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Abstract 

Background:  In the Amazon Basin, Nyssorhynchus (Anopheles) darlingi is the most aggressive and effective malaria 
vector. In endemic areas, behavioral aspects of anopheline vectors such as host preference, biting time and resting 
location post blood meal have a key impact on malaria transmission dynamics and vector control interventions. Nys-
sorhynchus darlingi presents a range of feeding and resting behaviors throughout its broad distribution.

Methods:  To investigate the genetic diversity related to biting behavior, we collected host-seeking Ny. darlingi in two 
settlement types in Acre, Brazil: Granada (~ 20-year-old, more established, better access by road, few malaria cases) 
and Remansinho (~ 8-year-old, active logging, poor road access, high numbers malaria cases). Mosquitoes were classi-
fied by the location of collection (indoors or outdoors) and time (dusk or dawn).

Results:  Genome-wide SNPs, used to assess the degree of genetic divergence and population structure, identified 
non-random distributions of individuals in the PCA for both location and time analyses. Although genetic diversity 
related to behavior was confirmed by non-model-based analyses and FST values, model-based STRU​CTU​RE detected 
considerable admixture of these populations.

Conclusions:  To our knowledge, this is the first study to detect genetic markers associated with biting behavior in Ny. 
darlingi. Additional ecological and genomic studies may help to understand the genetic basis of mosquito behavior 
and address appropriate surveillance and vector control.
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Introduction
Nyssorhynchus (Anopheles) darlingi [1] is the main Neo-
tropical malaria vector in the Amazon Basin due to its 
role in human Plasmodium transmission [2–4]. Fol-
lowing a decrease in the number of malaria cases in the 
Americas from 2005 to 2014, an increase was observed 
in the following three years, with Brazil and Venezuela 
as the countries contributing the largest number of cases 
[5, 6]. In Brazil, transmission remains entrenched in the 

Amazon Basin, which accounts for 99.5% of the coun-
try’s malaria burden [7]. Human migration to and within 
this region over the past century has been accompanied 
by dramatic environmental modification and the promo-
tion of malaria transmission [8–11]. Deforestation and 
anthropogenic land changes are known to be associated 
with increases in Ny. darlingi presence and abundance 
and thus malaria risk [12–14].

Root [15] first described Ny. darlingi based on mor-
phological characters of the egg, fourth-instar larva, 
pupa, male and female adults. Thenceforth, succes-
sive studies reported morphological, behavioral, eco-
logical and genetic heterogeneity throughout its broad 
distribution from Central to South America [16–19]. 

Open Access

Parasites & Vectors

*Correspondence:  p.ribolla@unesp.br 
1 Biotechnology Institute (IBTEC) & Biosciences Institute at Botucatu (IBB), 
Sao Paulo State University (UNESP), Sao Paulo, Brazil
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-019-3498-4&domain=pdf


Page 2 of 9Campos et al. Parasites Vectors          (2019) 12:242 

Nevertheless, Ny. darlingi had been considered to be 
a monophyletic species until Emerson et  al. [20] pro-
posed the occurrence of three putative species based 
on well-supported genetic clusters. In their study, Neo-
tropical biogeographical events explained dispersal of 
Ny. darlingi populations, at a continental scale, leading 
to diversification within this species. However, addi-
tional genetic diversity at a local scale has been dem-
onstrated for this vector based on ecological differences 
[21, 22] and seasonality [23].

At least three aspects of mosquito behavior are espe-
cially important in determining pathogen transmission 
rates to humans: anthropophily, endophagy and endo-
phily. The first is the predilection of a vector to blood-
feed on humans instead of other animals, the second 
is a preference for biting inside houses, and the last is 
indoor resting behavior after a blood meal. These traits 
are known to vary within and between Anophelinae mos-
quito species that transmit malaria [24]. Nyssorhynchus 
darlingi demonstrates high anthropophilic behavior in 
many areas, sometimes combined with opportunistic 
zoophilic (non-human) feeding [25, 26]. Depending on 
location, house type, and host availability, among other 
environmental factors, it can display exophily/exophagy 
[27, 28] or endophily/endophagy [29] behavior or both 
[4, 30, 31]. Variation in peak biting times and patterns is 
also high [32, 33].

Heterogeneity of vector behavior could be the result of 
genetically differentiated subpopulations or behavioral 
plasticity, i.e. individuals with the same genotype adopt 
different behaviors. Behavioral plasticity seems to be the 
more likely explanation in malaria vectors. For exam-
ple, studies on Anopheles farauti in the Solomon Islands 
identified a single population with individuals which fed 
indoors and outdoors, and early in the evening as well 
as late at night [34]. Furthermore, a study of biting time 
(early evening, dawn) and location (indoor, outdoor) in 
An. arabiensis analyzed 34 coding SNPs in 8 clock genes, 
but found no linkage between these phenotypes and the 
candidate clock genes known to influence behavior in 
other Diptera [35].

With these findings in mind, and a general dearth of 
such studies in Neotropical malaria vectors, the pre-
sent article investigated the extent of population genetic 
diversity in Ny. darlingi on a microgeographical scale 
and its association with biting behavior. We tested the 
hypothesis that there was population genetic structure 
in this species associated with blood-feeding location 
(indoors or outdoors) and time (dusk or dawn) using 
genome-wide SNPs. Understanding the genetic con-
tribution to mosquito biting behavior could lead to the 
development of molecular tools for more precise vector 
surveillance and malaria control.

Methods
Samples
Collections of Nyssorhynchus darlingi adults were per-
formed outdoors (peridomestic, within 10  m of each 
house) and indoors in two rural settlements Acre State 
in April 2011, the older more settled Granada (9°45′S, 
67°04′W) and the newer, more recently deforested 
Remansinho (9°29′S, 66°34′W) (Fig. 1). Collections were 
performed using human landing catch (HLC) by the 
authors MC and PEMR, between 18:00–6:00  h. All col-
lected specimens were identified using the key of Consoli 
& Lourenço-Oliveira [36] based on morphological char-
acters and conserved individually in Eppendorf tubes at 
– 20  °C; only Ny. darlingi specimens were used for fur-
ther analysis.

SNP genotyping
DNA was individually extracted using ReliaPrep™ Blood 
gDNA kit (Promega, Madison, USA) and DNA concen-
tration was estimated using a Qubit fluorometer (Invit-
rogen, Carlsbad, USA). Double restriction digestion of 
200  ng of high-quality genomic DNA with EcoRI-MspI 
restriction enzymes was performed in a 40  µl reaction 
volume and then purified with AMPure XP beads fol-
lowing the manufacturer’s protocol (Beckman Coulter, 
California, USA). Hybridized customized adapters P1 
(0.3  µM) and P2 (4.8  µM) were ligated to the digested 
DNA (T4 DNA Ligase, Promega) as described in Cam-
pos et  al. [21]. After another purification with AMPure 
XP beads, DNA was size selected on an agarose gel to 
350–400 bp followed by another AMPure XP bead puri-
fication. PCR amplification for Nextera® indexing was 
carried out to generate Illumina sequencing libraries, 
according to these cycling conditions: an initial denatura-
tion step at 72 °C for 3 min and at 95 °C for 30 s, followed 
by 16 cycles of 95 °C for 10 s, annealing at 55 °C for 30 s, 
elongation at 72  °C for 30  s, and a final extension cycle 
at 72 °C for 5 min, then each PCR product was purified 
one last time. Samples were individually quantified using 
the KAPA library quantification kit (KAPA Biosystems, 
Wilmington, USA) and equimolarly combined to com-
pose a final library. Final libraries were quantified, nor-
malized, denatured, and finally loaded on the Illumina 
reagent cartridge 150-cycle of paired-end sequencing in 
a Hiseq 2500 (Genomics and Bioinformatics Core, State 
University of New York at Buffalo).

SNP data processing
Raw ddRAD reads were processed to identify SNP loci 
within and between individuals using scripts imple-
mented in Stacks v1.31 [37]. First, sequences were 
quality filtered using the default parameters of process_
radtags script. Then, each individual’s sequence reads 
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were aligned to the Ny. darlingi reference genome [38] 
using Bowtie2 with default parameters [39]. Aligned 
reads were input to ref_map.pl Perl script in Stacks, using 
a minimum of 5 reads (−m) to report a stack and join the 
catalog. The dataset was corrected using another Stacks 
script called rxstacks with the following parameters: 
prune out non-biological haplotypes unlikely to occur in 
the population (−prune_haplo), minimum log-likelihood 
required was −10.0 (−lnl_lim). A new catalog was built 
by cstacks Stacks’ script and each individual was matched 
against the catalog with sstacks script. We then used the 
populations script in Stacks to filter loci that were called 
in at least 50% (−r) of all samples, i.e. the first step was 
performed without population information to avoid pop-
ulation bias in the SNP selection. This latter step was run 
with minimum coverage of 5 (−m) and a random single 
SNP for each RAD locus was selected (write_random_
snp). The populations script produced genotype output in 
several formats (e.g. VCF, Genepop) and summary statis-
tics such as nucleotide diversity, pairwise FST and private 
alleles.

SNP data analysis
Principal components analysis (PCA) and discrimi-
nant analysis of principal components (DAPC) were 
performed in the R package Adegenet [40]. The former 
described global diversity overlooking group informa-
tion whereas DAPC maximizes differences between 
groups and minimizes variation within clusters. The 
optimum number of genetic clusters in DAPC was the 

lowest Bayesian information criterion (BIC) associated 
with several K-means calculated. Number of retained 
PCs for DAPC analysis was calculated as described [41]. 
For model-based method, we used Bayesian cluster-
ing algorithm implemented in STRU​CTU​RE (Pritchard 
et al., 2000), which was run 40 times for each K value that 
ranged from 1 to 6. STRU​CTU​RE was run with admix-
ture model and correlated allele frequencies, ‛burn-inʼ of 
100,000 generations and MCMC chain of 1,000,000 gen-
erations. The Evanno method [42] was used to determine 
the optimal value of K for runs implemented in structure-
Harvester [43].

Results
SNP genotyping
A total of 128 individual mosquitoes were sequenced 
from both settlements, Granada (n  =  96) and 
Remansinho (n  =  32). We considered four collection 
categories: indoor collection at dusk, i.e. 18:00–21:00 h; 
indoors at dawn, i.e. 3:00–6:00  h; outdoors at dusk and 
outdoors at dawn (Table 1). Overall collections showed a 
preference for outdoor biting behavior and a peak of mos-
quito density between 19:00–21:00 h. From 124,841,110 
ddRAD tag sequences, ~  104 million sequences passed 
several levels of quality filtering and 34.9% (± 9.8 SD) of 
this set of reads was aligned to the Ny. darlingi genome 
[38]. An average (±  SD) of 10,107  ±  4,123 ddRAD 
loci were genotyped per sample, and 25% presented 
SNPs (Additional file  1: Table  S1). Analyses included 
endophagic (indoor) and exophagic (outdoor) specimens 

Fig. 1  Map of Brazil showing collection points in Brazilian Amazon Basin. Square box: zoom in showing Acre and Amazonas states and the two 
collection localities, Granada and Remansinho
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collected at dusk from both settlements, whereas, from 
Granada, analyses included the dusk and dawn collec-
tions, since the number of specimens collected at dawn 
in Remansinho were very low and were not included in 
this study. The number of SNPs included in each analy-
sis was determined by including only those loci that were 
scored in > 50% of all individuals included for that par-
ticular analysis. Population assignment was performed 
after the SNPs data set selection.

Genetic diversity of Nyssorhynchus darlingi associated 
with biting behavior
Location: indoor vs outdoor
Dataset analyses were conducted to test the hypothesis 
of population structure among indoor and outdoor sam-
ples collected at dusk in Granada and Remansinho. After 
filtering, 944 SNP-loci were genotyped in at least 50% of 
all individuals from the four groups. STRU​CTU​RE analy-
sis of the SNP dataset supported 2 genetic clusters, and 
individuals are admixed among the two clusters, suggest-
ing that all individuals belong to a single panmictic pop-
ulation (Fig.  2d). Principal components analysis (PCA) 
showed that most of indoor specimens were concisely 
grouped together regardless of the collection location, 
whereas outdoor individuals were found in two differ-
ent areas in the plot (Fig.  2a; PC1 =  14%, PC2 =  6%). 
Discriminant analysis of principal component (DAPC) 
showed K = 3 as the best number of genetic clusters i.e. 
the lowest Bayesian information criterion (BIC) (Fig. 2c). 
Cluster “1” had only outdoor Ny. darlingi specimens 
from Granada and cluster “2” had nearly all outdoor indi-
viduals from Remansinho, whereas cluster “3” included 
indoor individuals from both locations (Fig. 2b). Indoor 
groups showed a higher percentage of polymorphism 
compared with outdoor ones (Table  2) even when sub-
divided into dusk and dawn collections (Table 3). Inter-
estingly, the highest pairwise FST was between indoor 
Remansinho and outdoor Granada samples (FST = 0.177, 
P < 0.0001), and the lowest was between indoors samples 
(FST = 0.094, P < 0.0001) (Table 4).

Time: dusk vs dawn
Four groups of samples from Granada, indoors and out-
doors, collected at dusk and dawn, were analyzed in 
this set to test the hypothesis of Ny. darlingi population 

structure between indoor vs outdoor feeding and dawn 
vs dusk feeding. A total of 589 SNP-loci were genotyped 
in at least 50% of individuals. STRU​CTU​RE result of 
the SNP dataset supported a lack of population genetic 
structure, although the optimal number of genetic clus-
ters was 2 (Fig.  3d). All individuals were admixed for 
the two clusters, indicating that they belong to a sin-
gle population. The first axis (15%) in the PCA divided 
indoor and outdoor samples, whereas the second axis 
(7%) separated time of collection (Fig.  3a). The lowest 
BIC for K-means was 4 in the DAPC where essentially 
the four groups were partitioned (Fig. 3b, c). Samples col-
lected at dawn showed a higher percentage of polymor-
phic loci compared with those collected at dusk (Table 5). 
For this dataset, the highest pairwise FST was between 
outdoor dusk and indoor dawn samples (FST  =  0.259, 
P < 0.0001), and the lowest was between outdoors sam-
ples (FST = 0.081, P < 0.0001) (Table 5).

Discussion
Heterogenous biting behavior is quite characteristic 
of Ny. darlingi throughout the species’ range in Cen-
tral and South America [2, 25, 28, 44]. Early studies 
reported its tendency for indoor blood-feeding behavior, 
i.e. endophagy (reviewed in [4]), but over time a variety 
of endo:exophagy and endo:exophily ratios have been 
reported and correlated with different local environmen-
tal variables. One example is the shift towards increased 
exophagy after a vector control intervention such as long-
lasting insecticide nets (LLINs) and/or indoors residual 
spraying (IRS) described in Ny. darlingi [45] and other 
anophelines [46–48].

Despite numerous entomological studies investigating 
the different aspects of Ny. darlingi behavior, few stud-
ies focus on the genetic basis of these phenotypic traits. 
In fact, this study is the first to detect genetic markers 
associated with exophagy and endophagy as well as bit-
ing times (dusk/dawn) in Ny. darlingi females. Previ-
ous studies with other species such as An. gambiae (s.l.) 
and An. funestus showed genetic differentiation regard-
ing divergent behavior using chromosomal inversion 
karyotypes  frequencies [49–51]. Moreover, recently, 
a genetic component was detected for host choice for 
blood-feeding in  An. arabiensis  linked to two paracen-
tromeric chromosome inversions [52]. However, there is 

Table 1  Number of Nyssorhynchus darlingi genotyped by settlement, location and time

Location Region State Latitude Longitude Dusk Outdoor Indoor

Dawn Dusk Dawn

Granada Acrelandia Acre − 9.752 − 67.071 24 30 19 23

Remansinho Labrea Amazon − 9.497 − 66.582 16 – 16 –
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still a lack of studies at such a fine scale, which may be 
due to the relatively high cost of whole genome sequenc-
ing and the complexity of association mapping studies. 
To achieve high power in genome-wide association stud-
ies prior genomic knowledge is required, i.e. linkage dis-
equilibrium, which the current version of the Ny. darlingi 
genome assembly does not provide. Thus, we are aware 

of the limitations of the present study in identifying the 
precise location of the causal genetic variants.

Reduced representation genome-sequencing methods, 
such as ddRAD, have proven to be powerful tools for the 
assessment of a large number of SNPs on a genome-wide 
scale, with considerably lower library construction and 
sequencing effort [53, 54]. However, these approaches 
suffer from sampling biases, i.e. allele dropout (ADO), 
due to the absence or polymorphism within a restric-
tion site  [55]. Here, in order to minimize any bias from 
allele dropout or from other sources, we applied two 
strict filters for all sets of analysis: no prior information of 
population and only loci present in more than half of all 
individuals were selected.

Our results, using 994 genome-wide SNPs, showed 
a lack of population structuring related to indoor and 
outdoor biting behavior. On the other hand, PCA and 
DAPC analysis showed that the same markers are pre-
sent in indoor mosquitoes collected at both Granada 

Fig. 2  Results of PCA, and clustering by DAPC and STRU​CTU​RE of 944-locus SNP dataset, comparing endophagic and exophagic Nyssorhynchus 
darlingi. a PCA of outdoor samples (red and yellow dots) and indoor samples (blue and green dots) from Granada and Remansinho. b DAPC 
ordination of all samples in the three genetic clusters (1–3) in two axes; top right box: number of PCs retained (n = 28). c Bayesian information 
criterion (BIC) to estimate the appropriate number of genetic clusters, which is the lowest BIC value. d Results of STRU​CTU​RE analysis: each column 
represents an individual and colors reflect genetic clusters assignment (K = 2 and K = 3)

Table 2  Summary statistics for the indoor- and outdoor-
collected Nyssorhynchus darlingi 

Location Collection Private Variant 
sites

Polymorphic 
sites

% 
Polymorphic 
loci

Granada Indoor 111 920 469 0.337

Outdoor 104 937 379 0.267

Remansinho Indoor 134 938 532 0.375

Outdoor 96 936 468 0.330
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and Remansinho (Fig.  2). Although, overall FST values 
are significant between these groups, and a consistently 
lower value was detected for endophagic populations, no 
different clustering assignment were found using STRU​
CTU​RE analysis. The single endophagic group could be 
explained by similar selection of Ny. darlingi females 
related to environmental conditions within houses such 
as temperature, shelter and blood meal availability. In 
fact, Paaijmans & Thomas [56] showed that indoor envi-
ronments are warmer than outdoor ones and usually 
present less daily variation. Besides temperature, indoor 
residual spraying could be an important driver in the 
selection of mosquito females. In contrast to the pre-
sent study, PCA and STRU​CTU​RE analysis of SNPs of 
Ny. darlingi from two localities in Loreto, Peru, Cahuide 
and Lupuna, detected no genetic differentiation between 
endophagic and exophagic specimens, nor between spec-
imens collected at dusk vs dawn [36]. However, Cahuide 
and Lupuna in Loreto are both older riverine commu-
nities, with similar microsatellite profiles and levels of 
deforestation [21]. We hypothesize that the contrast and 
difference in outdoor environments between the two 
Acre populations of Granada and Remansinho is the 
main driving force for the genetic diversity detected in 
the present study.

In terms of the time of biting behavior in  Ny. dar-
lingi,  the present study showed a non-random distribu-
tion of individuals in the PCA and clustering in DAPC, 
besides lack of population structuring. To avoid con-
founding effects of microgeographical population 

structure, only one collection point was used in this 
analysis. As shown in the first set of analysis, PC1 seg-
regated endophagic and exophagic Ny. darlingi females 
(Fig. 3). In addition, PC2 segregated dusk and dawn indi-
viduals. In fact, DAPC presented four genetic clusters 
containing samples from each category. Across its broad 
distribution, Ny. darlingi populations present a range of 
peak biting times and patterns, i.e. unimodal, bimodal, 
trimodal [4, 33]. Biting time variation of Ny. darlingi has 
been associated with seasonality  [23, 57] and local and 
ecological factors  [58]. Additional sampling could help 
to determine whether the differentiation detected in 
this study is consistent between populations of Ny. dar-
lingi showing similar behavior patterns.

It is widely accepted that behavioral aspects of anophe-
line species such as host preference, local and time of bit-
ing and resting location after a blood meal have a major 
impact on malaria transmission dynamics in endemic 
areas  [59, 60]. The apparent discrepancy between the 
lack of population structuring and the non-aleatory dis-
tribution of markers related to behavior in our samples 
could be due to the lack of association between behav-
ior and mating-related genes. Probably, at the time of 
host seeking, the female is already inseminated. From 
an evolutionary point of view, it is tempting to specu-
late that this behavioural diversity of related genes of Ny. 
darlingi  contributed to its dispersion in different niches 
within the Amazon region. Together with recent events 
directly attributable to human presence, such as defor-
estation and land use changes on a massive scale [4, 11, 
12] we hypothesize that these processes could select dif-
ferent traits of  Ny. darlingi  and may explain the behav-
ior heterogeneity observed in these different studies. 
A better understanding of the genetic diversity in  Ny. 
darlingi  regarding its behavior may help to predict and 
improve vector control methods and effectiveness of 
malaria frontline interventions.

Conclusions
In this study, we provided evidence of genetic diversity 
associated with biting behavior in the major Neotropical 
malaria vector Ny. darlingi and showed that this asso-
ciation is not due to population structuring. Mosquito 
behavior is one of the multiple factors directly influenc-
ing in the impact of measures of vector control. Molec-
ular tools, such as presented in this study, could help to 
address appropriate vector surveillance and control on a 
local-scale perspective. It is emphasized that additional 
ecological and genomic studies may help to understand 
the genetic basis of Ny. darlingi behavior by the identifi-
cation of relevant genes and/or genomic regions.

Table 3  Summary statistics for the indoor/outdoor- and dusk/
dawn-collected Nyssorhynchus darlingi 

a,b  Specimens included in these categories are only from Granada; none were 
collected in Remansinho

Location Time Private Variant sites Polymorphic 
sites

% 
Polymorphic 
loci

Indoor Dusk 55 556 243 0.289

Dawna 85 557 315 0.374

Outdoor Dusk 70 556 190 0.226

Dawnb 91 557 291 0.346

Table 4  Pairwise FST between indoor- and outdoor-collected 
Nyssorhynchus darlingi 

Granada Outdoor Granada Indoor Remansinho 
Outdoor

Granada Indoor 0.140

Remansinho Outdoor 0.146 0.140

Remansinho Indoor 0.177 0.094 0.129
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Additional file

Additional file 1. Per-individual An. darlingi detail of the number of 
sequence reads and unique stacks genotyped.
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components; ddRADseq: double digestion restriction-site associated DNA 

sequencing; PCA: principal components analysis; SNP: single nucleotide 
polymorphism.
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