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How sensitive and specific is the visual 
diagnosis of sarcoptic mange in free‑ranging 
Iberian ibexes?
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Abstract 

Background:  Sarcoptic mange is a broadly distributed parasitic disease caused by Sarcoptes scabiei that affects 
wild mammals from all over the world, including the Iberian ibex (Capra pyrenaica). Selective culling of the scabietic 
individuals is the main management measure for disease control in Iberian ibex populations. Although visual identifi‑
cation of mange-compatible lesions is the reference method to decide the target individual, both false negative and 
positive cases are common in the wild. The aim of this work is to determine the sensitivity (SE), and the specificity (SP) 
of selective culling after evaluating 403 ibexes hunted in the Sierra Nevada Nature Space for sarcoptic mange control 
between 2002 and 2015.

Methods:  A combination of skin scrapings and potassium hidroxide (KOH) skin digestion was used for sarcoptic 
mange diagnosis. Generalized linear models (GLM) were used to assess the effects of sex, age (juveniles and adults) 
and period of the year (wet and dry periods) on the SE and SP of the visual diagnosis method.

Results:  The SE obtained for the visual determination of scabietic ibexes was 87.14%, whereas the SP was 60.71%. 
According to our model selection, SE of the visual diagnosis was explained by the additive effects of age and the 
period of the year. In fact, SE was lower in juveniles (64.76%) than in adults (94.26%) and during the dry period 
(73.44%) as compared to the wet period (92.09%). On the other hand, SP was best explained by the GLM including 
the additive effects of sex and the period of the year. The visual diagnosis of sarcoptic mange resulted less specific in 
females (22.73%) than in males (74.19%) and during the wet (55.22%) than in the dry period (82.35%).

Conclusions:  Maximizing SE and SP is essential to achieving a high rate of removal of affected individuals from the 
environment without eliminating potentially resistant individuals. Selective culling must be conservative during the 
wet period and with females due to the lower SP. Conversely, visual diagnosis of scabietic juveniles and during the dry 
period has to be improved, due to the lower SE.
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Background
Sarcoptic mange is a parasitic disease caused by Sar-
coptes scabiei reported in at least 104 mammal species 
from 27 families and 10 orders, responsible for wild-
life population collapses all over the world [1–3]. These 
include: carnivores, e.g. coyote (Canis latrans) [4], chee-
tah (Acinonyx jubatus) [5], Eurasian lynx (Lynx lynx) [3, 
6], red fox (Vulpes vulpes) [6, 7] and pine marten (Martes 
martes) [6]; marsupials, e.g. wombat (Vombatus ursinus) 
[8, 9], koala (Phascolarctos cinereus) [10]; and ungulates, 
e.g. chamois (Rupicapra pyrenaica) [11] and Iberian ibex 
(Capra pyrenaica) [12, 13], among others. Despite the 
fact that it has led some populations almost to extinction 
[7, 8, 12, 13], survival of scabietic animals is not rare [14, 
15] (Fig.  1). Once a population is affected by sarcoptic 
mange, it remains endemic re-emerging cyclically with 
lower virulence [3, 12, 16].

Sarcoptic mange pathology depends on the host and 
the environmental conditions. It is typically seasonal [17], 
peaking in late winter and spring, when low temperatures 
and high humidity favour the survival and reproduction 
of adult mites [18, 19]. Sexual differences in the preva-
lence of sarcoptic mange [17, 20] could be explained by 
gender differences in the immune response against the 
mite [21, 22]. In addition, prevalence differences amongst 
age classes have also been reported in mammals, includ-
ing wild ungulates, with adults often being more suscep-
tible [11, 12, 16]. As a result, sarcoptic mange outbreaks 
commonly happen in early spring, mostly affecting adult 
males [17, 20].

Measures for sarcoptic mange control are often 
implemented to mitigate the impact of the disease on 
wildlife populations, as well as for social and politi-
cal concerns. In field conditions, these measures are 

generally based on the selective culling of individuals 
with sarcoptic mange compatible lesions and pruritus, 
as the main clinical sign [3, 12, 17, 23, 24], as well as the 
administration of antiparasitic drugs such as ivermec-
tin or amitraz [5, 6, 10, 12]. The characteristic lesions of 
sarcoptic mange include erythematous eruptions, pap-
ules, seborrhoea, severe alopecia, crusts, hyperkerato-
sis and skin lichenification, dermal fissures, eyelid and 
lip inflammation and, finally, systemic signs as dehydra-
tion and emaciation [1, 2, 12, 13, 15].

It is presumed that individuals showing a high pro-
portion of damaged skin commonly carry higher mite 
burden than their less affected counterparts. However, 
the individual hypersensitivity response to a given par-
asite burden is in great measure what determines the 
outcome of sarcoptic mange infestation [2]. On the 
other hand, mite burden for a given skin surface can 
vary seasonally [25].

Nevertheless, other skin disorders also result in alo-
pecia, crusts and scales, making it difficult to confirm 
the visual diagnosis of sarcoptic mange in severely 
affected individuals [26] (Fig. 2). These alterations may 
include pemphigus complex, dermatophytosis and der-
matophilosis, other fungal and bacterial dermatitis, 
nutritional imbalances, chorioptic mange, louse, flea 
and tick infestations [27, 28], and photo-sensitization, 
among others [29]. Furthermore, in early summer 
ibexes molt fur to get the summer coat, presenting an 
unhealthy appearance in the eyes of an unexperienced 
observer. This emphasizes the need to confirm the vis-
ual diagnosis with additional tests, such as potassium 
hydroxide (KOH) digestion of the skin with observation 
of the mites, ova or faecal pellets under microscopic 
scrutiny [30, 31].

Fig. 1  Iberian ibex recovering from sarcoptic mange experimental 
infestation in SNNS showing healing lesions. New hair is growing 
within the old lesions

Fig. 2  Iberian ibex showing severe alopecia; however, skin scrapings 
and skin digestions were negative for S. scabiei detection
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Visual diagnosis of sarcoptic mange is the reference 
field method used not only in wildlife disease research 
[32] but also in actions for disease control in free ranging 
populations confirmed outbreaks [33]. Few efforts, how-
ever, have been made to determine sensitivity (SE) and 
specificity (SP) of this “visual test and slaughter” method. 
Although there is a need to assess the accuracy of this 
procedure [25, 31], the effects of age, sex and season on 
the SE and SP of visual diagnosis of sarcoptic mange on 
the field remain untested.

The Iberian ibex is a medium-sized mountain ungulate 
and an excellent model to evaluate the SP and SE of field 
visual diagnosis of sarcoptic mange due to: (i) high sexual 
dimorphism; (ii) easy determination of age; and (iii) exist-
ence of different stages of mange infestation in wild pop-
ulations. Since the first detection of sarcoptic mange in 
1992 [17, 27] in the Iberian ibex population of the Sierra 
Nevada Natural Space (Including both the National and 
Natural Park, SNNS hereafter), selective culling of indi-
viduals showing sarcoptic mange compatible lesions has 
been applied, together with the habitual hunting plan for 
population management purposes. On the other hand, 
individuals in this population have a strong seasonal pat-
tern of body reserves [34] that is partly driven by mange 
infestation [20], particularly during winter [35].

The aim of this study is to determine the SE and SP of 
the visual diagnosis of sarcoptic mange in Iberian ibex 
spotted during field prospections in the SNNS, and to 
explore the individual (age and sex) and environmen-
tal (period of the year) effects on the SE and SP of this 
method. The information obtained should be useful to 
improve strategies oriented to improve sarcoptic mange 
management and control strategies in wild ungulate 
populations.

Methods
This work was performed with data obtained for the 
study of Pérez et al. [25] and with data collected from the 
management programme of the Iberian ibex in SNNS.

Animals and sampling
Four hundred and three Iberian ibexes culled between 
2002 and 2015 in the SNNS, southern Spain (36°00′–
37°10′N, 2°34′–3°40′W), were included in this work. 
These were ibexes presenting sarcoptic mange compat-
ible lesions, but also apparently healthy ones that were 
killed either as part of the usual population management 
programme or through game hunting (females, kids, 
juveniles and trophy-hunted males).

The ibexes were first visually classified in five catego-
ries of sarcoptic mange affectation (0, no skin lesions; 
1, 1–25% of the skin affected; 2, 25–50%; 3, 50–75%; 4, 

> 75%) and then culled as part of previously mentioned 
population management programme in the SNNS. In 
addition, sex, age (kid, 0 years; yearling, 1 to 2 years; 
juveniles, 2 to 4 years; and adults, > 4 years), season 
and localization were recorded for every ibex. Finally, 
the diagnosis of sarcoptic mange was confirmed by skin 
scrapings and/or KOH digestion (when negative scrap-
ing was obtained). The combination of these two meth-
ods was considered as the gold standard in this study. 
Detailed information about the diagnostic procedures 
can be found in Pérez et al. [25]. Fifty-six ibexes show-
ing 1–25% of affectation (category 1) were excluded 
from the study because of the potential bias during 
the visual diagnosis, as they are the hardest to classify 
and could thus lead to a higher error in field conditions 
[13]. Thus, only 347 Iberian ibexes were finally included 
in the study (3 kid females and 5 kid males, 13 yearling 
females and 19 yearling males, 22 juvenile females and 
116 juvenile males, 78 adult females and 70 adult males, 
29 with unrecorded sex and/or age).

Statistical procedures
To assess the sex, age and period of the year effects on the 
SE and SP of our visual diagnosis method for detecting 
scabietic ibexes we used specific generalized linear mod-
els (GLM) with a binomial error distribution and “logit” 
link function. The GLM for SE used a binomial vari-
able as a response variable: 1 for false positive individual 
and 0 otherwise; whereas  the GLM for SP  used: 1 for 
false negative individual and 0 otherwise. A false positive 
(FP) was considered the case where an Iberian ibex was 
visually diagnosed as scabietic, but then was both nega-
tive to skin scrapings and skin digestions. A false negative 
(FN) was considered the case where a visually-diagnosed 
healthy ibex was subsequently found to have S. scabiei 
mites either in the skin scrapings or the skin digestions. 
True positives (TP) or true negatives (TN) were animals 
properly diagnosed as infected or uninfected individuals. 
The explanatory variables where the same in both cases: 
sex (males, n = 210; females, n = 116), age class (kids, n 
= 8; yearlings, n = 32; juveniles, n = 132; adults, n = 148) 
and the period of the year [dry (summer and autumn), n 
= 99; wet (winter and spring), n = 246]. Model selection 
was based on the lowest Akaike information criterion 
(AIC) [36].

Finally, SP and SE estimations were based on Altman 
& Bland [37]:

Sensitivity = TP / TP + FN
Specificity = TN / TN + FP
Statistical procedures were performed using the R 

software 3.2.2 version.
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Results
SE and SP of the visual determination of mangy ani-
mals were 87.14 and 60.71%, respectively. The model 
selection indicated age class and period of the year as 
the main factors explaining SE (Table 1), while sex and 
period of the year were main factors for SP (Table 2).

The best model for SE included the additive effects 
of age class and period of the year, explaining 13.84% 
of the observed variance (Table  1). In particular, juve-
niles were more prone to be false negative than adults 
(βjuveniles = 1.4603 ± 0.4716, Z = 3.096, P = 0.00196) and 
ibexes were more likely to be detected as false negatives 
during the dry period than the wet period (βwet period =  
− 1.6736 ± 0.4104, Z = − 4.078, P = 4.55e−05). Spe-
cifically, juveniles [odds ratio (OR) = e1.46 = 4.30] were 
4.30 times more likely to be false negative than adults, 
and in the dry period (OR = 1/0.19 = 5.26) the prob-
ability of false negative diagnosis was 5.26 higher than 
in the wet period (OR = e−1.67 = 0.19). Hence, SE was 
significantly higher in the wet period than in the dry 
one (92.01 vs 73.44%, P < 0.001) and for adults as com-
pared to juveniles (94.26 vs 64.76%, P < 0.01) (Table 3). 
No significant differences in SE were observed for kids 
and yearlings.

The best model for SP included the additive effects of 
sex and period of the year, explaining 4.39% of the vari-
ance (Table  2). Specifically, females were more often 
detected as false positives than males (βmale =-0.6896 ± 
0.3727, Z = -1.850, P = 0.0643) and in the wet period 
individuals were more likely detected as false positives 
than in the dry period (βwet period =1.2503 ± 0.6218, Z = 
2.011, P = 0.0443).

Females (OR = 1/0.50 = 2) are two times more prob-
able to be found as a false positive than males (OR = 
e−0.69= 0.50) and ibexes spotted in the wet period are 3.49 
times more likely to be diagnosed as false positive than in 
the dry period (OR = e1.25 = 3.49). Thus, visual diagnosis 
SP was significantly higher for males than females (74.19 
vs 22.73%, P < 0.1) and in the dry period compared to the 
wet period (82.35 vs 55.22%, P < 0.05; Table 3).

Discussion
Visual diagnosis of sarcoptic mange aimed at managing 
the disease through selective culling is more sensitive 
than specific, resulting in a neglected bias seeking for 
sick ibexes in field conditions. These results contrast with 
previous studies reporting a SE of 60% and a SP of 100% 
for visual diagnosis of sarcoptic mange in the same host 
species [31]. However, the fact that no skin digestions in 
healthy individuals were performed by Arenas et al. [31] 

Table 1  Model selection for exploring the best generalized 
linear model (GLM) explaining sensitivity variance of the visual 
detection of mange in 347 Iberian ibexes. In bold, the model 
with substantial support for being the best model

GLM: Generalized linear model; K: degrees of freedom, estimated parameters 
in the model; AIC: Akaike’s information criterion; ΔAIC: difference of AIC with 
respect to the best model; Wi: Akaike’s weight

GLM K AIC ΔAIC Wi

AgeClass + Period 5 182.25 0.00 0.58
Sex × Period + AgeClass 7 183.86 1.75 0.24

Sex × AgeClass + Period 9 184.99 3.05 0.13

AgeClass × Period 8 187.91 5.88 0.03

Sex + Period 3 190.51 8.17 < 0.01

Sex × Period 4 190.62 8.33 < 0.01

Period 2 194.44 12.07 < 0.01

AgeClass 4 196.95 14.65 < 0.01

Sex + AgeClass 5 198.65 16.40 < 0.01

Sex × AgeClass 8 200.71 18.68 < 0.01

Sex 2 203.46 21.09 < 0.01

Table 2  Model selection for exploring the best generalized 
linear model (GLM) explaining specificity variance of the visual 
detection of mange in 347 Iberian ibexes. In bold, the model 
with substantial support for being the best model

GLM: Generalized linear model; K: degrees of freedom, estimated parameters 
in the model; AIC: Akaike’s information criterion; ΔAIC: difference of AIC with 
respect to the best model; Wi: Akaike’s weight

GLM K AIC ΔAIC Wi

Sex + Period 3 209.91 0.00 0.42
Sex × Period 4 211.24 1.37 0.21

Period 2 211.57 1.63 0.19

Sex 2 213.33 3.39 0.08

AgeClass + Period 5 214.27 4.45 0.04

Sex × Period + AgeClass 7 215.11 5.43 0.03

AgeClass × Period 8 217.21 7.60 < 0.01

Sex + AgeClass 5 217.57 7.75 < 0.01

Sex × AgeClass + Period 9 218.76 8.89 < 0.01

AgeClass 4 218.76 8.89 < 0.01

Sex × AgeClass 8 222.61 13.00 < 0.01

Table 3  Sensitivity and specificity of the visual diagnosis of 
sarcoptic mange in 347 Iberian ibexes (kid, yearling, juvenile 
and adult) culled in Sierra Nevada Natural Space during the wet 
(winter and spring) and the dry periods (summer and autumn) 
of the year. P-values were obtained from the generalized linear 
models (GLMs) proposed to explain the sensitivity and specificity, 
which included the variables age, sex and period of the year

Parameters involved in the GLMs P-value

Sensitivity (%) Dry period (73.44) Wet period (92.09) < 0.0001

Juveniles (64.76) Adults (94.26) 0.00196

Specificity (%) Wet period (55.22) Dry period (82.35) 0.0443

Females (22.73) Males (74.19) 0.0643
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hampers any comparison with our results. Moreover,  in 
diagnosis based on clinical signs and lesions, SE depends 
on the threshold established to consider a positive diag-
nosis and SP has been observed to be low in human sca-
bies studies. Generally, even by adding skin scrapings to 
visual diagnosis, SE below 50% is common in the scien-
tific literature [38, 39].

High relative humidity and low temperatures favour S. 
scabiei survival [17, 40], especially when they are off the 
host, directly affecting the viability of the mite [18, 41]. In 
experimental infestations, lesions were more pronounced 
in moistened areas of skin, increasing the weakness of the 
stratum corneum, facilitating mite burrowing [42]. Thus, 
in a wet and colder environment more severe lesions can 
be seen than in dry conditions with the same number 
of mites [25], and mites commonly increase in number 
as they are favoured by the weather. Conversely, sum-
mer is the most unfavourable season for S. scabiei [17], 
as high temperatures and low humidity may cause their 
early death [18]. Accordingly, sarcoptic mange usually 
reaches its highest prevalence in winter and spring (the 
wet period) [17], not only in the Iberian ibex but also in 
other species, such as the red deer (Cervus elaphus) and 
Iberian wolf (Canis lupus signatus) [40, 43]. These envi-
ronmental effects on mites are normally reflected in the 
clinical status of mange about 2–3 months afterwards 
[17]. The higher SE and lower SP during the wet period, 
when mites are more active and lesions are typically more 
evident, suggest that such wide lesions might be more 
easily detected, but also that other skin disorders can 
be more easily mistaken as sarcoptic mange at that time 
of the year. In fact, in late spring, as observed in other 
mountain ungulates [44], Iberian ibexes are molting and 
can show an scabietic aspect increasing the likelihood of 
being wrongly culled for that condition. Along the same 
lines, skin disturbances due to other ectoparasite infesta-
tions can also alter the skin appearance at that time [45, 
46], increasing the probability of misclassification. There-
fore, during the wet period attention should be paid to 
distinguish mangy ibexes from those suffering from other 
skin disorders. Conversely, during the dry period the 
efforts should focus on identifying smaller lesions in oth-
erwise apparently healthy ibexes.

In sexually dimorphic species, males are more sus-
ceptible to most parasite infestations [47, 48]. Moreo-
ver, sex-biased parasitism by arthropods rises with 
the increase of sexual dimorphism in body mass [48]. 
Although high testosterone and high investment in 
secondary sexual characters increase mating success, 
they also impair the functioning of the immune sys-
tem [21], specifically under environmental stress [49]. 
Thus, males often show higher prevalence, parasite 

intensity [31, 47–50] and mortality [49], and females 
are normally the immunological stronger gender [21]. 
Although some species, such as wolves or chamois, do 
not show sex-bias for the presence of mange-compati-
ble lesions [11, 24, 43], in other species such as the red 
deer or aoudad (Ammotragus lervia) sarcoptic mange 
is more prevalent in males than in females [16, 40]. 
Similarly, sex is a determining factor for the immune 
response to sarcoptic mange in Iberian ibexes. Females 
have higher specific acquired response to infestation 
and re-infestation than males [22]. In addition, female 
Iberian ibexes show lower mange prevalence, better 
body condition when infested and are less prone to 
develop severe stages of mange than males [20]. The 
lower prevalence and milder lesions of females may 
explain the lower SP of visual diagnosis of sarcopic 
mange, increasing the difficulty to identify them as 
scabietic. Conversely, more prevalent and more often 
severely affected males are more likely to be correctly 
classified as affected by sarcoptic mange, showing a 
better SP.

Lower prevalence of mange-compatible lesions in 
juveniles as compared to adults has been repeatedly 
reported in several species, including Iberian wolves 
[38] and aoudad [16]. Juvenile Iberian ibexes also 
appear to show lower morbidity [12] and progression to 
chronic stages of infection [13], although no differences 
in immune response to sarcoptic mange have been 
observed for this age class [22]. In mortality-based 
studies, the lower proportion of scabietic juveniles has 
been explained by the lower detectability of the smaller 
juvenile carcasses and the action of scavengers [11, 40]. 
The higher proportion of severe mangy adults, how-
ever, could be explained by the behaviour of the adults 
during the rutting season, which increases the contact 
among them favouring mange transmission. Since the 
results of the present study show that the sensitivity 
of visual diagnosis of sarcoptic mange in juveniles is 
lower than in adults, the lower prevalence consistently 
observed in juveniles could be also related, at least par-
tially, to the higher rate of false negatives in this age 
group.

Culling animals affected by sarcoptic mange in order 
to decrease transmission and control the disease is a 
management measure that must be applied carefully 
and responsibly in order to achieve the objective. Oth-
erwise, selective culling might be disadvantageous and 
even counter-productive due to the removal of poten-
tial resilient animals from the environment [7], dis-
rupting the transmission of the genetic resistance to 
the offspring and increasing sarcoptic mange cases by 
enhancing animal dispersion [7, 22].
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Conclusions
The SE and SP for the visual determination of mangy 
Iberian ibexes were found to be influenced by physi-
ological (sex and age) and environmental conditions in 
SNNS. If the selective culling of mangy individuals is to 
be an effective and efficient management measure, it is 
essential to maximize the SE and SP in order to achieve 
a high rate of removal of affected individuals from the 
environment without eliminating potentially resistant 
individuals. To improve the SE and SP, adaptive criteria 
must be established and modified according to the period 
of the year (wet or dry), the sex and the age of the tar-
get ibex. Culling should be more conservative during 
the wet period and with females, when visual diagnosis 
SP is low. Females seem to be more able to control sar-
coptic mange, maintaining lower mite burdens and being 
more sedentary, therefore downplaying their role in the 
transmission. On the other hand, juveniles are frequently 
asymptomatic carriers and thus the decision of keeping 
alive young ibexes showing sarcoptic mange compat-
ible lesions but potentially resistant to the disease need 
to be discussed. Research to unveil the reason for the 
lower lesions presence in juveniles and to define new 
field methods with higher SE for juveniles should be car-
ried out. Similarly, new methods should be validated to 
unmask the false negatives during the dry period, before 
the rutting season when sarcoptic mange spreads due to 
the increase in contact rate among individuals.
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