8.1) 15 (6.0) 20 (8.1) 25 (10.0)

 Atypical 202 (27.1) 79 (31.7) 71 (28.7) 52 (20.8)

 ETEC 278 (37.3) 95 (38.2) 70 (28.3) 113 (45.2)

 LT-ETEC 78 (10.5) 35 (14.1) 13 (5.3) 30 (12.0)

 ST-ETEC 200 (26.8) 60 (24.1) 57 (23.1) 83 (33.2)

 Shigella spp./EIEC 117 (15.7) 37 (14.9) 36 (14.6) 44 (17.6)

 Salmonella enterica 37 (5.0) 8 (3.2) 9 (3.6) 20 (8.0)

Any protozoad 543 (72.8) 203 (81.5) 188 (76.1) 152 (60.8)

 Cryptosporidium spp. 105 (14.1) 41 (16.5) 34 (13.8) 30 (12.0)

 Cryptosporidium hominus 1 (0.1) 0 (0) 1 (0.4) 0 (0)

 Cryptosporidium parvum 0 (0) 0 (0) 0 (0) 0 (0)

 Entamoeba histolytica 1 (0.1) 1 (0.4) 0 (0) 0 (0)

 Giardia intestinalis 514 (68.9) 195 (78.3) 179 (72.5) 140 (56.0)

Mean (standard deviation) number of 
microparasites

3.3 (1.7) 3.3 (1.5) 3.1 (1.7) 3.3 (1.8)
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as IL-10), antagonizing proinflammatory factors that 
can lead to more severe intestinal inflammation (such 
as keratinocyte-derived chemokine and macrophage 
inflammatory protein 2), impeding clearance of patho-
gens, and reducing availability of pathogen-specific 
cytokines [11, 37, 43].

We also found that STH infection, specifically hook-
worm, was associated with increased odds of concurrent 
protozoal infection. Our results are consistent with pre-
vious research in Venezuela, which found that Giardia 
prevalence was significantly higher among children har-
boring an A. lumbricoides infection compared to those 
without [44]. We found that protozoal infections were 
driven largely by Giardia, as 94.7% of subjects with a 
protozoal infection had Giardia. One possible mecha-
nism by which helminths may increase susceptibility to 
protozoa is through the proinflammatory cytokine IFN-γ 
[45, 46], which is antagonized by the cytokine IL-4 trig-
gered by helminth infection [15]. Evidence suggests that 
IFN-γ is significantly higher among humans infected 
with Giardia and E. histolytica, suggesting this cytokine 
has a protective role in host defense [46–48]. However, 
helminths suppress IFN-γ, which may impede the host 
from mounting an effective immune response [18]. Addi-
tionally, intestinal barrier dysfunction and increased 
permeability of the intestinal lumen caused by helminth 
infection may be exacerbated by protozoal infection, thus 
facilitating the translocation of antigens and inducing a 

pro-inflammatory response within the intestine [46]. 
It is also possible that increased odds of STH infection 
given protozoal infection is reflecting the inverse asso-
ciation; in other words, that protozoal infection increases 
the odds of STH infection. Giardia is one of the earli-
est infections that children succumb to [31, 49], and 
can result in chronic infection [49, 50]. Like helminths, 
Giardia immunomodulates the host immune system and 
causes gut dysfunction [51, 52]. Thus, it is possible that 
chronic Giardia infection early in life may have preceded 
and enhanced susceptibility to STH infection.

Helminths are generally thought to increase transmis-
sion, virulence and progression of microparasite infec-
tion, and reduce recovery [4, 15, 17], as supported by our 
results for bacterial and protozoal infections. However, 
some exceptions have been established in the literature 
[35, 53–55], and helminths are being explored as a possi-
ble curative tool for immune-mediated conditions such as 
allergies, asthma and ulcerative colitis [56–58]. We found 
that helminth infection was negatively associated with 
odds of concurrent viral infection, contradicting existing 
research indicating that helminths may limit both innate 
and adaptive immune responses to viral infection [36, 
59]. However, it is possible that helminths are protective 
against viral infection because the Th2 immune response 
induced by helminth infection has anti-inflammatory and 
wound-healing properties [11, 15]. In the present study, 
viral infections were driven largely by rotavirus (60.5% 

Table 3  Associations between STH infection and concurrent virus, bacteria, protozoa infection, and number of microparasite 
infections, Saravane Province, Laos, 2017 (n = 746)

a  Virus includes one or more of the following pathogens: astrovirus, adenovirus, norovirus GI, norovirus GII, rotavirus, or sapovirus
b  Bacteria includes one or more of the following pathogens: Aeromonas, C. difficile, C. jejuni, EAEC, EHEC, EPEC (typical or atypical), LT- or ST-ETEC, Shigella spp. 
enteroinvasive E. coli, or Salmonella
c  Protozoa includes one or more of the following pathogens: non-hominus and non-parvum Cryptosporidium spp., C. hominus, C. parvum, E. histolytica, and G. 
intestinalis
d  Any soil-transmitted helminth (STH) includes one or more of the following helminths: hookworm (N. americanus and/or A. duodenale), A. lumbricoides, T. trichiura, or 
S. stercoralis
e  Hookworm includes N. americanus and/or A. duodenale

* Results are adjusted odds ratios and 95% confidence intervals and are interpreted as the change in odds of virus/bacteria/protozoa infection among subjects with 
STH (or specific STH species) infection compared to those without
†  Results are beta coefficients and 95% confidence intervals and are interpreted as the change in number of microparasite infections among subjects with STH (or 
specific STH species) infection compared to those without

Notes: All models control for population group, sex, socioeconomic status, ethnic minority status, household population size, presence of an improved toilet in 
household, use of an improved household drinking water source, presence of soap for handwashing at household, household animal ownership, and whether the 
village school was a beneficiary of the UNICEF WASH in Schools intervention, and include random intercepts at the village and household level

Virusa* Bacteriab* Protozoac* No. of 
microparasite 
infections†

Any STHd 0.48 (0.28, 0.83) 1.81 (1.06, 3.07) 1.50 (0.95,2.37) 0.11 (0.01, 0.21)

Hookworme 0.70 (0.40, 1.21) 1.22 (0.70, 2.12) 1.78 (1.11, 2.84) 0.09 (0.00, 0.19)

A. lumbricoides 0.66 (0.23, 1.87) 1.02 (0.35, 2.96) 1.42 (0.59, 3.41) 0.01 (−0.16, 0.18)

T. trichiura 0.53 (0.22, 1.29) 5.97 (2.05, 17.4) 1.79 (0.84, 3.80) 0.18 (0.03, 0.33)

S. stercoralis 0.52 (0.29, 0.95) 1.32 (0.69, 2.53) 1.30 (0.78, 2.17) 0.08 (−0.02, 0.18)
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of subjects with a viral infection), followed by norovirus 
GII (22.2%). Rotavirus infection induces oxidative stress 
and inflammatory signaling; this pro-inflammatory sign-
aling is necessary for virus replication, but is inhibited 
by anti-inflammatory treatment [60]. Norovirus infec-
tion also causes alterations of the gut mucosa, including 
mucosal inflammation [61]. When a microparasite such 
as rotavirus or norovirus induces inflammation-mediated 
damage, helminths may protect the host from damage 
by secreting IL-10 and TGF-β and decreasing the pro-
duction of pro-inflammatory cytokines [62], which may 
be protective against the detrimental inflammatory Th1 
response induced by viral microorganisms [11, 19, 35, 
62].

Strengths and limitations
Strengths of this study include the random selection of 
participating villages and households. Also, pathogens in 
stool samples were detected and quantified using qPCR, 
which provides a higher sensitivity (98%) and specific-
ity (100%) than conventional methods [24]. Further, the 
multi-target detection capacity of this method allowed us 
to examine 25 infectious pathogens [24], whereas most 
existing studies on pathogen co-infection have focused 
on pairs of agents [16]. Additionally, there is a dearth of 
clinical data on helminth co-infection, and most studies 
have relied on mouse models [35]. The predominant spe-
cies involved in human STH and enteric microparasite 
infection is influenced by a range of factors, including age 
and WASH access [63, 64]. We examined human subjects 
from three distinct age groups, adults, school-aged chil-
dren and children under five years-old, and controlled for 
potential confounding WASH and demographic variables 
to provide a more externally valid picture of STH and 
microparasite co-infection.

Our study is subject to a number of limitations. First, 
our data are cross-sectional so we do not know whether 
the STH or microparasite infection occurred first. How-
ever, STH are endemic in this population, our data were 
collected prior to annual primary school-based PC, 
there is no routine community-based PC in this popula-
tion, and re-infection often occurs rapidly after PC [65]. 
Thus, it is likely that STH infections commonly preceded 
microparasite infections, particularly viral and bacterial 
infections which do not tend to be chronic. However, it 
is possible that some persistent protozoal infections (e.g. 
Giardia) preceded STH infection, and our results reflect 
an inverse association. Secondly, the high sensitivity 
of the TAC and other molecular assays may lead to the 
detection of prolonged shedding by attenuated pathogens 
and we cannot distinguish between symptomatic and 
asymptomatic infections [66]. However, even asympto-
matic infections may lead to interactions within the host 

as well as other sequalae such as environmental enterop-
athy, malnutrition, and growth stunting [67–69]. Thirdly, 
evidence suggests that the outcomes of helminth-micro-
parasite co-infection are context dependent and may 
depend on helminth infection intensity [19, 44]. Based 
on the Kato-Katz results from these samples, helminth 
infections were predominately of low infection inten-
sity, so we were unable to stratify by infection intensity 
to evaluate differences in co-infection by infection inten-
sity. Fourthly, we discarded 144 samples due to suspected 
contamination, which may have limited statistical power. 
Household toilet ownership and use of an improved 
water source were lower among participants whose 
samples were discarded. While these factors may be 
associated with the pathogen profile of the participants, 
contamination was a random event unassociated with 
the participants and would not confound the relationship 
between STH infection and odds of microparasite infec-
tion. Last, we did not measure cytokines, interferon, or 
other measures of immune response so we are unable to 
elucidate exact mechanisms of helminth-microparasite 
interaction.

Conclusions
The effects of helminth infection on odds of concurrent 
microparasite infection differed by microparasite taxa. 
We found that helminth infection was negatively asso-
ciated with concurrent viral infection, but positively 
associated with concurrent bacterial and protozoal infec-
tions, after controlling for shared risk factors for infec-
tion. These results suggest that interventions to control 
STH, such as increasing community sanitation coverage 
to eliminate the environmental reservoir for STH, com-
bined with PC with anti-helminthic drugs [70, 71], could 
have a spillover impact on bacterial and protozoal infec-
tions. Increased integration and collaboration between 
WASH and STH sectors is warranted [71]. Additional 
research is needed to elucidate the exact mechanism of 
immunomodulatory effects of STH on concurrent enteric 
microparasite infection.
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