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Simple framework for real‑time forecast 
in a data‑limited situation: the Zika virus 
(ZIKV) outbreaks in Brazil from 2015 to 2016 
as an example
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Abstract 

Background:  In 2015–2016, Zika virus (ZIKV) caused serious epidemics in Brazil. The key epidemiological parameters 
and spatial heterogeneity of ZIKV epidemics in different states in Brazil remain unclear. Early prediction of the final 
epidemic (or outbreak) size for ZIKV outbreaks is crucial for public health decision-making and mitigation planning. 
We investigated the spatial heterogeneity in the epidemiological features of ZIKV across eight different Brazilian states 
by using simple non-linear growth models.

Results:  We fitted three different models to the weekly reported ZIKV cases in eight different states and obtained an 
R2 larger than 0.995. The estimated average values of basic reproduction numbers from different states varied from 
2.07 to 3.41, with a mean of 2.77. The estimated turning points of the epidemics also varied across different states. 
The estimation of turning points nevertheless is stable and real-time. The forecast of the final epidemic size (attack 
rate) is reasonably accurate, shortly after the turning point. The knowledge of the epidemic turning point is crucial for 
accurate real-time projection of the outbreak.

Conclusions:  Our simple models fitted the epidemic reasonably well and thus revealed the spatial heterogeneity in 
the epidemiological features across Brazilian states. The knowledge of the epidemic turning point is crucial for real-
time projection of the outbreak size. Our real-time estimation framework is able to yield a reliable prediction of the 
final epidemic size.
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Background
Zika virus (ZIKV) was first identified in the Zika For-
est of Uganda in 1947 [1]. Later it was found to spread 
in the human populations in Nigeria [2, 3]. ZIKV is an 
arbovirus in the family of Flaviviridae and is transmitted 
through the bites of mosquito vectors (usually of Aedes 
aegypti mosquitoes) [4–7]. By 2007, ZIKV had escaped 
Africa to the Yap island in Micronesia, and it infected an 
estimated 75% of the local population [8]. In 2013, ZIKV 

reached French Polynesia and caused an infection attack 
rate of 49% [9, 10]. By 2015 it had invaded Brazil [10–12] 
and then quickly the many regions in South America 
[4, 13, 14]. Since 2015, other ZIKV transmission routes 
have also been found (materno-fetal, sexual transmission 
and via blood transfusion) [15–17], but these paths are 
uncommon and inefficient [12]. Up to the end of 2018, 
ZIKV infections had been reported in 86 countries (or 
regions) mainly in Oceania and the Americas [17]. In 
recent years, available scientific evidence and analysis 
strongly suggest that ZIKV could cause Guillain-Barré 
syndrome (GBS) [17–21]. ZIKV infection in pregnant 
women is also reported to be associated with, among 
other medical complications, microcephaly in their 
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infants and sometimes even fetal deaths [17, 22–24]. Due 
to the lack of effective vaccines or medication, the World 
Health Organization (WHO) declared ZIKV as a public 
health emergency of international concern as of February 
2016 [17].

In Brazil, samples of eight patients (with rash) tested at 
the Bahia State laboratory were positive for ZIKV by RT-
PCR in epidemiological week (EW) 17 of 2015 [11, 25]. 
In EW 19 of 2015, Brazil authorities reported positive 
results for ZIKV by RT-PCR in samples taken from the 
States of Rio Grande and Bahia. This was the first report 
of locally-acquired ZIKV infection in Brazil [25]. The first 
wave of ZIKV hit northeastern Brazil in the first quarter 
of 2015 and started fading out since September, and was 
severely underreported since the mandatory ZIKV case 
notification only started in February 2016 [26]. The sec-
ond wave of ZIKV swept Brazil between October 2015 
and July 2016 [4, 27], followed by an increasing number 
of microcephaly infants across the whole country [28–
30], as well as GBS cases [13]. This second wave in Brazil 
ended around July 2016, and even earlier for some of the 
states [25].

Modelling is widely used to study primary epidemic 
features and estimate the epidemiological parameters in 
the infectious disease outbreaks [10, 12, 14, 15, 31–37]. 
During an outbreak, the crucial epidemiological param-
eters include the reproduction number [32, 34, 38–40], 
final epidemic size [41, 42] and the turning time point 
[43–47]. The three parameters reflect the levels of infec-
tivity, severity and the inflection time point of an epi-
demic, respectively. Knowledge of these epidemiological 
parameters summarize the temporal pattern of an epi-
demic and is helpful to understand the features of an 
outbreak. The real-time prediction of the epidemic final 
size is a procedure in which the estimates are valuable if 
achieved early. Moreover, the real-time estimation of the 
potential severity of an ongoing epidemic could be cru-
cial for disease control and prevention policy-making 
[46, 48–52].

In this study, we were inspired by previous work [44, 
46, 53] and adopted simple non-linear phenomenologi-
cal models to study the epidemics in a data-limited sit-
uation. When a relatively new disease hits an under (or 
less) developed population, much public health related 
information is unknown during the outbreak, and only 
reported case time series are available. However, a quick 
estimate of the key epidemiological parameters and 
forecast on the trend is crucial for mitigation planning. 
We propose a framework for such a situation and use 
the ZIKV case time series in eight Brazilian states as an 
example. We study the power of simple models for real-
time estimation in a data-limited situation. We forecast 
the final epidemic size in real-time. We reveal the spatial 

heterogeneity of epidemiological parameter estimates of 
the ZIKV epidemics across Brazil which should be useful 
in mitigation planning (or resource allocation).

Methods
Data
We obtained weekly reported ZIKV cases (both con-
firmed and suspected or suspected only) in eight Brazilian 
states between January 2015 to July 2016 from published 
literature [4]. These states include Acre, Bahia, Pernam-
buco, Espirito Santo, Parana, Rio Grande, Goiania City 
and Mato Grosso. According to the case definition by the 
WHO [54], a confirmed case must be first defined as a 
suspected case, and thus we follow previous work [10, 44] 
to use either the sum of confirmed and suspected (if they 
are available) or the suspected cases for analysis. Although 
Brazil started national wide mandatory ZIKV case notifi-
cation on February 2016 [4, 26], many states with large-
scale outbreak started local notification (reporting) on or 
after October 2015. The second large epidemic wave of 
ZIKV infections started in October 2015 [4, 27]. In this 
work, we use the ZIKV epidemic data on or after October 
2015 for all eight states in Brazil for modelling.

We obtained the population data at the end of 2015 
from the Brazilian Institute of Geography and Statistics 
[55].

Mathematical models
We aimed to investigate the temporal patterns and 
transmission potential of ZIKV in eight Brazilian states 
over roughly the same period of time in 2015–2016. We 
adopted three different non-linear growth models to pin-
point the wave of ZIKV infections in each state. The three 
models are the three-parameter logistic growth model 
[56], the Gompertz growth model [57] and the Richards 
model [58], which are widely used to study S-shaped 
cumulative growth processes, e.g. epidemic curves [43, 
44, 46, 47, 53, 59].

In this study, we denote the real (or theoretical) cumu-
lative number of ZIKV cases of time (or day) t by C(t), 
and thus also C(t) represents the instantaneous epidemic 
size at time t. The three-parameter logistic growth model 
reads 

The Gompertz growth model reads 

The Richards model reads 

(1)C(t) =
K

1+ e−γ (t−τ )
.

(2)C(t) = Ke
−e

−γ (t−τ)

.

(3)C(t) =
K

[

1+ αe−αγ (t−τ )
](1/α)

.
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In Eqns (1–3), K is the maximum cumulative case 
number or the final epidemic size over the single wave 
of an outbreak, γ is the intrinsic per capita growth rate 
of the infected population, and τ is the unique inflection 
time point. For the Richards model in Eqn (3), term α is 
the exponent of deviation of the cumulative S-shaped 
ZIKV epidemic curve for C(t). Especially, when α = 1, the 
Richards model Eqn (3) becomes the logistic model in 
Eqn (1). Different from the logistic model in Eqn (1), the 
Richards model is no longer symmetrical about the point 
of inflection (τ) when α ≠ 1. More similarities and differ-
ence among the three growth models are summarized in 
Additional file 1: Text S1. Unlike the standard “suscepti-
ble-infectious-recovered” (SIR) compartmental models 
commonly used to study the transmission of diseases [12, 
14, 36], these growth models consider the cumulative 
cases with saturation in the growth rate as the signs of 
progress of epidemics. The extrinsic growth rate does not 
steadily decline but rather increases to a maximum (i.e. a 
saturated level) before steadily declining to zero.

The turning point or inflection point, τ, is defined 
as the time point when the sign change in the rate of 
cases accumulation occurs, i.e. changes from increas-
ing to decreasing or vice versa. Hence, τ is the moment 
at which the daily (or weekly) incidence trajectory begins 
to decline, which means the extrinsic growth rate reaches 
its maximum. The turning point indicates the beginning 
of an epidemic phase changing from the acceleration to 
deceleration.

The model parameters K, γ and τ are of epidemiological 
importance. These parameters can be estimated by fit-
ting the growth models to the epidemic data of the ZIKV 
outbreak. We adopted the standard non-linear least 
squares (NLS) approach for model fitting and param-
eter estimation. Thus, the real cumulative case number 
at time t, C(t), is assumed to follow a normal distribution 

with a mean of the reported cumulative number of cases 
and an unknown but constant variance [43, 44, 46, 47]. 
A P-value of < 0.05 is regarded as statistically significant, 
and the 95% confidence intervals (CI) for all unknown 
parameters are estimated.

The epidemic data in each state are fitted by all three 
growth models in Eqns (1–3) (see Fig.  1 for an illustra-
tion). We adopted the R2 to measure the goodness-of-fit 
of each model. Since the models have different numbers 
of unknown parameters, the Akaike information crite-
rion (AIC) was used to evaluate model performance in 
terms of the trade-off between the goodness-of-fit and 
the model complexity. For each state, the model with the 
lowest AIC value was chosen for further evaluation on its 
potentials for the real-time estimation.

Reproduction number
The reproduction number, R, is the average number of 
secondary infectious cases produced by one infectious 
case during a disease outbreak [40, 45, 60]. When a pop-
ulation is totally (i.e. 100%) susceptible, R becomes the 
basic reproduction number, R0 [39, 61]. When a disease 
reaches a place (or region) for the first time, the estimated 
R can therefore be treated as R0. Following previous stud-
ies [38, 40, 60, 62], the reproduction number (R) is given 
in Eqn (4). 

Here, γ is the intrinsic per capita growth rate from the 
growth model in Eqns (1–3), and κ is the serial inter-
val of the ZIKV infection. The serial interval (i.e. gen-
eration interval) is the average time interval from onset 
of one individual to the onset of another individual 
infected by him/her [44], or the time between succes-
sive cases in a chain of transmission [4, 38, 40, 62, 63]. 

(4)R =
1

M(−γ )
=

1

∫∞
0
e−γ κh(κ)dκ

.

Fig. 1  The illustration diagram of the modelling framework. The (solid and dashed) orange lines are the theoretical growth curves from the growth 
models in Eqns 1–3. The blue dots are the reported cumulative (cum.) number of cases. The blue shading area represents the time period when the 
disease notification is ongoing, which is also the time period for the model fitting
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The function h(∙) represents the probability distribution 
of the serial interval, κ. Hence, the function M(∙) is the 
Laplace transform of h(∙), specifically, M(∙) is known to 
statisticians as the moment generating function (MGF) 
of a probability distribution.

According to previous work [4], we set h(κ) to be a 
gamma distribution with a mean of 20.0  days and 
standard deviation (SD) of 7.4  days, the SDs of the 
mean and SD of κ are 2.3 and 1.3  days, respectively. 
Therefore, R can be estimated with the values of γ from 
models (1–3).

Projection of the epidemic and real‑time estimation
In each state, we chose the model attaining the low-
est AIC and simulated it into the future to estimate the 
final size (K) of the outbreak. To evaluate the real-time 
forecast power, we repeated the fitting procedure start-
ing from the full epidemic wave to a sequence of waves 
with the end week discarded. We denoted the start, the 
end and the turning pint of the outbreak by 0, T and τ, 
such that 0 < τ < T. In the fitting part, we used the all data 
from time 0 to T to fit the models and estimate param-
eters. For the real-time estimation, we used the data from 
time 0 to T1, where 0 < T1 < T, so that the model was fit-
ted with an incomplete dataset. With initially T1 = T, we 
decreased T1 gradually from time T backwards until the 
model fitting diverged. We compared the real-time esti-
mated final size (K) and the K estimate based on the com-
plete dataset, and stopped the real-time estimation when 
the yielded confidence interval was too wide (e.g. includ-
ing zero) to be useful at the end of epidemic period, i.e. T. 
We checked the parameter estimates and compared with 
the results from the full-data modelling to evaluate the 
analysis sensitivities as the measurement of the real-time 
estimating potential. The (real-time) estimates with the 
lowest three T1s were compared to the estimation based 
on the full dataset.

The knowledge of the turning point (τ) is crucial for 
real-time projection [44–46], but this information is usu-
ally not precisely available. Alternatively, for Zika disease, 
one may gain knowledge of τ from the mosquito vec-
tors’ activities. Since the mosquito abundance in Brazil 
decreases around May each year [64], we attempted to 
project the final size (K) with τ fixed at three dates prior 
to May, namely the first days of February, March and 
April 2016. Similarly, for the real-time projection, we 
used the data from time 0 to T1, where 0 < T1 < T, to train 
the model. The growth model was fitted with the dataset 
from 0 to T1, and used to project K in real-time. We com-
pared the real-time projection of K with the estimates 
based on full data to measure the forecast power (perfor-
mance) of the model.

Results
We fitted the three different models in Eqns (1–3) to the 
time series data of ZIKV incidences number from eight 
states in Brazil from October 2015 to May 2016. Figure 2 
shows that the selected models can provide a good fit to 
the observations. All selected models achieved a level of 
R2 larger than 0.995. For each state, we selected the fitting 
results with the lowest value of AIC as the most suitable 
model (Table 1, Fig. 2). In particular, the Richards model 
is selected for Acre, Bahia, and Pernambuco; Gompertz 
model is selected for Mato Grosso and Rio Grande; and 
the logistic model is selected for Espirito Santo, Goi-
ania City and Parana. The reproduction number, R, esti-
mates vary from 1.54 to 3.07 for the eight different states 
(Table 1). We estimate R = 1.54 (95% CI: 1.43–1.65) in Rio 
Grande, and R = 3.07 (95% CI: 2.92–3.24) in Goiania City. 
The estimated dates of the turning points also vary from 
January to April of 2016, with 4 out of 8 states in March 
2016. For the same state, the final size estimates from dif-
ferent models are roughly consistent, with the 95% CIs 
largely overlapping. The estimated final (epidemic) sizes, 
K, are also summarized in Table 1. We estimate the larg-
est final outbreak size of 55,472 (95% CI: 54,683–56,260) 
in Bahia for the outbreak since October 2015, after the 
one epidemic wave in early 2015 [4, 10].

To evaluate the potentials for the real-time estimation, 
we shortened the fitting period starting from the end time 
of the epidemic reporting period, and further checked 
the sensitivity of the estimates of K and τ. The epidemic 
reporting period is the period that local authority starts 
and ends the reporting of ZIKV cases, which is differ-
ent from the real epidemic period. The real epidemic 
period starts earlier than the actual reporting starting 
date. For each state, the model with the lowest value of 
AIC is selected here, and all AIC values are summarized 
in Table 1 and Fig. 2. Table 2 summarizes the real-time 
estimation from the selected models. Figure 3 shows the 
relationship between the estimates of the epidemic size 
(or final size) and the end time of model fitting. We sum-
marized the estimates using the incomplete dataset and 
using the complete dataset in Table 2, where the final epi-
demic size estimates by using the complete dataset match 
the red dots in Fig. 3. The early estimates of the turning 
points (τ) and reproduction numbers (R) are almost the 
same as the final results. The real-time estimates of epi-
demic size, K, converge to the estimates by using the full 
dataset (the red dots in Fig. 3), when the end time of the 
subsequent fitting period (T1) is longer than the turning 
point (τ), i.e. T1 > τ. The estimated epidemic sizes using 
the incomplete dataset are roughly consistent to the final 
estimates. Note that for a few states (e.g. Rio Grande), 
the estimated epidemic size is higher than the reported 
cumulative counts; this is due to the outbreak sustained 
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after the end of disease notification (reporting) period. 
The epidemic size, K, is the final outbreak size until the 
end of the epidemic. Moreover, for all states we find that 
the epidemic sizes estimated 6–35 days after the turning 
points are indifferent from their final estimations, which 
means the 95% CIs are largely overlapping (Table 2). This 
finding indicates that the final outbreak size (K) can be 
estimated around the epidemic peaking stage by the pro-
jections from the simple growth models. By fixing τ to be 
the first days of February, March and April of 2016, the 
K projection converges as more data is including in the 
model training (Fig. 4). When the assumed turning point 
becomes closer to the real turning point, the projection 
of K will gain more accuracy and converges faster even 
during the early stage of the epidemics (i.e. before the 
occurrence of the real turning point).

Discussion
We used simple non-linear growth models to study the 
temporal patterns of ZIKV epidemics in eight Brazil-
ian states. We showed that three simple growth models 
can be adapted to model the ZIKV outbreak, with the 
best R2 reaching 0.995. The estimated dates of the turn-
ing points varied from January to April of 2016 for the 
eight states. The difference in the turning points indicates 

spatial heterogeneity in the timing of the outbreak. We 
found that four out of the eight states (i.e. 50%) had a 
turning point in March 2016, which matches the epi-
demic peaking time of the whole of Brazil in 2016 [4, 25]. 
It is interesting to note that the earliest turning point was 
estimated as January 10 (95% CI: January 06–January 14), 
2016 in Mato Grosso state, around which the epidemic 
started to be reported in the neighboring state of Parana 
in the epidemiological week (EW) 2 of 2016. We sus-
pect that the reporting of this cluster of cases could be 
triggered by the turning point, which is in-line with the 
findings in [44]. The timing of the turning points, i.e. the 
duration from the epidemic reporting start to the turn-
ing point (the “turning point” column in Table  1), was 
also found to be remarkably different between each state. 
This is different from the previous work for the six archi-
pelagos in French Polynesia [44], which could be due 
to the large differences in the ZIKV epidemic reporting 
periods of the states in Brazil. The local conditions, e.g. 
demographic factors, public health policies, seasonal-
ity including meteorological factors and other factors 
affecting mosquito activities, probably varied in different 
states. Hence, the growth structure of the epidemic curve 
could be affected, and thus the turning points are likely to 
appear heterogeneously across states. To further evaluate 

Fig. 2  The fitting results of the ZIKV epidemics and the estimates of the reproduction number, R. The dots are the number of reported weekly 
ZIKV incidences, and the red curves are the fitted epidemic curves by the model with the lowest AIC (highlighted in red). The cyan diamond at the 
top-left corner of each panel is the reproduction number estimation, and the bar is the 95% CI
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Table 2  Summary table of the real-time estimation results from the selected models. The model with the lowest AIC (for the same 
states) is selected for analysis. The models results using the full epidemic dataset during the whole epidemic period match the models 
with the lowest AICs in Table 1. The numbers in parentheses are the 95% CIs

State Model Durationa Fitting period Final size Reproduction number Turning pointb Turning date

Acre Richards 120 26.11.2015–26.03.2016 908
(576–1239)

2.16 (2.05–2.27) 113
(107–118)

18.03.2016
(13.03.2016–23.03.2016)

Acre Richards 127 26.11.2015–02.04.2016 772
(747–797)

2.12 (2.05–2.18) 112
(110–114)

17.03.2016
(15.03.2016–19.03.2016)

Acre Richards 134 26.11.2015–09.04.2016 776
(761–790)

2.12 (2.06–2.18) 112
(110–114)

17.03.2016
(15.03.2016–19.03.2016)

Acre Richards 148 26.11.2015–23.04.2016 783
(774–793)

2.13 (2.07–2.19) 111
(110–113)

17.03.2016
(15.03.2016–18.03.2016)

Bahia Richards 155 29.10.2015–02.04.2016 50,249
(46,852–53,646)

1.61 (1.57–1.65) 137
(131–143)

14.03.2016
(09.03.2016–20.03.2016)

Bahia Richards 162 29.10.2015–09.04.2016 51,709
(49,237–54,181)

1.61 (1.57–1.66) 137
(132–141)

14.03.2016
(09.03.2016–19.03.2016)

Bahia Richards 169 29.10.2015–16.04.2016 52,963
(50,927–55,000)

1.61 (1.57–1.66) 136
(132–141)

14.03.2016
(09.03.2016–18.03.2016)

Bahia Richards 218 29.10.2015–04.06.2016 55,472
(54,683–56,260)

1.63 (1.58–1.68) 135
(132–139)

14.03.2016
(09.03.2016–16.03.2016)

Espirito Santo Logistic 42 23.01.2016–05.03.2016 1671
(766–2577)

3.48 (2.22–5.30) 27
(9–46)

19.02.2016
(01.02.2016–08.03.2016)

Espirito Santo Logistic 49 23.01.2016–12.03.2016 2126
(1112–3140)

2.93 (2.15–3.96) 35
(17–54)

27.02.2016
(09.02.2016–16.03.2016)

Espirito Santo Logistic 56 23.01.2016–19.03.2016 2364
(1609–3119)

2.75 (2.21–3.40) 39
(26–53)

02.03.2016
(18.02.2016–15.03.2016)

Espirito Santo Logistic 84 23.01.2016–16.04.2016 2132
(2020–2243)

3.05 (2.73–3.41) 35
(32–38)

27.02.2016
(24.02.2016–29.02.2016)

Goiania City Logistic 113 10.12.2015–02.04.2016 2040
(1751–2329)

3.33 (3.05–3.63) 106
(102–111)

25.03.2016
(21.03.2016–30.03.2016)

Goiania City Logistic 120 10.12.2015–09.04.2016 2230
(2015–2445)

3.19 (2.98–3.41) 109
(105–112)

28.03.2016
(25.03.2016–31.03.2016)

Goiania City Logistic 127 10.12.2015–16.04.2016 2092
(1974–2210)

3.32 (3.12–3.53) 107
(105–109)

26.03.2016
(24.03.2016–28.03.2016)

Goiania City Logistic 155 10.12.2015–14.05.2016 2243
(2184–2303)

3.07 (2.92–3.24) 109
(108–111)

29.03.2016
(27.03.2016–30.03.2016)

Mato Grosso Gompertz 77 29.10.2015–14.01.2016 12,901
(8235–17,567)

2.03 (1.61–2.55) 58
(47–69)

26.12.2015
(16.12.2015–06.01.2016)

Mato Grosso Gompertz 85 29.10.2015–23.01.2016 15,093
(10,750–19,436)

1.85 (1.57–2.18) 63
(53–73)

31.12.2015
(22.12.2015–10.01.2016)

Mato Grosso Gompertz 92 29.10.2015–30.01.2016 17,550
(12,927–22,172)

1.72 (1.51–1.96) 68
(58–78)

05.01.2016
(26.12.2015–15.01.2016)

Mato Grosso Gompertz 134 29.10.2015–12.03.2016 19,791
(18,147–21,435)

1.67 (1.56–1.79) 73
(69–76)

10.01.2016
(06.01.2016–14.01.2016)

Parana Logistic 92 14.01.2016–16.04.2016 4121
(2604–5637)

2.90 (2.41–3.47) 86
(73–99)

09.04.2016
(27.03.2016–22.04.2016)

Parana Logistic 99 14.01.2016–23.04.2016 3720
(3048–4393)

3.05 (2.63–3.53) 82
(75–89)

06.04.2016
(30.03.2016–13.04.2016)

Parana Logistic 106 14.01.2016–30.04.2016 3610
(3228–3992)

3.12 (2.76–3.51) 81
(77–86)

05.04.2016
(31.03.2016–09.04.2016)

Parana Logistic 141 14.01.2016–04.06.2016 4008
(3894–4123)

2.82 (2.66–2.99) 86
(84–87)

09.04.2016
(07.04.2016–11.04.2016)

Pernambuco Richards 106 03.12.2015–19.03.2016 10,694
(4222–17,165)

1.81 (1.63–2.01) 94
(78–109)

06.03.2016
(19.02.2016–22.03.2016)

Pernambuco Richards 113 03.12.2015–26.03.2016 9480
(7737–11,224)

1.78 (1.67–1.89) 91
(88–95)

04.03.2016
(29.02.2016–07.03.2016)

Pernambuco Richards 120 03.12.2015–02.04.2016 9320
(8512–10,127)

1.77 (1.68–1.87) 91
(88–94)

03.03.2016
(29.02.2016–07.03.2016)
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the timely efficiency of the local ZIKV notification, we 
checked if the turning point appeared in the latter half 
of the whole reporting period. This can be simply quan-
tified by calculating the ratio of the “turning point” over 
“duration” in Table 1, and compared with 0.5. Most of the 

states had a turning point in the latter half of the outbreak 
reporting period except for the state of Espirito Santo. 
Espirito Santo had a turning point (τ) in the former half 
of the epidemic period (T) significantly, i.e. τ < T/2, which 
is different from other states, thus an outlier.

a  The “duration” is the fitting duration (in days) since the starting time (date; day.month.year) for fitting, which is the difference of the end and start dates of the “fitting 
period”
b  The “turning point” is the estimated time period (in days) from the starting time (date; day.month.year) of the outbreak to the estimated occurrence of the turning 
point

Table 2  (continued)

State Model Durationa Fitting period Final size Reproduction number Turning pointb Turning date

Pernambuco Richards 169 03.12.2015–21.05.2016 9936
(9770–10,102)

1.85 (1.75–1.95) 90
(87–93)

02.03.2016
(29.02.2016–05.03.2016)

Rio Grande Gompertz 148 24.12.2015–21.05.2016 771
(563–979)

1.54 (1.39–1.71) 120
(107–134)

22.04.2016
(09.04.2016–06.05.2016)

Rio Grande Gompertz 155 24.12.2015–28.05.2016 765
(613–917)

1.54 (1.42–1.68) 120
(110–130)

22.04.2016
(12.04.2016–02.05.2016)

Rio Grande Gompertz 162 24.12.2015–04.06.2016 772
(653–890)

1.54 (1.43–1.65) 120
(112–128)

22.04.2016
(14.04.2016–30.04.2016)

Fig. 3  The estimation of final size (K) with variable turning points from the selected growth model. In each panel, the horizontal axis is the end time 
of fitting, and the vertical axis is the final size, K, or the reported number of cumulative (cum.) counts, C(t), of ZIKV incidences. The vertical dashed 
blue line indicates the start time of the epidemic, which is also the start time of fitting. The vertical dashed black line indicates the end time of 
the epidemic, which is also the largest end time of fitting. The vertical purple line is the estimated turning point, τ, by using the full dataset, which 
matches the models with the lowest AICs in Tables 1 and 2. The cyan curve is the fitted cumulative epidemic curve, and the triangular dots are the 
reported number of cumulative ZIKV incidences. The red line is the estimated final size against the end time of fitting. The red dot at the end is the 
final size estimation by using the full dataset, which matches the models with the lowest AICs in Tables 1 and 2. The red shading area represents the 
95% CI
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The disease infectivity is measured by the reproduction 
number, R, during an outbreak (Table 1). The estimated 
R-values are significantly less than 2 (with 95% CIs lower 
than 2) in the four states of Bahia, Mato Grosso, Pernam-
buco and the Rio Grande. The Rs are significantly larger 
than 2 in the four states of Acre, Espirito Santo, Goiania 
City and Parana. In states of Bahia, Mato Grosso and Per-
nambuco, there were ZIKV cases confirmed since early 
2015 [4]. Thus, the lower R-values are likely to be due to 
the depletion of susceptible population during the ear-
lier outbreaks. In the state of Rio Grande, one possible 
explanation for the lowest R = 1.54 (95% CI: 1.43–1.65) 
is the relatively lower air temperature than most of the 
other places in Brazil. The average temperature starts to 
drop below 20  °C from March every year, during which 
the mosquito vector abundance is almost zero [65]. For 
the four states of Acre, Espirito Santo, Goiania City and 

Parana, ZIKV was not reported before October 2015 
[4], and thus the R-values can also be treated as the esti-
mates of the basic reproduction number, R0. Hence, we 
speculate that the R0 of ZIKV ranges from 2.07 to 3.41 by 
directly finding the range of the 95% CIs of R-values in 
states of Acre, Espirito Santo, Goiania City and Parana. 
The average value of R0 was 2.77. This average value and 
range of R0 is consistent with previous ZIKV studies for 
Brazil [4, 12, 14].

To evaluate the power for the real-time estimation, the 
selected models were repeatedly implemented with the 
fitting period starting from the end time of the reporting 
period, and thus we could further check the sensitivity of 
estimates of K and τ (Table  2). We report a converging 
real-time estimation of the final epidemic size starting 
on or after the turning date. The estimation of the turn-
ing points is obviously stable and consistent with the final 

Fig. 4  The estimation of final size (K) with fixed turning points. In each panel, the horizontal axis is the time since the start of the epidemic, which 
is also the end time (T1) of the dataset to train the growth model. The vertical axis is the projected final size, K. The vertical gray line is the estimated 
turning point, τ, by using the full dataset, which matches the models with the lowest AICs in Tables 1 and 2. The horizontal gray line is the estimated 
final size, K, by using the full dataset, which matches the models with the lowest AICs in Tables 1 and 2. The red curve is the real-time projection of K 
with τ fixed to be February 1, 2016 (vertical red dashed line). The blue curve is the real-time projection of K with τ fixed to be March 1, 2016 (vertical 
blue dashed line). The green curve is the real-time projection of K with τ fixed to be April 1, 2016 (vertical green dashed line). The shading area 
represents the 95% CI
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estimation. Moreover, for all states, the epidemic sizes 
estimated 6–35  days after the turning points are virtu-
ally indifferent from their final estimations (i.e. estimates 
of K by using the full dataset). These findings reveal the 
real-time estimating potentials for the simple growth 
models proposed in this study. The final epidemic size (K) 
can be predicted at or after the peaking time of the epi-
demic. The early prediction of the final outbreak size (K) 
was found to depend on the timing of the turning point 
(τ), as shown in Fig.  3. Although projecting the tempo-
ral trends of an outbreak from the early-stage incomplete 
dataset could be sometimes misleading, we note that 
the predictions are reasonably accurate when the fitting 
dataset covers the turning point, which is in-line with the 
findings in [46, 66]. With data coming in from an ongoing 
outbreak, the performance of models used in this work 
will be continuously improved, thus real-time estimates 
of key epidemiological parameters may be available 
before the epidemic fully ends.

Since the prediction should be before the occurrence 
of an event, we note that the turning points forecast is 
difficult to be achieved with the simple models, which 
was also reported by previous Zika and dengue model-
ling literature [44, 45]. Nevertheless, we highlight the 
importance of a successful turning point forecast in the 
prediction of other epidemiological parameters. Our 
findings suggest that the projection on the epidemic 
final size (K) converges after using the data with time 
duration slightly over the turning point. In other words, 
once the knowledge of the turning point is equipped, the 
real-time estimation can be largely improved and con-
verges quickly. To estimate the turning point (τ) we may 
not only rely on surveillance case data but also take into 
account of practical knowledge and factors that affect the 
disease transmission. For instance, the Zika fever in this 
work is a disease whose transmission depends largely on 
the activity of mosquitoes, which has strong seasonality. 
Local mosquito abundance drops to a sufficiently low 
level from May each year [64], which could largely reduce 
the ZIKV spread. Hence, τ is probably before May 2016. 
By fixing τ on the first day of February, March and April 
2016, the K projection converges as more data is included 
in the training of the model (Fig. 4). When the assumed 
turning point approaches the real turning point, the pro-
jection of K will approach the estimate based on full data, 
and converge faster even during the early stage of the epi-
demics, i.e. before the arrival of the real turning point.

Besides the three models adopted in this study, there 
are other well-known non-linear growth models that 
have not been adopted. These unselected models include 
the four-parameter logistic, five-parameter logistic, 
Weibull and Sigmoid Emax models. One of the facts of 
the S-shape epidemic curve is that the growth starts from 

level zero. The Weibull and Sigmoid Emax models are 
more likely to yield inferior fitting performance with zero 
lower asymptote (or bound). Besides, the Sigmoid Emax 
model does not contain an intrinsic growth term. Thus, 
these two models are less popular in studying epidemic 
curves than the three models in Eqns (1–3). For the four-
parameter logistic model, it is equivalent to the three-
parameter version in Eqn (1) when the lower asymptote 
becomes zero. Although the five-parameter logistic 
model adds asymmetry factor (to control the asymmetry) 
based on the four-parameter version [67], it still contains 
the non-zero lower asymptote problem [68]. In addition, 
the five-parameter logistic model also could be over-
sensitive for the early-stage prediction [46]. These short-
comings make it less practical than the Richards model 
in studying the epidemic curve. Therefore, we only adopt 
the three growth models in Eqns (1–3).

This work has some limitations. The analyses are highly 
reliant on the quality of the epidemic data, reporting 
delay and the change of reporting criteria. Since the local 
ZIKV surveillance are more reliable after the end of 2015 
[26], we modeled the single-wave outbreaks on or after 
October 2015 and avoid including the dataset during 
early 2015. Due to the interference with the other Fla-
vivirus (e.g. dengue virus, yellow fever virus, West Nile 
virus, etc.) [69], the serological diagnosis of ZIKV infec-
tion is less effective than the RT-PCR diagnosis. How-
ever, the time window for positive RT-PCR viremia is 
relatively short, roughly three to seven days, thus a sus-
pected ZIKV should not be regarded as a negative case, 
which requires IgM tests for further confirmation [69]. 
Therefore, to avoid excluding the part of positive ZIKV 
cases in the suspected group, we considered the summa-
tion of suspected and confirmed cases as the incidence 
count for analysis. If the reporting delays, dates of onset, 
or the reporting rate are known, more realistic and com-
prehensive analysis can be performed that includes more 
accurate epidemic data and information. In this idealistic 
situation, although our simple non-linear models would 
be less attractive, they still could be used as the baseline 
framework for more advanced analysis, and to estimate 
the turning points.

Conclusions
In this study, we analyzed the temporal patterns of epi-
demics in Brazil by using simple non-linear growth mod-
els. The average value of R0 was estimated to be 2.77 and 
varied from 2.07 to 3.41 in different states. We found 
spatial heterogeneity in the epidemiological features 
among the eight states. We propose a real-time estima-
tion framework and we demonstrate that it is able to 
yield reliable real-time prediction of the final epidemic 
size. With precise knowledge of the turning point, the 
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real-time projection of the final size is likely to be more 
accurate, even during the early stage of epidemics. Our 
modelling framework may be extended to study other 
infectious diseases epidemics, and easily implemented 
for a practical purpose.
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