
Shah et al. Parasites Vectors          (2019) 12:288  
https://doi.org/10.1186/s13071-019-3547-z

RESEARCH

Malaria smear positivity among Kenyan 
children peaks at intermediate temperatures 
as predicted by ecological models
Melisa M. Shah1*  , Amy R. Krystosik2, Bryson A. Ndenga3, Francis M. Mutuku4, Jamie M. Caldwell5, 
Victoria Otuka3, Philip K. Chebii6, Priscillah W. Maina6, Zainab Jembe7, Charles Ronga3, Donal Bisanzio8,9, 
Assaf Anyamba10, Richard Damoah11, Kelsey Ripp12,13, Prasanna Jagannathan1, Erin A. Mordecai5 
and A. Desiree LaBeaud2

Abstract 

Background:  Ambient temperature is an important determinant of malaria transmission and suitability, affecting 
the life-cycle of the Plasmodium parasite and Anopheles vector. Early models predicted a thermal malaria transmission 
optimum of 31 °C, later revised to 25 °C using experimental data from mosquito and parasite biology. However, the 
link between ambient temperature and human malaria incidence remains poorly resolved.

Methods:  To evaluate the relationship between ambient temperature and malaria risk, 5833 febrile children 
(<18 years-old) with an acute, non-localizing febrile illness were enrolled from four heterogenous outpatient clinic 
sites in Kenya (Chulaimbo, Kisumu, Msambweni and Ukunda). Thick and thin blood smears were evaluated for the 
presence of malaria parasites. Daily temperature estimates were obtained from land logger data, and rainfall from 
National Oceanic and Atmospheric Administration (NOAA)’s Africa Rainfall Climatology (ARC) data. Thirty-day mean 
temperature and 30-day cumulative rainfall were estimated and each lagged by 30 days, relative to the febrile visit. 
A generalized linear mixed model was used to assess relationships between malaria smear positivity and predictors 
including temperature, rainfall, age, sex, mosquito exposure and socioeconomic status.

Results:  Malaria smear positivity varied between 42–83% across four clinic sites in western and coastal Kenya, 
with highest smear positivity in the rural, western site. The temperature ranges were cooler in the western sites and 
warmer in the coastal sites. In multivariate analysis controlling for socioeconomic status, age, sex, rainfall and bednet 
use, malaria smear positivity peaked near 25 °C at all four sites, as predicted a priori from an ecological model.

Conclusions:  This study provides direct field evidence of a unimodal relationship between ambient temperature 
and human malaria incidence with a peak in malaria transmission occurring at lower temperatures than previously 
recognized clinically. This nonlinear relationship with an intermediate optimal temperature implies that future climate 
warming could expand malaria incidence in cooler, highland regions while decreasing incidence in already warm 
regions with average temperatures above 25 °C. These findings support efforts to further understand the nonlinear 
association between ambient temperature and vector-borne diseases to better allocate resources and respond to 
disease threats in a future, warmer world.
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Background
The borders of the malaria belt in Africa are largely deter-
mined by climactic factors that limit suitability for both 
the Anopheles mosquito vector and the Plasmodium par-
asite [1]. Temperature, rainfall, and humidity affect the 
survival and transmission of malaria parasites. Aridity 
restricts Anopheles survival and ability for adult vectors 
to contribute to parasite transmission, explaining the lack 
of malaria north of the Saharan desert [2, 3]. Ambient 
temperature has also long been recognized as an impor-
tant determinant of suitability limits for malaria trans-
mission with effects on the life-cycle of the Plasmodium 
parasite and Anopheles mosquito vector [4–7]. The mos-
quito traits affecting malaria transmission include sur-
vival, abundance, feeding, development and competence. 
The parasite incubation rates and reproductive rates 
within the mosquito also affect malaria transmission 
[8]. As mosquitoes are cold-blooded ectotherms, tem-
perature affects each of these traits and, in turn, malaria 
transmission intensity.

Early malaria models used linear estimates of mosquito 
and parasite physiology and estimated the thermal opti-
mum for transmission at 31 °C [9, 10]; however, many of 
these biological processes are not linear, but instead are 
unimodal with a predicted optimum occurring at ambi-
ent temperatures regularly occurring in the environment. 
When using more accurate unimodal (hump-shaped) 
curves derived from temperature-controlled experi-
ments to describe the relationship between temperature 
and mosquito survival, development, reproduction, bit-
ing, and egg laying rates, vector competence, and para-
site development rate in the mosquito [4, 11–14], this 
transmission optimum was revised to 25 °C and malaria 
transmission was predicted to be bounded by 17  °C 
and 34  °C [15]. Previously, malaria risk was expected to 
broadly increase with warming climates; however, with 
peak transmission predicted at a lower ambient tem-
perature, it is expected that climate warming will shift 
highly endemic areas to seasonal epidemics as suitability 
declines toward the upper thermal limit, and previously 
cooler, malaria free zones towards endemicity as temper-
atures approach the optimum [16]. These estimates sug-
gest that small changes in temperature can dramatically 
alter the regions at risk for malaria transmission, and that 
impacts of climate warming on malaria transmission will 
not be uniform in magnitude or direction.

Despite the predicted relationship between ambient 
temperature and malaria transmission, clinical evidence 
linking the two has been limited. This is in part due to 
the difficulty of separating the role of temperature from 
other factors such as seasonal variation, malaria preven-
tion interventions, treatment, and socioeconomic status. 
Prior studies have suggested that peak clinical malaria 

incidence occurs between 25 and 27  °C, in agreement 
with mechanistic modelling studies of malaria transmis-
sion [17]. Yet peak malaria transmission occurring at 
intermediate temperatures is not widely recognized, in 
part because data linking field malaria risk to ambient 
temperature are limited [15]. Malaria maps predicting 
changes in malaria intensity predict that the malaria belt 
will expand transmission further south, covering more 
of southern Africa, and will cause shifts from epidemic 
to endemic malaria transmission in regions such as in 
highland eastern Africa [16, 18]. Documenting a relation-
ship between temperature and malaria incidence and the 
nonlinearity of this relationship is critical to predicting 
the impact of future climate warming on alterations in 
malaria incidence and endemicity.

In the present study, the effect of ambient temperature 
on malaria smear positivity was evaluated among chil-
dren presenting with undifferentiated febrile illness to 
four heterogenous outpatient clinics in Kenya. In high 
endemic settings such as these, malaria smear positivity 
may be used as a proxy measure for incidence [19–22]. 
These clinical sites include a mix of urban and rural sites, 
local clinics and referral centers, and are climactically 
diverse with two sites in coastal Kenya and two sites in 
western Kenya.

Results
Characteristics of study sites and participants
Between June 2014 and August 2018, 5833 febrile chil-
dren attending outpatient care were enrolled from four 
sites in western and coastal Kenya: 509 from Chulaimbo; 
1177 from Kisumu; 2051 from Msambweni; and 2096 
from Ukunda (Fig. 1). The western clinics in Chulaimbo 
and Kisumu are at higher altitude (1381 and 1131 meters 
above sea level, respectively) compared to the coastal 
sites, which are near sea level. The western sites had 
over two times higher 30-day cumulative rainfall com-
pared to the coastal clinics (208 mm in Chulaimbo, 221 
mm in Kisumu, 100 mm in Msambweni and 98 mm in 
Ukunda). The mean temperature and range in the 30 
days prior to presentation was 23.8  °C (22.5–26.5  °C) in 
Chulaimbo, 26.1  °C (24.1–29.3  °C) in Kisumu, 27.5  °C 
(24.9–31.0 °C) in Msambweni, and 27.5 °C (25.2–30.2 °C) 
in Ukunda. Seasonal variation in temperature occurred at 
all sites (Fig. 2). The percentage of children always using 
bednets was lowest in Kisumu (41.9%). Over 97% of chil-
dren from Chulaimbo reported mosquito bites within the 
last four weeks. Children visiting the clinic in Kisumu 
had the highest rates of electricity in the home, flush toi-
lets, cement floors, and piped water. The distribution of 
assets and other home characteristics varied across sites 
(Table 1).
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Malaria smear positivity across diverse clinical sites 
in Kenya
Malaria smear positivity was highest in Chulaimbo 
(83.1%) compared with the other three sites (range: 
41.7–49.3%) (Table  1). Overall, febrile children with 
malaria parasitemia were older than smear-negative chil-
dren (6.3 years vs 5.7 years; t-test: t(5724) = 5.7, P < 0.001). 
Children with malaria had significantly lower socioeco-
nomic indicators including roof type, floor type, water 
source and latrines. Smear negative children were sig-
nificantly more likely to have electricity at home (44 vs 
21%, Chi-square test: χ2 = 300.45, df = 1, P < 0.001). At 
all four sites combined, reported bednet use (Chi-square 
test: χ2 = 5.98, df = 1, P = 0.01) and mosquito bites within 
the past four weeks (Chi-square test: χ2 = 51.26, df = 1, 
P < 0.001) were associated with smear positivity. Smear 
positive children were more likely to be female than 
smear negative children (48.8 vs 46.0%, Chi-square test: 
χ2 = 4.59, df = 1, P = 0.03). In multivariate analysis of 
all four sites, age above four years was associated with 
increased risk of smear positivity compared to the zero 
to four age range (Table 2). Low socioeconomic status as 
defined by a six-point wealth index and not always using 

Fig. 1  Map of study sites

Fig. 2  Temperature variation across four sites over the study period. 
The visit date is on the x-axis with minor ticks indicating months 
ranging from January 2014 to August 2018. Daily temperature means 
in °C are shown on the y-axis for each site: Chulaimbo (purple), 
Kisumu (teal), Msambweni (magenta), and Ukunda (orange)
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a bednet was also associated with smear positivity in 
multivariate analysis (Table 2). Sex and rainfall were not 
significant predictors of malaria smear positivity in the 
final model (Table 2).

Associations between temperature and malaria smear 
positivity, stratified by site
Malaria smear positivity peaked near 25  °C at all four 
sites with decreasing smear positivity past 25  °C when 
grouped by 1  °C (Fig.  3). Additionally, smear positiv-
ity followed the unimodal trajectory of the reproductive 
number curve which was predicted a priori by an ecolog-
ical model [15]. In Chulaimbo, smear positivity increased 
at temperatures below 25 °C but then declined (Fig. 3). In 
multivariate analysis, controlling for clinic site, sex, rain-
fall, year, age category, bednet use, and socioeconomic 
status, lagged 30-day mean temperature above 26 °C was 
significantly associated with a decreased risk of smear 

positivity compared to lower temperatures (OR: 0.31, 
95% CI: 0.18–0.52, P < 0.001). Adjusted malaria smear 
positivity controlling for these covariates is unimodal 
with a peak near 25 °C (Fig. 4).

Discussion
Temperature has long been recognized as an important 
determinant of malaria risk via its effects on mosquitoes, 
yet the precise role of temperature in human malaria 
incidence has been debated. We present evidence that 
ambient temperature was associated with malaria smear 
positivity in four heterogeneous outpatient clinics in 
western and coastal Kenya with endemic malaria. Malaria 
smear positivity in this study peaked near 25 °C, and esti-
mates remained even after adjustment for the effects of 
site, sex, rainfall, year, age, bednet use and socioeconomic 
status. Together, these data are consistent with those pre-
dicted by ecological models derived from independent 
data from laboratory experiments [15].

Table 1  Characteristics of enrolled patients, location and climate, and socioeconomic indicators at four outpatient Kenyan clinic sites

a  Chulaimbo County Hospital and Mbaka Oromo Dispensary
b  Obama Children’s Hospital in Jaramogi Oginga Odinga Teaching and Referral Hospital
c  Msambweni County Hospital
d  Diani Health Centre

Abbreviations: PL, Pit latrine; VIPL, ventilated improved pit latrine

Chulaimboa Kisumub Msambwenic Ukundad

Enrolled patients

 No. enrolled (January 2014–August 2018) 509 1177 2051 2096

 Malaria smear positivity (%) 83.1 42.2 41.7 49.3

 Female sex (%) 47.2 47.4 47.0 47.6

 Report mosquito bites during last 4 weeks (%) 97.2 81.2 66.4 91.9

 Always uses bednet (%) 67.2 41.9 89.2 82.7

 Mean age (range) (years) 6.1 (0–17) 3.9 (0–15) 5.0 (0–17) 8.2 (0–17)

Location and climate

 Location Western Kenya Western Kenya Coastal Kenya Coastal Kenya

 Rural/urban Rural Urban Rural Urban

 Altitude (m) 1381 1131 23 14

 Cumulative mean 30-day rainfall (mm) 208 221 100 98

 Mean 30-day temperature °C (range) 23.8 (22.5–26.5) 26.1 (24.1–29.3) 27.5 (24.9–31.0) 27.5 (25.2–30.2)

Socioeconomic indicators

 Iron roof in home (%) 96.4 98.0 31.8 54.2

 Predominant water source (%) 46.9 River/pond 87.1 Tap/piped water 72.9 Well/borehole 76.6 Well/borehole

 Predominant latrine type (%) 97.0 VIPL 83.9 VIPL 54.0 PL 83.3 VIPL

 Earthen floor (%) 68.3 18.5 62.7 47.1

 Electricity in home (%) 15.2 75.8 31.2 31.4

 Domestic worker in home (%) 2.8 4.3 3.9 1.4

 Family owns bicycle (%) 15.0 20.3 34.0 35.2

 Family owns telephone (%) 89.6 97.4 82.0 75.8

 Family owns radio (%) 66.1 73.3 41.6 58.3

 Family owns motor vehicle (%) 6.6 15.9 12.0 6.7

 Family owns television (%) 19.4 64.4 18.9 32.1
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Historically, malaria risk was expected to broadly 
increase with global warming because prior models 
placed the optimal temperature for malaria transmission 
around 31 °C [9, 10, 23]. Conflicting results on the effect 
of climate change and temperature on malaria transmis-
sion in previous work emerged due to the concomitant 
effects of rainfall, treatment availability, and preventa-
tive interventions on malaria transmission. Additionally, 
when control measures interrupt malaria transmission 
in areas where climate conditions are suitable, predicting 

suitability limits for transmission becomes difficult. More 
recently, ecological modelling studies suggested that the 
prior estimates for optimal temperatures for malaria 
transmission were too high because they did not incor-
porate nonlinear effects of temperature on multiple mos-
quito and parasite traits [15]. Similarly, observational 
studies showed increasing malaria transmission in high-
land regions of East Africa but declining rates in endemic 
regions and overall brought into question the predicted 
impact of climate change on malaria incidence [5, 24].

With increasing evidence that climate change will 
impact malaria transmission in a nuanced way, new maps 
predicting future malaria risk have been proposed [16]. 
Despite significant advances in ecological models, there 
have been few studies that directly assess the effect of 
ambient temperature on human malaria incidence. The 
data presented here allow us to assess the risk of malaria 
smear positivity based on land temperature data and sat-
ellite rainfall data at four heterogeneous clinic sites in 
Kenya. All of these sites are considered highly endemic 
regions for malaria, hence making the use of malaria 
smear positivity an appropriate proxy for malaria inci-
dence [19–21].

Overall, this study demonstrates high smear positivity 
rates in both coastal and western Kenya. The temperature 
differential in coastal versus western Kenya allowed us to 
evaluate temperature effects in two areas with markedly 
different climates and altitude. Sites near Lake Victoria in 
western Kenya experience cooler temperatures and are at 
higher altitude than sites in coastal Kenya. Nevertheless, 
the combined data indicate that malaria smear positivity 
peaks at temperatures near 25  °C, corresponding to the 
thermal optima for malaria transmission predicted by 

Table 2  Predictors of malaria smear positivity using a 
multivariate model

a  Temperature was included as a nonlinear predictor, and the effect of 
temperature alone on the odds of malaria smear positivity is included in 
Additional file 1: Figure S2
b  Defined as household having less than 3 of the following: domestic worker, 
bicycle, telephone, radio, motor vehicle and bicycle

OR (95% CI) P-value

Lagged 30-day mean temperaturea

 <24 °C 1.05 (0.56–2.00) 0.87

 24–26 °C 1.97 (0.43–9.02) 0.38

 >26 °C 0.31 (0.18–0.52) <0.001

Lagged 30-day cumulative rainfall 1.01 (0.96–1.07) 0.59

Age categories (years)

 ≤4 Ref

 >4 and ≤8 1.39 (1.22–1.60) <0.001

 >8 and ≤12 1.59 (1.33–1.90) <0.001

 >12 1.34 (1.09–1.66) <0.001

Always uses bednet 0.83 (0.72–0.96) 0.01

Low wealth indexb 1.50 (1.34–1.69) <0.001

Female sex 1.11 (1.0–1.24) 0.05

Fig. 3  Malaria smear positivity by ambient temperature with relative 
reproductive number (R0) curve. Points represent the average smear 
positivity rate over temperature (1 °C intervals of temperature on the 
x-axis) for Chulaimbo (purple), Kisumu (teal), Msambweni (magenta), 
and Ukunda (orange). Line represents predicted basic reproductive 
number (R0, rescaled to range from zero to one) as a function of 
temperature from an independent, a priori ecological model derived 
from laboratory experimental data [15]

Fig. 4  Effect of 30-day lagged mean temperature on malaria smear 
positivity at all four sites combined after controlling for clinic site, sex, 
rainfall, year, age category, bednet use and socioeconomic status. The 
x-axis displays the mean 30-day temperature in °C lagged by 30 days 
relative to the date of visit and the y-axis is the probability of malaria 
smear positivity
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ecological models (Fig.  4). Chulaimbo was the only site 
with temperatures below 24  °C which allowed for visu-
alization of the unimodal relationship of temperature on 
malaria incidence. At all four sites, the effect of ambient 
temperature on malaria risk supported predictions from 
the ecological models, even after controlling for rainfall. 
Based on these data, we infer that increasing tempera-
tures by 1 °C, for example, would result in unchanged lev-
els of malaria in the west but decreased malaria incidence 
on the coast of Kenya.

These results support previous predictions from eco-
logical models that optimal malaria transmission occurs 
around 25 °C, which implies that climate warming should 
bring cooler regions closer to the optimal temperature for 
transmission and, conversely, may decrease transmission 
in areas with increasing temperatures above 25 °C [15, 16]. 
As climate change pushes temperatures closer to 25  °C, 
vector control and malaria prevention may prove more 
difficult in some currently cooler areas, whereas areas 
that are currently highly endemic with mean tempera-
tures around 25 °C may experience decreased temperature 
suitability and shifts in seasonality for malaria. The 2014 
Intergovernmental Panel on Climate Change predicted 
that global surface temperature change will exceed 1.5 °C 
by the end of the 21st century relative to 1850–1900 [25]. 
These predictions have important implications for malaria 
control and transmission given the rapid decrease in 
malaria smear positivity after temperatures increase above 
27 °C in this study. Many model-based malaria maps have 
predicted future malaria spread with climate warming: it 
is critical to update these predictions based on our field 
observation that malaria smear positivity decreases with 
increasing temperature above 25 °C, in concordance with 
ecological models. These malaria transmission projections 
are crucial for planning control strategies and allocation of 
resources with ongoing climate change.

Ambient temperature conditions affect both mos-
quito life-cycle and the Plasmodium extrinsic incuba-
tion period. The thermal optima and limits for different 
transmission-relevant traits vary by mosquito and para-
site species. In particular, for Aedes aegypti, the vector of 
dengue and chikungunya viruses, among others, trans-
mission potential peaks at 29  °C, implying that climate 
warming could expand suitability for arboviruses in the 
same sites where malaria transmission declines [26]. In 
fact, we found non-malaria undifferentiated febrile ill-
ness increased above 27  °C, which could be explained 
by declining malaria and increasing arboviral infections 
such as dengue virus and chikungunya virus. In our 
cohort, dengue and chikungunya are hyperendemic [27] 
and as malaria rates decline in coastal Kenya with rising 
temperature, it is possible that dengue and chikungunya 
risk may increase.

There were several limitations to this study. The use of 
various measures of temperature can influence the find-
ings on effects of temperature on malaria transmission. 
We used 30-day mean temperature and cumulative rain-
fall lagged by 30 days as individual transmission-relevant 
and time-integrated metrics for this study. However, tem-
perature varies on daily, weekly, seasonal, and interannual 
scales, and other studies account for this variation in dif-
ferent ways. Paaijmans et al. [28] suggest that daily tem-
perature variation is important for malaria transmission, 
a potentially important avenue for future clinical studies, 
but we expect such variability is more important at tem-
perature extremes than at the optimum, which was the 
focus of this study. The source of ambient temperature 
measurements may also impact findings on the effect of 
temperature on malaria transmission, as remotely sensed 
land surface temperatures that are widely available meas-
ure radiative skin temperature of the land surface which 
differs from ambient temperatures collected in situ. In 
our study, we found that a lagged 30-day average daily 
temperature was correlated with smear positivity, when 
we appropriately accounted for the nonlinear relation-
ship between temperature and malaria incidence. Thus, 
it could be important to appropriately adjust remotely 
sensed land surface temperature measurements in future 
research. Further research is needed to understand other 
measures of ambient temperature on malaria risk, and 
clinical data from sites with a greater range of tempera-
tures below the thermal optimum would help verify our 
findings across a greater range of temperatures. Finally, 
the potential for malaria vectors and parasites to adapt to 
warming temperatures remains a critical empirical gap 
[29].

While there have been significant reductions in malaria 
transmission over the past decade, there is also evidence 
of changing trends in malaria endemicity geographi-
cally [30]. Changing risk for malaria is partly explained 
by interventions such as long-lasting insecticidal nets, 
indoor residual spraying, and artemisinin-based treat-
ment, but may also be affected by changes in climatic 
factors [31]. However, the potential for increasing tem-
peratures to reduce malaria incidence in warm, endemic 
locations has not been rigorously investigated, in part 
because the nonlinear effects of temperature on trans-
mission have not been widely recognized. To our knowl-
edge, this study provides some of the first field evidence 
of a unimodal relationship between temperature and 
human malaria incidence, with a peak at 25  °C, as pre-
dicted by ecological models fit from laboratory experi-
mental data. More widespread consideration of the 
fundamentally nonlinear relationship between tempera-
ture and vector transmission, not just for malaria but for 
all vector-borne diseases, is critical for anticipating and 
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responding to changes in disease burden under changing 
climates. Applying more accurate thermal physiology is 
a fundamental building block for incorporating and pre-
dicting the simultaneous influence of changes in popu-
lation density, migration, urbanization, socioeconomic 
conditions, trade and travel, species invasions, and other 
rapid ongoing global changes that impact vector-borne 
disease. Understanding the association between ambi-
ent temperature and malaria transmission will become 
increasingly important in a future, warmer climate to 
predict necessary changes in the allocation of prevention 
and treatment efforts.

Conclusions
This study provides direct field evidence of a unimodal 
relationship between ambient temperature and human 
malaria incidence with a peak malaria transmission occur-
ring at lower temperatures than previously recognized, as 
predicted by a priori ecological models. These findings 
support efforts to further understand the nonlinear asso-
ciation between ambient temperature and vector-borne 
diseases to better allocate public health resources and to 
respond to disease threats in a future, warmer world.

Methods
Study sites and participants
This study consisted of a cohort of children less than 18 
years of age from four study areas with heterogenous 
malaria transmission in Kenya: Chulaimbo, Kisumu, 
Msambweni and Ukunda (Fig.  1). The official names of 
the five health facilities are: Chulaimbo County Hospi-
tal and Mbaka Oromo Dispensary (both in Chulaimbo); 
Jaramogi Oginga Odinga Teaching and Referral Hospital 
(where Obama Children’s Hospital is a wing) (Kisumu); 
Msambweni County Hospital (Msambweni) and Diani 
Health Centre (Ukunda). The sites have been described 
previously [32, 33]. Briefly, Chulaimbo and Kisumu are 
located in the Lake Victoria region. The Kisumu site is 
a referral hospital in an urban setting, whereas the Chu-
laimbo site is in a rural setting. Msambweni District 
Hospital and Ukunda/Diani Health Center are in coastal 
Kenya. Msambweni is a district hospital in a rural setting 
and Diani Health Centre is a clinic in an urban setting. 
These sites were chosen to provide geographical diver-
sity (west and coast) and both rural and urban locations. 
The current study used data collected from an acutely ill, 
febrile cohort attending outpatient care from January 6, 
2014 to August 27, 2018.

Study procedures and follow‑up
Children who presented with an acute febrile illness 
(temperature greater than 38 °C or reported fever) and no 

localizing signs or symptoms were enrolled at one of the 
four study sites. Children with localizing illness (i.e. trau-
matic injury, acute pneumonia and urinary tract infec-
tions) were not included. Participants were consented 
and underwent a detailed clinical history and physical 
examination by a certified clinical officer. In addition, 
indicators of socioeconomic status and mosquito expo-
sure were collected. Blood was collected by phlebotomy 
from each of the study participants. A thick and thin 
blood smear for malaria parasite examination was pre-
pared for all participants, stained with 2% Giemsa and 
read by a central laboratory technologist in each region 
(coast and west). Children were treated with artemether-
lumefantrine based on standardized Kenyan Ministry 
of Health protocols and referred for hospitalization for 
severe illness. Data were collected using open data kit 
(ODK) and stored in REDCap [34].

Climate data
Two temperature loggers (HOBO® Onset data log-
gers, Onset Computer Corporation 470 Bourne, MA, 
USA) were installed under the eaves of two houses 
within each of the four study areas: Chulaimbo, Kisumu, 
Msambweni and Ukunda. Data was recorded hourly. 
Daily temperature means were obtained from the land 
logger data and missing data were imputed from log-
ger data obtained from the paired site where possi-
ble and otherwise imputed with publicly available data 
from Weather Underground (www.wunde​rgrou​nd.com; 
weather station codes for the coastal and western sites 
are HKMO and HKKI respectively). Missing data were 
imputed by adjusting available data from the paired site 
or Weather Underground by the slope and intercept 
of a linear regression equation based on the relation-
ship between the two datasets (blue lines in Additional 
file  1: Figure S1). This study included children enrolled 
between January 6, 2014 and August 27, 2018, a span of 
1695 days. There were 141 missing days from the HOBO 
loggers in Kisumu and Chulaimbo and these were filled 
in by Weather Underground data. For Msambweni, there 
were 872 days of missing records from the HOBO logger, 
628 of these measurements were filled with land logger 
data from Ukunda given the close geographical proxim-
ity. An additional 244 daily temperature readings from 
Msambweni were filled in by Weather Underground 
data. In Ukunda, there were 297 missing daily tempera-
ture data from the HOBO land loggers with 53 filled by 
Msambweni HOBO records and 244 filled by Weather 
Underground data. The correlation between HOBO 
records and Weather Underground data was visualized 
for all sites (see Additional file 1: Figure S1). For rainfall, 
all measurements were taken from National Oceanic and 

http://www.wunderground.com
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Atmospheric Administration (NOAA)’s Africa Rainfall 
Climatology (ARC) data at 0.1° × 0.1° spatial resolution 
[35]. The ARC dataset is produced using a combination 
of rainfall gauge measurements and METEOSAT satel-
lite data to provide gridded rainfall estimates. Thirty-day 
mean temperature and 30-day cumulative rainfall were 
estimated and each lagged by 30  days, relative to the 
febrile visit.

Statistical analysis
Univariate analysis using chi-square tests for categorical 
variables and t-tests for continuous variables was used to 
evaluate the association between malaria smear positiv-
ity and indicators of mosquito exposure, socioeconomic 
status, sex, rainfall, temperature, and age at all four sites 
combined. Factors that were significant and relevant in 
univariate analysis were included in multivariate analy-
sis. Relationships between the primary outcome, malaria 
smear positivity, and temperature were modeled using 
R statistical language package lme4 [36] and splines [37] 
with a generalized linear mixed model fit by maximum 
likelihood. Model diagnostics were run using R statisti-
cal language package DHARMa [38] and showed uniform 
distributions of residuals. We allowed for a nonlinear 
relationship between the outcome and 30-day lagged 
temperature using natural cubic splines with knots 
placed at 24 °C and 26 °C. Covariates included in multi-
variate analysis included socioeconomic status, sex, age 
in four-year categories, lagged 30-day cumulative rain-
fall and bednet use. Multicollinearity was tested using 
the variance inflation factor (VIF) (Additional file  1: 
Table S1) and explanatory power of the final model was 
assessed using a pseudo R2 estimate (Additional file  1: 
Table S2). The age categories used were: <4 years; >4 and 
≤8 years; >8 and ≤12 years; and >12 years. Year of visit 
and site were included as random intercepts. We char-
acterized socioeconomic status with a six-point wealth 
index based on the child’s family having a domestic 
worker, bicycle, telephone, radio, motor vehicle, or televi-
sion. Households with less than three of the components 
were defined as having a low wealth index. Data were 
analyzed and visualized using RStudio statistical software 
version 1.0.143.

Additional file

Additional file 1: Figure S1. Correlation of HOBO logger temperature 
data between nearest clinical sites and with Weather Underground data. 
Left panel: comparison of HOBO logger temperature data between 
nearest clinical site (top: Msambweni and Ukunda; bottom: Kisumu 
and Chulaimbo). Middle and right panels: comparison of HOBO logger 
temperature data at a clinical site and Weather Underground data from 
the nearest weather station (weather station code for Msambweni and 

Ukunda is HKMO and for Kisumu and Chulaimbo is HKKI). Dashed black 
lines indicate the regression line where y = x; blue lines indicate the linear 
regression between the two data sets (y = mx + b). The linear regression 
equations (blue lines) were used to adjust source data to fill in missing 
data. Figure S2. The nonlinear effect of temperature on malaria smear 
positivity. The plot shows the nonlinear effect of temperature alone on 
the odds of malaria smear positivity using a structured additive regression 
model (R2BayesX R package). The x-axis shows temperature and the y-axis 
shows the odds ratio of malaria smear positivity. The red lines indicate 
the 95% confidence intervals. The areas above the green line indicate 
odds ratios above one. Table S1. Evaluation of multicollinearity. Variance 
inflation factors (VIF) for our final model show no evidence of multicol-
linearity between predictors, with VIF > 4 as evidence of multicollinearity 
(R package MuNIn). Table S2. Explanatory power of the generalized linear 
mixed model. The first column is marginal pseudo-R2 which describes 
the explanatory power of the fixed effects. The second column is the 
conditional pseudo-R2 which describes the full model (random and fixed 
effects). The rows indicate different methods of estimation. The full model 
explains 15–18% of variation in the outcome (R package car).
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