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Abstract 

Background:  Chagas disease is a zoonotic disease caused by the protozoan parasite Trypanosoma cruzi. The role of 
dogs as sentinels has been proposed in multiple regions, as they are a domestic reservoir for T. cruzi. Our objective 
was to determine the prevalence of T. cruzi infection in shelter dogs from southern Louisiana, and assess its magni-
tude and distribution.

Results:  A total of 540 dogs were enrolled, from 20 animal shelters, and tested for T. cruzi infection by serological tests 
(rapid test, ELISA and western blot) and PCR. We documented a high prevalence of T. cruzi infection with at least 6.9% 
(95% CI: 5.0–9.3%) seropositive and 15.7% (95% CI: 12.9–19.1%) PCR-positive dogs. Serological tests showed limited 
agreement, and concordance between serology and PCR was higher when considering reactivity to single serological 
tests. Trypanosoma cruzi infection was distributed evenly among shelters. Infection was significantly correlated with 
age (R2 = 0.99), indicating an incidence of new cases of 2.27 ± 0.25% per year.

Conclusion:  Trypanosoma cruzi infection is a significant and widespread veterinary problem in shelter dogs in the 
region, although it is mostly unnoticed by health professionals. This highlights the need for greater awareness of T. 
cruzi infection among the veterinary community and dog owners.
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Background
Chagas disease is a zoonotic disease caused by the pro-
tozoan parasite Trypanosoma cruzi. It is transmitted 
to mammalian hosts through the feces of infected tri-
atomine bugs during blood-feeding. It is a major pub-
lic health problem in the Americas, with over 6 million 
cases in Latin America [1]. It is also of growing concern 
in the USA, where there are over 300,000 cases, and more 
active surveillance is leading to the identification of an 
increasing number of locally acquired infections [2, 3]. 
Human spillover infections derived from zoonotic trans-
mission cycles may thus be occurring more frequently 
than currently acknowledged and improved surveillance 

should help define the risk for parasite transmission to 
humans. In particular, the role of dogs as sentinels for 
human infection has been proposed in the USA as well as 
in multiple settings in Latin America, since dogs repre-
sent one of the main domestic reservoir for T. cruzi para-
sites [4–6].

Trypanosoma cruzi infection in dogs has been well 
documented in Texas, since at least the 1980s [7, 8] and 
domestic transmission cycles have been identified [9]. 
Multiple seroprevalence studies have evidenced a sig-
nificant level of infection in different canine populations, 
ranging from 7.4 to 18.2%, up to 57.6% in some kennels 
[10–16]. Triatomine blood meal analysis also docu-
mented that bugs frequently feed on canines in kenels 
[17, 18].

Nonetheless, in spite of the extensive distribution of 
triatomine vectors in the southern half of the USA and 
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a wide distribution of zoonotic T. cruzi infection in a 
wide range of mammalian species, only a limited number 
of studies have been conducted outside of Texas [7, 15, 
19–22]. The first canine case in Louisiana was reported in 
1980 [23], and a few subsequent studies reported a sero-
prevalence of 1.1% in domestic dogs in New Orleans [24], 
2.3% in dogs from animal shelters and 4.7% in rural dogs 
[25], and 12–62% in some kennels [26], making it diffi-
cult to extrapolate such data. Occasional cases of canine 
T. cruzi infection have also been reported in other states 
such as Oklahoma [27] and Virginia [28–30]. Thus, the 
current magnitude of canine infection with T. cruzi in 
the USA is difficult to establish, in spite of the multiple 
reports indicating that infection is present [15].

Our objective was to determine the prevalence of T. 
cruzi infection in shelter dogs from southern Louisiana, 
and assess the magnitude and distribution of the infec-
tion. Such information is key for veterinarians to improve 
disease surveillance and diagnostics, and for providing 
adequate veterinary care to infected dogs. It is also of 
importance for an improved surveillance of human dis-
ease as well, given the role of dogs as T. cruzi reservoirs.

Methods
Participating shelters and sample collection
A convenience sample of 20 animal shelters participat-
ing in the Louisiana State University (LSU) shelter pro-
gramme were included in the study. The Shelter Medicine 
programme provides veterinary services to local animal 
shelters and rescue groups, which include spay/neuter 
surgeries, physical exams and expertise on infectious 
disease outbreaks. Participating shelters covered most of 
the southern part of Louisiana, with shelters in Acadia, 
Ascension, Calcasieu, East Baton Rouge, Iberia, Iberville, 
Jackson, Lafourche, Livingston, Natchitoches, Orleans, 
St. Landry, St. Martin and Tangipahoa parishes. We used 
excess blood samples in citrate tubes collected during 
the routine veterinary care of the dogs and aliquots were 
stored at 4 °C until processed for analysis. A total of 540 
dogs were enrolled in the study, ranging from 5 to 49 per 
shelter, by convenience.

Blood samples processing and analysis
Upon arrival of blood samples to the laboratory, an ali-
quot was mixed an equal volume of 6 M guanidine HCL 
and stored at room temperature. We also used 10 µl of 
whole blood for testing T. cruzi infection using Stat-Pak 
immunochromatic rapid test [26, 31] as instructed by the 
manufacturer (Chembio, Medford, NY, USA). Plasma 
was prepared from the remaining blood for additional 
serological testing by ELISA and Western blot.

ELISA
ELISA tests were run as previously described [32] using 
whole parasite lysate from a local strain (WB1) as anti-
gen. Briefly, ninety-six well microplates were coated 
overnight at 4  °C with 10  µg/well of T. cruzi parasite 
lysate in carbonate buffer, washed three times with PBS, 
and blocked with 1% BSA and 0.05% Tween 20 in PBS for 
1 h at 37  °C. After three additional washes, a 1:500 dog 
serum dilution was added in duplicate wells and incu-
bated for 1 h at 37 °C. Wells were then washed 3 times, 
and incubated with a peroxidase-labeled rabbit antibody 
against dog IgG (Sigma-Aldrich, St. Louis, MO, USA) 
at a 1:5000 dilution, for 30  min at 37  °C. After a three 
final washes, 3,3′,5,5′-tetramethylbenzidine substrate in 
DMSO and phosphate-citrate buffer (pH 5.0) with 30% 
hydrogen peroxide were added and incubated for 30 min 
at room temperature in the dark. Reactions were stopped 
with 2 M H2SO4, and plates were read at 450 nm in an 
ELISA plate reader.

Western blot
Cultured T. cruzi parasites were lysed in PBS buffer by 
freeze-thaw cycles. After clearing debris by centrifug-
ing at 14,000×g at 4  °C, protein concentration of the 
extracts was determined by spectrophotometry (Nan-
oDrop 2000, Thermo Fisher Scientific, Waltham, MA, 
USA). The parasite lysate was denatured with SDS sample 
buffer and separated in 12% SDS-PAGE. Proteins were 
transferred onto nitrocellulose membranes using a Bio-
Rad mini protein-II wet transfer unit. The transferred 
membranes were incubated with the blocking solution 
(5% nonfat dried milk dissolved in PBS-T buffer) for 1 
h at room temperature then incubated with dog blood 
serum (1:200 dilution, in blocking buffer) overnight at 
4 °C with gentle agitation. Membranes were washed three 
times with PBS-T buffer, then incubated with the second-
ary antibody anti-dog IgG (whole molecule)-Peroxidase 
produced in rabbit (1:5000 dilution, Sigma-Aldrich, St. 
Louis, MO, USA) for 1 h and washed four times. Signal 
detection was performed with an enhanced chemilumi-
nescence kit (Clarity Western ECL Substrate kit, Bio-Rad, 
Hercules, CA, USA). Images were captured using Image 
Quant LAS 4000, with exposure times of 2 min.

DNA extraction and PCR diagnostic
DNA was extracted from 0.2 ml of blood-guanidine sam-
ples using Qiagen DNAeasy Extraction kit (Qiagen, Ger-
mantown, MD, USA) according to the instructions of the 
manufacturer. The presence of T. cruzi DNA was assessed 
by PCR targeting kinetoplast DNA as described before 
[33, 34].
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Data analysis
We calculated the proportion of reactive samples for each 
of the serological and molecular tests. Proportion data 
are presented as percentages ± 95% confidence interval 
(CI). Agreement between tests was assessed by Kappa 
index. Trypanosoma cruzi seropositivity was defined 
as confirmed for dogs with at least 2 reactive serologi-
cal tests. Continuous variables such as dog age are pre-
sented as the mean ± standard error of the mean (SEM), 
and compared between groups using Student’s t-test. 
Changes in seroprevalence with age were fitted by semi-
log regression and the goodness-of-fit was assessed by 
R2. The average increase in seroprevalence per year was 
used to estimate incidence. A map of the distribution of 
seropositive dogs was elaborated in QGIS 3.4, and EPA 
ecoregions were used (https​://www.epa.gov/eco-resea​
rch/ecore​gion-downl​oad-files​-state​-regio​n-6) to assess 
potential associations between seroprevalence and eco-
logical characteristics surrounding the shelters. Compar-
ison of seropositivity among shelters and ecoregions was 
performed by Chi-square tests.

Results
Serological diagnostics of T. cruzi infection
We collected a total of 540 blood samples from partici-
pating shelter dogs. Thirty two out of 539 (6.3%) were 
reactive using Stat-Pak immunochromatographic rapid 
test, and 44/539 (8.2%) by ELISA (Table  1). Agreement 
between the two tests was poor (Kappa index = 0.096). 
Thus, we used Western blot for confirmatory testing. 
Again, agreement between ELISA and Western blot tests 
was poor (Kappa index = 0.061, Table  1). Overall, there 
were 121/539 dogs (22.4%, 95% CI: 19.1–26.2%) reactive 
with any one test, and 37/539 confirmed seropositives 
with at least 2 reactive tests (6.9%, 95% CI: 5.0–9.3%). 
Male dogs were significantly more infected than females 
(9.0%, 95% CI: 6.2–12.9 vs 3.9%, 95% CI: 2.0–6.7%, 
respectively, χ2 = 5.89, df = 1, P = 0.015).

The geographical distribution of confirmed sero-
positive cases varied from no cases in two shelters 
(in Acadia and St. Landry parishes), up to 18.2% 
(in Ascension parish), but these differences did not 
reach statistical significance (χ2 = 10.375, df = 15, 
P = 0.79), indicating that T. cruzi infection was evenly 

distributed across animal shelters from southern Lousi-
ana (Fig.  1). Accordingly, there were no differences in 
confirmed seropositivity rates according to the ecore-
gions from southern Louisiana surrounding the shelters 
(χ2 = 6.491, df = 8, P = 0.59).

Detailed analysis of T. cruzi protein bands recognized 
by dog antibodies in Western blot assays provided some 
clues to the high discrepancies among serological tests 
(Fig. 2). Indeed, while serum from a few dogs showed a 
very similar band recognition pattern (Lanes 5–8 and 
10), serum from most seropositive dogs recognized 
widely different parasite antigens (compare Lanes 12, 
14, and 16–21). Also, antigen recognition was focused 
on very few T. cruzi protein bands in several instances 
(Lanes 14 or 20 for example). This suggested unique 
interactions between each individual dog and their 
infecting parasites, leading to widely different antibody 
profiles and parasite recognition patterns which may 
not be easily captured by diagnostic tests based on a 
limited number of parasite antigens.

Analysis of dog age indicated that confirmed sero-
positive dogs were significantly older than seronegative 
dogs (36.0 ± 4.5 vs 26.7 ± 0.9 month-old, t(45.6) = 1.96, 
P = 0.025). In addition, seroprevalence of infection 
increased significantly with dog age (Fig.  3, R2 = 0.99, 
P = 0.001). The average incidence of new infections was 
of 2.27 ± 0.25 for 100  dogs/year. Discordance among 
serological tests also seemed to increase with dog age 
(Kappa index of 0.27, 0.14, -0.06 and 0.13, for dog age 
0–1, 1–2, 2–3 and > 3 years-old, respectively).

We further performed PCR detection of T. cruzi DNA 
in dog blood. A total of 85 out of 540 dogs were PCR-
positive for T. cruzi (15.7%, 95% CI: 12.9–19.1%). This 
was much higher than detected by serology. Indeed, 
agreement between PCR and serology was poor 
(Table  2), as only 6 of the 37 confirmed seropositive 
dogs were PCR-positive for T. cruzi, while 79 seron-
egative dogs resulted PCR-positive. The agreement 
between PCR and serology was much higher when we 
lowered the specificity threshold of the serology by 
considering the reactivity to a single test instead of two, 
as up to 41 dogs seroreactive with a single reactive test 
were also PCR-positive (Table 2), and the Kappa index 
reached 0.280. This strongly suggested that many of the 

Table 1  Serological testing for T. cruzi antibodies in dogs

Abbreviations: WB, Western blot; Pos, number of positive cases; Neg, number of negative cases

Stat-Pak Pos Stat-Pak Neg Total WB Pos WB Neg Total

ELISA Pos 6 38 44 30 14 44

ELISA Neg 26 467 493 72 49 121

Total 32 505 537 102 63 165

Kappa 0.096 ± 0.059 0.061 ± 0.059

https://www.epa.gov/eco-research/ecoregion-download-files-state-region-6
https://www.epa.gov/eco-research/ecoregion-download-files-state-region-6
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dogs with a single seroreactive test were not false posi-
tives but corresponded to true infections. Agreement 
of individual serological tests with PCR was low (Addi-
tional file 1: Table S1).

Discussion
We performed here a large scale assessment of T. cruzi 
infection in shelter dogs in Louisiana and observed 
an average seropositivity of at least 6.9%, based on two 
reactive tests. This is in agreement with most of previ-
ous studies in various canine populations in the south-
ern USA [10–16, 24, 25]. However, we also detected a 
rather high discordance among tests, comparable to that 
reported previously in canines in Texas [10]. Variable lev-
els of discordance among tests had been observed previ-
ously in dogs in Argentina [31, 35, 36]. Thus, while the 
Stat-Pak rapid test may be useful for the rapid screening 
of canines [26, 31], our data suggest that major improve-
ments in serological diagnostic tests are needed for 

a better surveillance of infection, as noted before for 
human Chagas disease [37].

The results of our confirmatory Western blot assays 
may give some clues for this discrepancy. Indeed, the 
sera from infected dogs recognized widely different para-
site protein patterns, indicating very variable profiles of 
parasite-specific antibodies. This may be due to a com-
bination of dogs’ immune system (DLA) and parasite 
strains, both of which may be highly variable. So far, 
most efforts at parasite genotyping in dogs have lead to 
the detection of TcI and TcIV in the southern USA [10], 
but a much greater diversity of strains covering TcI, TcII, 
TcIV, TcV and TcVI has been identified in Louisiana in 
other mammalian hosts such as rodents [38] and non-
human primates [39] when using a more sensitive geno-
typing method based on next-generation sequencing 
(NGS) [40]. Infections with such a wide diversity of para-
site strains in dogs may in part lead to variable immune 
responses as we observed. Further attempts at identifying 

Fig. 1  Distribution of T. cruzi infection in animal shelters across Louisiana. Insert map: Distribution of Lousiana parishes included in the study. Main 
map: Distribution of T. cruzi seroprevalence in shelter dogs. Pie charts indicate the percentage of seropositive dogs (shown in red) and the size of 
each chart is proportional to the sample size for the corresponding parish. Background map shows Louisiana parish boundaries and EPA ecoregions 
(color coded)
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parasite strains infecting dogs in Lousiana should help 
clarify this point.

The detection of T. cruzi DNA by PCR also resulted 
useful to complement serology, and we detected a high 
prevalence of PCR positive dogs (15.7%, 95% CI: 12.9–
19.1%) due to a highly sensitive assay. Importantly, there 
was a significant group of PCR-positive dogs that were 

considered seronegative (based on 2 reactive tests), high-
lighting the limitations of current serological testing. 
However, there was a stronger agreement between serol-
ogy and PCR when using a single reactive test to iden-
tify seropositive dogs compared to using two tests. Thus, 
it is likely that many of the dogs seropositive with a sin-
gle test were not false positives but indeed infected with 
T. cruzi. PCR-positive dogs with negative serology may 
also correspond to acute cases, although their number 
is higher than the estimated incidence of new infections 
(see below). Nonetheless, we also observed a tendency 
of a higher discordance among serological tests with dog 
age, possibly indicating seroconversion following recent 
infection.

Our observations confirm that T. cruzi infection is 
widespread in shelter dogs from southern Louisiana, as 
all shelters are affected (except two, in Acadia and St. 
Landry parishes, most likely due to a small sample size, 
n = 8 and n = 6, respectively). Accordingly, we did not 
detect any significant association of T. cruzi infections 
with ecoregions. While we cannot determine if dogs 
became infected at the shelters or prior to their arrival, 
prior infections would most likely have occurred within 
the same parish and ecoregion because shelters only 
accept dogs from the parish where they are located. 
Also the prevalence of canine T. cruzi infection was 
very similar to that observed in Texas, in spite of the 
important difference in triatomine vectors. Indeed, T. 
sanguisuga is the main vector in Louisiana [41], while 
T. gerstaeckeri is more frequent in Texas [42].

Fig. 2  Western blot analysis of antigenic recognition patterns of dog serum. Representative individual dog serums (Lanes 1–21) were tested for T. 
cruzi protein recognition. Positive (+) or negative (−) reactivity is indicated at the bottom of each lane. Note that some dogs showed a very similar 
band recognition pattern (Lanes 5–8 and 10), but serum from most seropositive dogs recognized widely different parasite antigen patterns (Lanes 
12, 14 and 16–21)

Fig. 3  Trypanosoma cruzi seropositivity in shelter dogs as a 
function of age. Seroprevalence is shown as the mean ± 95% 
CI. Seroprevalence increased with dog age according to: 
Seroprevalence = 2.19 + 11.35*log(Dog age) (R2 = 0.99, P = 0.001)
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Trypanosoma cruzi infection increased with dog age, 
as expected from cumulative exposure. This allowed to 
precisely estimate a high incidence of new cases reach-
ing 2.27% per year. Male dogs were also more infected 
than females, which is a somewhat unusual observa-
tion as sex differences in infection rates are usually not 
observed [11, 43, 44], and it is not clear if it reflects 
greater exposure to vectors and/or greater susceptibil-
ity to infection of male dogs.

Conclusions
We documented a high prevalence of T. cruzi infec-
tion in shelter dogs in southern Louisiana, USA, with 
at least 6.9% seropositive and 15.7% PCR-positive ani-
mals. Therefore, T. cruzi infection appears as a very 
significant and widespread veterinary problem in dogs 
in the region, although it is mostly unnoticed and 
underdiagnosed by health professionals. It is also very 
likely that such T. cruzi infections occur in most of the 
southern USA where triatomine vectors are present 
[45]. Based on a total population estimated at nearly 
90 million pet dogs the USA, many of those living in 
the southern states may be infected with T. cruzi. This 
highlights the need for greater awareness among the 
veterinary community for case detection and care, as 
well as among dog owners to reduce the risks of infec-
tion in regions where T. cruzi infection is prevalent. 
While therapeutic treatment may be of limited efficacy 
[46], insecticide-treated collars may help reduce canine 
exposure to triatomines and subsequent infection [47, 
48]. Alternatively, the development of a veterinary vac-
cine may help protect dogs from T. cruzi infection and 
disease progression [49, 50].

Additional file

Additional file 1: Table S1. Individual serological and PCR testing for T. 
cruzi in dogs.

Abbreviations
ELISA: enzyme-linked immunosorbent assay; CI: confidence interval; PCR: 
polymerase chain reaction; WB: Western blot.
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